当前位置:文档之家› 信号系统非正弦周期信号的分解与合成实验报告

信号系统非正弦周期信号的分解与合成实验报告

信号系统非正弦周期信号的分解与合成实验报告
信号系统非正弦周期信号的分解与合成实验报告

非正弦周期信号的分解与合成

一、实验目的

1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与 系数作比较。

2.观测基波和其谐波的合成。

二、实验设备

1、THBCC-1型信号与系统 控制理论及计算机控制技术实验平台

2、PC 机(含“THBCC-1”软件)

三、实验原理

1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦 具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、 n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直 至无穷小。不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 2.实验装置的结构图

3、各次不同波形及其傅氏级数表达式 方波

)

7sin 71

5sin 513sin 31(sin 4)( +ω+ω+ω+ωπ=

t t t t A t f ,其中的

T π=ω2

三角波

)

7

cos

49

1

5

sin

25

1

3

sin

9

1

(sin

8

)

(

2

+

ω

-

ω

+

ω

-

ω

π

=t

t

t

t

A

t

f

,其中的T

π

=

ω

2

半波

半波的傅立叶频谱

正弦整流全波

正弦全波整流形波的傅立叶频谱

)

8

cos

63

1

6

cos

35

1

4

cos

15

1

2

cos

3

1

2

1

(

4

)

(

-

ω

-

ω

-

ω

-

ω

-

π

=t

t

t

A

t

f

,其中T

π

=

ω

2矩形波

矩形波形波的傅立叶频谱

四、实验内容及步骤

1.将50Hz 信号源接至信号分解实验模块BPF 的输入端。

2.将各带通滤波器的输出(注意各种不同信号所包含的频谱)分别接至示波器,观测各次谐波的频率和幅值,画出波形并列表记录频率和幅值。

方波和基波 方波和二次谐波

方波和三次谐波 方波和四次谐波

方波和五次谐波 方波和六次谐波

3.将方波分解所得的基波、三次谐波分别接至加法器的相应输入端,观测加法器的输出波形,并记录。

基波和三次谐波

4.在步骤3 的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的合成波形,并记录。

五次波和基三次波合成

5.分别将50Hz 正弦半波、全波、矩形波和三角波的输出信号接至50Hz 电信号分解与合成模块的输入端,观测基波及各次谐波的频率和幅度,并记录。

6.将50Hz 单相正弦半波、全波、矩形波和三角波的基波和谐波分量接至加法器相应

的输入端,观测求和器的输出波形,并记录。

基波和三五次谐波合成三次波和三五次谐波合成

五次谐波和三五次谐波合成

六、实验思考题

1. 什么样的周期性函数没有直流分量和余弦项?

答:原周期函数必须是奇函数。奇函数傅立叶展开后仍然保持是奇函数,因此只有正弦项,没有直流和余弦项。

2.分析理论合成的波形与实验观测到的合成波形之间误差产生的原因。

答:理论合成是由无限个波形合成的,而实验合成是由有限个波形合成的。

周期信号的分解与合成

实验一周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱。 2.观测基波和其谐波的合成。 二、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、...、n 等倍数分别称二次、三次、四次、...、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1 表1-1 各种不同波形的傅里叶级数表达式(下) 1.方波

2.三角波 3.半波 4.全波 5.矩形波 三、预习要求 在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。 四、实验内容 1. 50HZ方波信号的频谱。 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi 3. 使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形发生的变化。 4. 使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形。 五、思考题 1.什么样的周期性函数没有直流分量和余弦项?

附: 1. 50HZ方波信号的频谱。 >> w1= ; %基波角频率 >> n=0:1:30; >>bn= ; %三角级数中系数bn,参考书p122 >> stem(n*w1,bn),grid on >> xlabel('\omega(rad/s)'),ylabel('bn') >> title('方波信号频谱分析图') 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi tao= ; w1= ; n=-15:1:15; fn= ; %矩形脉冲级数系数fn,参考书p130,用matlab自带函数sinc stem(n,fn),grid on xlabel('n'); ylabel('Fn'); title('周期矩形脉冲的频谱图'); 3. %使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形 %发生的变化。 t=-1:0.001:1; omega=2*pi; y=square(2*pi*t,50); plot(t,y);grid on xlabel('t'); ylabel('周期方波信号'); axis([-1 1 -1.5 1.5]); n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./(pi*n); x=b*sin(omega*n'*t); figure; plot(t,y) hold on; plot(t,x); hold off; xlabel('t'); ylabel('部分和的波形');

第十二章(非正弦周期电流电路)习题解答

第十二章(非正弦周期电流电路)习题解答 一、选择题 1. 在图12—1所示电路中,已知)]cos(2512[1t u s ω+=V , )240cos(2502+ω=t u s V 。设电压表指示有效值,则电压表的读数为 B V 。 A .12; B .13; C.13.93 解:设u 如图12—1所示,根据KVL 得 )240cos(25)cos(2512021+ω+ω+=+=t t u u u s s 即 )120cos(25)cos(25120-ω+ω+=t t u =)60cos(25120-ω+t 根据 2 )1(2 )0(U U U += 得1351222=+=U A 2.在图12—2所示的电路中,已知)100cos(2t u s = V , )]60100cos(243[0-+=t i s A ,则s u 发出的平均功率为 A W 。 A .2; B .4; C .5 解:由平均功率的计算公式得 )600cos(0 )1()1()0()0(++=I U I U P =2)60cos(41300 =?+?W 3.欲测一周期性非正弦量的有效值,应用 A 仪表。 A .电磁系; B .整流系; C .磁电系 4.在图12—3所示的电路中,Ω=20R ,Ω=ω5L , Ω=ω451 C , )]3cos(100)cos(276100[t t u s ω+ω+=V ,现欲使电流i 中含有尽可大的基波分量,Z 应 是 C 元件。 A .电阻; B .电感; C .电容

解:由图12—3可见,此电路对基波的阻抗为 j 45j545520j 1 j j 1 j -?++=ω+ωω?ω++=Z C L C L Z R Z i =8 45 j 20++Z 欲使电流i 中含有尽可大的基波分量就是要使i Z 的模最小,因此Z 应为电容。 二、填空题 1.图12—4所示电路处于稳态。已知Ω=50R ,Ω=ω5L , Ω=ω451 C ,)]3cos(100200[t u s ω+=V ,则电压表的读数为 70.7 V ,电流表的读数为 4 A 。 解:由题目所给的条件可知,L 、C 并联电路对三次谐波谐振,L 对直流相当于短路。 因此,电压表的读数为 7.702 100=V ,而电流表的读数为 450 200 =A 。 2. 图12—5所示电路中,当)cos(2200?+ω=t u V 时,测得10=I A ;当 )]3cos(2)cos(2[2211?+ω+?+ω=t U t U u V 时,测得200=U V ,6=I A 。则83.1051=U V ,71.1692=U V 。 解:由题意得 2010200==ωL , 22 221200=+U U 及22 22 163=?? ? ??ω+??? ??ωL U L U

信号系统实验报告

电子工程系 信号与系统课程实验报告 2011-----2012学年第一学期 专业: 电子信息工程技术班级: 学号 : 姓名: 指导教师: 实常用连续时间信号的实现

一、实验目的 (1)了解连续时间信号的特点; (2)掌握连续时间信号表示的向量法和符号法; (3)熟悉MATLAB Plot函数等的应用。 二、实验原理 1、信号的定义 信号是随时间变化的物理量。信号的本质是时间的函数。 2、信号的描述 1)时域法 时域法是将信号表示成时间的函数f(t)来对信号进行描述的方法。信号的时间特性指的是信号的波形出现的先后,持续时间的长短,随时间变化的快慢和大小,周期的长短等。 2)频域(变换域)法 频域法是通过正交变换,将信号表示成其他变量的函数来对信号进行描述的方法。一般常用的是傅立叶变换。信号的频域特性包括频带的宽窄、频谱的分布等。 信号的频域特性与时域特性之间有着密切的关系。 3、信号的分类 按照特性的不同,信号有着不同的分类方法。 (1)确定性信号:可以用一个确定的时间函数来表示的信号。 随机信号:不可以用一个确定的时间函数来表示,只能用统计特性加以描述的信号。 (2)连续信号:除若干不连续的时间点外,每个时间点在t上都有对应的数值信号。离散信号:只在某些不连续的点上有数值,其他时间点上信号没有定义的信号。 (3)周期信号:存在T,使得等式f(t+T)=f(t)对于任意时间t都成立的信号。非周期信号:不存在使得等式f(t+T)=f(t)对于任意时间t都成立的信号。 绝对的周期信号是不存在的,一般只要在很长时间内慢走周期性就可以了。 (4)能量信号:总能量有限的信号。 功率信号:平均功率有限切非零的信号。 (5)奇信号:满足等式f(t)=--f(--t)的信号。偶信号:满足等式f(t)=f(--t)的信号。 三、涉及的MATLAB函数 1、plot函数 功能:在X轴和Y轴方向都按线性比例绘制二维图形。 调用格式: Plot(x,y):绘出相x对y的函数线性图。 Plot(x1,y1,x2,y2,…..):会出多组x对y的线性曲线图。 2、ezplot函数 功能:绘制符号函数在一定范围内的二维图形。简易绘制函数曲线。 调用格式: Ezplot (fun):在[-2π,2π]区间内绘制函数。 Ezplot (fun,[min,max]):在[min,max]区间内绘函数。 Ezplot (funx,funy):定义同一曲面的函数,默认的区间是[0, 2π]。】 3、sym函数 功能:定义信号为符号的变量。 调用格式:sym(fun):fun为所要定义的表达式。 4、subplot函数

信号分解与合成实验报告

实验二信号分解与合成 --谢格斯110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用 的被测信号是 1 53Hz左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是「2 2、3 3、4 4、5 5,因而能从各有源带通滤波器的两端观察到基波和各 次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1: (1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方 波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上 的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。 2、调节函数信号发生器,使其输出53Hz左右(其中在50Hz ~ 56Hz之间进行选择,

信号分解与合成实验

深圳大学实验报告课程名称:信号与系统 实验项目名称:信号的分解与合成实验 学院:信息工程工程学院 专业: 电子信息工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务处制

电位器W01、W02、W03可以将基波,三次谐波,五次谐波,七次谐波的幅度调节成1:1/3 : 1/5 : 1/7,通过导线将其连接至信号的合成的输入插座IN01、IN02、IN03、IN04J ,通过测试勾可以观察到合成后的波形。 2、验证三次谐波与基波之间的相位差是否为180,五次谐波与基波之间的相位差是否为0.可用李沙育图形法进行测量,其测量方法如下:用导线将函数发生器的方便输出端与带通滤波器输入端连接起来,即把方波信号分先后送入各带通滤波器,如图(1)所示. 具体方法:基波与各高次谐波相位比较(李沙育频率测试法) 把BFP-1ω处的基波送入示波器的X 轴,再分别把BFP-31ω、BFP-51ω处的高次谐波送入Y 轴,示波器采用X —Y 方式显示,观察李沙育图。 当基波与三次谐波相位差为0、90、180时,波形分别如图所示. 以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比.

五、实验步骤与相应实验结果: 1、把电信号分解与合成模块插在主板上,用导线接通此模块“电源插入”和主板上的电源,并打开此模块的电源开关. 2、调节函数信号发生器,使其输出10KHz左右的方波,占空比为50%,峰峰值为6V左右,如图(2)所示。将其接至该实验模块的“输入端",用示波器观察各次谐波的输出即各次谐波,分别如图(3)、图(4)、图(5)、图(6)所示. 图(2)输出方波信号 图(3)基次谐波图(4)三次谐波 图(5)五次谐波图(6)七次谐波

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

典型信号的合成和分解

实验指导书 实验项目名称:典型信号的合成和分解 实验项目性质:普 通 所属课程名称:工程测试技术 实验计划学时:2 一.实验目的 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义和特点。 二.实验内容和要求 1.周期信号的合成和分解 在有限区间内,凡满足狄里赫利条件的周期信号x(t)都可以展开傅里叶三角函数级数。 001001 ()(cos sin )2 cos()(1,2,3,)2n n n n n n n a x t a n t b n t a A n t n ωωω?∞=∞==++=+-=∑∑ 式中 0a ——常值分量 00/20/202()T T a x t dt T -=? n a ——余弦分量的幅值

00/20/202()cos T n T a x t n tdt T ω-=? n b ——正弦分量的幅值 00/20/202()sin T n T b x t n tdt T ω-=? n A ——n 次谐波的振幅,是n 的偶函数 n A = n ?——n 次谐波的相角,是n 的奇函数 arctan n n n a b ?= 可见,周期信号是由周期信号是由一个或几个、乃至无穷多个不同频率的谐波叠加而成的。也就是说,复杂周期信号是由几个乃至无穷多个简单的周期信号组成的,这些组成的周期信号的频率具有公约数,周期具有公共的周期。 因此,周期信号可以分解成多个乃至无穷多个谐波信号。反过来说,我们可以用一组谐波信号来合 成任意形状的周期信号。 例如对于如右图所示的方 波,其时域描述表达式为 000()()02()02x t x t nT T A t x t T A t =+????<

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成. 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识. 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容. 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台. 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的. 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3—1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频 率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波.其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入"和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关. 2、调节函数信号发生器,使其输出Hz 53左右(其中在Hz Hz 56~50之间进行选择,

周期矩形脉冲的分解与合成

周期矩形脉冲的分解与合成

本科实验报告 实验名称:周期矩形脉冲的分解与合成

一、实验目的和要求 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验内容和原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin ) k k k x t a a k t b k t ωω∞ ==++∑ 2.2 矩形脉冲信号的幅度谱 一般利用指数形式的傅里叶级数计算周期信号的幅度谱。 0()jk t k k x t X e ω∞ =-∞ = ∑ (3) 式中0/2 /2 1()T jk t k T X x t e dt T ω--= ? 。计算出指数形式的复振幅k X 后,再利用单边幅 度谱和双边幅度谱的关系:0 2,0 ,0k k X k C X k ?≠?=?=??,即可求出第k 次谐波对应的振

幅。 内容: (1)方波信号的分解。调整“信号源及频率计模块”各主要器件,通过TP1~TP8观察500Hz方波信号的各次谐波,并记录各次谐波的峰峰值。 (2)矩形波信号的分解。将矩形脉冲信号的占空比变为25%,再通过TP1~TP8观察500Hz矩形脉冲信号的各次谐波,并记录各次谐波的峰峰值。 (3)方波的合成。将矩形脉冲信号的占空比再变为50%,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 (4)相位对矩形波合成的影响。将SW1调节到“0110”,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 三、实验项目 周期矩形脉冲的分解与合成 四、实验器材 信号与系统实验箱一台 双踪示波器一台 五、实验步骤 5.1 方波信号的分解 ①连接“信号源与频率计模块”的模拟输出端口P2与“数字信号处理模块”的模拟输入端口P9; ②将“信号源及频率计模块”的模式切换开关S2置信号源方式,扫频开关S3置off,利用波形切换按钮S4产生矩形波(默认方波,即占空比为50%),利用频率调节按钮ROL1保证信号频率为500Hz; ③将“数字信号处理模块”模块的8位拨码开关调节为“00000000”; ④打开信号实验箱总电源(右侧边),打开S2、S4 两模块供电开关; ⑤用示波器分别观察测试点“TP1~TP7”输出的一次谐波至七次谐波的波形及TP8处输出的七次以上谐波的波形; ⑥根据表1,记录输入信号参数及测试结果。 5.2 矩形波信号的分解 ①按下“信号源及频率计模块”的频率调节按钮ROL1约1秒钟后,数码

--非正弦交流电路

第9章非正弦交流电路 学习指导与题解 一、基本要求 1.建立几个频率为整数倍的正弦波可以合成为一非正弦周期的概念。明确一个非正弦周期波可以分解为一系列频率为整数倍正弦波之和的概念(即谐波分析)、谐波中的基波与高次谐波的含义。了解谐波分析中傅里叶级数的应用。 2.掌握波形对称性与所含谐波分量的关系。能根据波形的特点判断所含谐波的情况。了解波形原点选择对所含谐波的影响。 3.掌握非正弦周期电压和电流的平均值(即直流分量)和有效值的计算。能根据给定波形计算出直流分量。能根据非正弦周期波的直流分量和各次谐波分量,计算出它的有效值。 4.掌握运用叠加定理和谐波分析计算非正弦交流电路中的电压和电流的方法。 5.建立同频率的正弦电压和电流才能形成平均功率的概念。掌握运用叠加定理和谐波分量计算非正弦交流电路中和平均功率。 二、学习指导 在电工技术中,电路除了激励和响应是直流和正弦交流电和情况外,也还遇到有非正弦周期函数电量的情况。如当电路中有几个不同频率的正弦量激励时,响应是非正弦周期函数;含有非线性元件的电路中,正弦激励下的响应也是非线性的;在电子、计算机等电路中应用的脉冲信号波形,都是非正弦周期函数。因此,研究非正弦交流电路的分析,具有重要和理论和实际意义。 本章的教学内容可分为如下三部分: 1.非正弦周期波由谐波合成的概念; 2.非正弦周期波的谐波分析; 3.非正弦交流电路的计算。 着重讨论非正弦周期波谐波分析的概念,非正弦周期量的有效值和运用叠加定理计算非正弦交流电路的方法。 现就教学内容中的几个问题分述如下。 (一)关于非正弦周期波的谐波的概念 非正弦周期波是随时间作周期性变化的非正弦函数。如周期性变化的方波、三角波等。这类波形,与正弦波相比,都有变化的周期T和频率f,不同的是波形而已。

信号与系统实验报告

学生实验报告 (理工类) 课程名称:信号与系统实验专业班级:电子信息(1)班学生学号:1005101058 学生姓名:严生生 所属院部:信息技术学院指导教师:杨婧 20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制

实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求 实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示实验学时: 1 同组学生姓名:实验地点: B402 实验日期:实验成绩: 批改教师:杨婧批改时间: 一、实验目的和要求 熟悉MATLAB软件,利用MATLAB软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件。 三、实验过程 1,绘制正弦信号f(t)=Asin(ωt+ψ),其中A=1,ω=2π, ψ=π/6; 2,绘制指数信号f(t)=Ae^at,其中A=1,a=-0.4; 3,绘制矩形脉冲信号,脉冲宽度为2; 4,绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5,对上题三角波脉冲信号进行尺度变换,分别得出f(2t),f(2-2t); 6,绘制抽样函数Sa(t),t取值在-3π到+3π之间; 7,绘制周期矩形脉冲信号,参数自定; 8,绘制周期三角脉冲信号,参数自定; 1,打开MATLAB界面,建立新文件。 2,根据实验要求,编写程序。

实验二、 波形合成与分解

实验二 波形合成与分解 1.实验目的 在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。 2.实验原理 根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即: )2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++= 即可以用一组正弦波和余弦波来合成任意形状的周期信号。 3.实验内容 (1) 方波的合成 图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量 合成的,本实验用图形的方式来表示它的合成。方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=?=∑∞ =n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。 a.只考察从 0=t s 到10=t s 这段时间内的信号。 b.画出基波分量)sin()(t t y =。 c.将三次谐波加到基波之上,并画出结果,并显示。 3/)*3sin()sin()(t t t y += d.再将一次、三次、五次、七次和九次谐波加在一起。 9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++= e.合并从基波到十九次谐波的各奇次谐波分量。 f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。注意“吉布斯现象”。周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。 (2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

信号与系统实验报告汇总

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10 ()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

信号的分解与合成

实验十三 信号分解及合成 一、 实验目的 1、 了解和熟悉波形分解与合成原理。 2、 了解和掌握用傅里叶级数进行谐波分析的方法。 二、 实验仪器 1、 双踪示波器 2、 数字万用表 3、 信号源及频率计模块S2 4、 数字信号处理模块S4 三、 实验原理 (一)信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号 ()f t ,只要满足狄利克菜(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里 叶级数。 例如,对于一个周期为T 的时域周期信号()f t ,可以用三角形式的傅里叶级数求出它的 各次分量,在区间11(,)t t T +内表示为 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ ()01 ()cos sin n n n f t a a n t b n t ∞ ==+Ω+Ω∑ 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 图1 c a

信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图13-1来形象地表示。其中图(a)是信号在幅度—时间—频率三维坐标系统中的图形;图(b)是信号在幅度一时间坐标系统中的图形即波形图:把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度—频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分景频率-致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图132所示。 (二)方波的分解 我们以下图的方波为例:占空比为50% 方波在一个周期内的解析式为:0()2 A t T f t T A t T <≤?? =? -<≤?? 故有 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ 于是,所求级数 b

非正弦周期信号汇总

第十三章非正弦周期电流电路和信号的频谱 重点: 1. 非正弦周期电流电路的电流、电压的有效值、平均值; 2. 非正弦周期电流电路的平均功率 3. 非正弦周期电流电路的计算方法 难点: 1. 叠加定理在非正弦周期电流电路中的应用 2. 非正弦周期电流电路功率的计算 章与其它章节的联系: 三相电路可以看成是三个同频率正弦电源作用下的正弦电流电路,对它的计算,第九章正弦电流电路中所阐述的方法完全适用。 §13.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波 2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 13.1 为一些典型的非正弦周期信号。 图13.1(a)半波整流波形(b)锯齿波(c)方波 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量

单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。

§13.2 周期函数分解为付里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算: (k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。 注意:非正弦周期电流、电压信号分解成傅里叶级数 的关键在于求出系数a0、ak、bk ,可以利用函数的某种 对称性判断它包含哪些谐波分量及不包含哪些谐波分量, 可使系数的确定简化,给计算和分析将带来很大的方便。图 13.2

信号与系统实验报告(常用信号的分类与观察)

实验一:信号得时域分析 一、实验目得 1.观察常用信号得波形特点及产生方法 2.学会使用示波器对常用波形参数得测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性得研究,其中重要得一个方面就是研究它得输入输出关系,即在一特定得输入信号下,系统对应得输出响应信号.因而对信号得研究就是对系统研究得出发点,就是对系统特性观察得基本手段与方法.在本实验中,将对常用信号与特性进行分析、研究。 信号可以表示为一个或多个变量得函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同得a取值,其波形表现为不同得形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号得参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)就是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特得运用。其信号如下图所示: 图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示:

图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t—T),其中u(t)为单位阶跃函数。其信号如下图所示: f(t) ? ……??…… 0 t 图1-6脉冲信号 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t) ………… ?0?t 图1-7方波信号 四、实验内容及主要步骤 下列实验中信号产生器得工作模式为11 1、指数信号观察 通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。用示波器测量“信号A组”得输出信号。 输出波形为:

信号系统实验报告123(1)

实验一连续时间信号的时域基本运算 一、实验目的 (1)掌握连续时间信号时域运算的基本方法; (2)掌握相关函数的调用格式及作用; (3)掌握连续信号的基本运算。 二、实验原理 信号的基本运算包括信号的相加(减)和相乘(除).信号的时域变换包括信号的平移、翻转、倒相以及尺度变换。 (1)加减: f(t)=f1(t)±f2(t)(2)乘: f(t)=f1(t)×f2(t) (3)延时或平移:f(t)→(t-t0) t0>0时右移;t0<0时左移 (4)翻转: f(t)→f(-t) (5)尺度变换:f(t)→ f(at) |a|>1时尺度缩小;|a|<1时尺度放大;a<0时,尺度翻转。 (6)标量乘法:f(t)→af(t) (7)倒相: f(t)→-f(t) (8)微分: f(t)→df(t)/dt (9)积分: f(t)→∫t -∞f(t)d(t) 三、涉及的MATLAB函数及其运算 1、stepfun函数 功能:产生一个阶跃信号。 调用格式: Stepfun(t,t 0)其中,t是时间区间,在该区间内阶跃信号一定会产生;t 是信号 发生从0到1跳跃的时刻。 2、diff函数 调用格式: diff (f) : 求函数f对预设独立变数的一次微分值。 diff (f, ’t’) : 求函数f对独立变数t的一次微分值。 3、int函数 调用格式: Int(f): 函数f对预设独立变数的积分值。 Int(f,’t’): 函数f对独立变数t的积分值。 4、heaviside函数 Heaviside(t):产生没有移位的阶跃信号。 Heaviside(t-k):产生向右平移K单位的阶跃信号。 四、实验内容与方法1、验证性实验 (1)移位 实现连续信号的移位,即f(t-t0),或者f(t+t0);常数t0>0。 MATLAB程序 clear all t=0:0.0001:2 y=sin(2*pi*(t)); y1=sin(2*pi*(t-0.2)); plot(t,y,'-',t,y1,'--'); ylabel('f(t)');xlabel('t');title('信号的移位') 运行结果:

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加 等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M 双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电 路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。

信号与系统实验报告一概要

西北工业大学 《信号与系统》实验报告学院:软件与微电子学院学号: 姓名: 专业:软件工程 实验时间: 实验地点: 指导教师: 西北工业大学 201 年9 月

1.2离散时间正弦信号 (a): clc; N=12; n=0:(2*N-1); i=1; for M=[4 5 7 10 15] x=sin(2*pi*M*n./N); figure(i) stem(n,x,'fill'); i=i+1; end

答:第一个信号的基波周期为3;第二个信号的基波周期为12;第三个信号的基波周期

为12;第四个信号的基波周期为6。由任意的整数M和N值,一般来说信号的基波周 期为N/(M与N的最大公约数) (b): clc; n=1:8; i=1; for k=[1 2 4 6] x=sin(2*pi*k/5*n); subplot(2,2,i) stem(n,x,'fill') i=i+1; end 答:图中有2个唯一的信号。因为信号是离散的信号,而连续的余弦信号又为周期信号,因 此当k值取值符合一定要求时,两个离散信号图形可能一模一样。 (c):考虑下面3个信号 ? ? ? ? ? + ? ? ? ? ? = ? ? ? ? ? + ? ? ? ? ? = ? ? ? ? ? + ? ? ? ? ? = N n N n n x N n N n n x N n N n n x 2 5 sin 3 2 cos ] [ 3 sin 2 cos 2 ] [ 3 sin 2 cos ] [ 3 2 1 π π π π clc; N=6; subplot(311)

第6节 非正弦周期电流电路分析

第6章 非正弦周期电流电路分析 主要内容 1. 信号的基本概念和分类。 2. 信号的基本运算。 3. 常用非正弦周期信号。 4. 非正弦周期信号的傅里叶级数分解。 5. 周期信号的频谱。 6. 非正弦周期电流电路分析。 6.1信号 6.1.1 信号的基本概念 宇宙万物都处在不停的运动中,物质的一切运动或状态的变化,从广义上讲都是信号(Signal ),即信号是物质运动的表现形式。例如,钟鼓楼的报时钟声和轮船的汽笛声是声信号;烽火台的烽火和交通路口的红绿灯信号是光信号;电路中的电流和无线电基站发射的电磁波是电信号。在社会活动和日常生活中,人们总要使用语言、文字、数据、图像等多种媒体来传递消息(Message ),消息是这些语言、文字、数据、图像等信号所代表的具体内容。通信的目的在于通过各种消息的传递,使人们获取不同的信息(Information ),信息就是指具有新内容、新知识的消息。为了有效地传输和利用消息,通常需要将消息转换成各种便于传输和处理的信号。可见,信号是消息的载体,消息是信号的具体内容。 信号通常表现为某种随时间变化的物理量,在各种信号中,电信号最便于传输、控制和处理。因此,在实际应用中通常将各种非电信号(如声音、图像、温度、压力、位移、转矩、流量等)通过适当的传感器转换成电信号。 6.1.2 信号的描述和分类 电信号通常表现为电压信号和电流信号,它们都是时间的函数,可分别用u (t )和i (t )表示,或一般地表示为f (t )、y (t )等。信号的描述方法通常包括函数表达式法、波形图法、频谱图法和数据列表法。信号的变化规律是多种多样的,可以从不同的研究角度进行分类。 1.确定信号与随机信号 若信号随时间的变化表现为某种确定的规律,能用确定的函数表达式来描述,或者说对于任意一个确定的时刻,信号都有确定的函数值,这种信号称为确定信号。例如,正弦信号就是典型的确定信号。相反,如果信号的取值在不同时刻随机变化,事先无法预知它的变化规律,不能用确定的函数表达式来描述,这种信号称为不确定信号或随机信号。例如,噪声信号就是典型的随机信号。图6-1所示为几种常用信号的波形图,其中(a )~(e )是确定信号,(f )是随机信号。 由于信号在传输过程中不可避免地要受到各种噪声和干扰的影响,所以在实际应用中,理想的确定信号并不存在。但作为科学的抽象,研究确定信号仍然十分重要,它是研究随机信号的基础。 2.周期信号与非周期信号 周期信号是按某一固定周期重复出现的信号,它可以表示为 f (t )= f (t+nT ) n =0,±1,±2,… (6-1) 式中,T 称为信号的周期。周期信号的特点在于只要给定任意一个周期内信号的变化规律,就可以确定它在其他时间内的变化规律,如图6-1(c )所示。 非周期信号不具有周期性,它通常有两种表现方式:一种是仅在某些时间区间存在的信号,如图 6-1(a )、(b )、(d )、(e )、(f ) 所示;另一种是拟周期信号(概周期信号),例如)2sin(sin )(t t t f +=,它的两个正弦分量频率之比为无理数。另外,通常也可以将非周期信号看作是周期为无穷大的周期信号。

相关主题
文本预览
相关文档 最新文档