当前位置:文档之家› 信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告
信号的分解与合成实验报告

竭诚为您提供优质文档/双击可除信号的分解与合成实验报告

篇一:实验报告二.信号的分解与合成

实验二信号的分解与合成

时间:第星期课号:

院系专业:

姓名:学号:座号:

=================================================== =========================================

一、实验目的

1、观察信号波形的分解与合成,加深对信号频谱的理解;

2、学会用软件multisim进行信号的分解和合成;

二、实验预习

1、方波信号是周期性信号,对周期信号进行傅里叶级数分解,(如果方波信号的频率是f)分解后基波信号的频率为多少?各次谐波频率是多少?各次谐波频率与基波频率的关系?。

2、方波信号有偶次谐波吗?为什么?

3、熟悉实验指导书第18页图1-24信号分解与合成电路。参考指导书50Khz方波信号的分解与合成的例子,设计一个30Khz方波信号的分解与合成的电路。30Khz方波信号的分解与合成的电路参数的要求:

(1)五个滤波器的电容值c1?c2?c3?c4?c5?1?F

(2)根据公式f?1

2?Lc计算出

,,。并画出电路图。

三、实验内容

1.设计30Khz方波信号分解与合成电路:将30Khz的方波信号分解出一、三、五次谐波;首先在电子工作台上画出待分析的电路。(电路参考实验指导书第18页图1-24信号分解与合成电路)注意:函数信号发生器的设置:波形选择:方波;频率:30Khz;占空比:50%;信号幅度:1V。

再用示波器分别观测方波信号波形、一、三、五次谐波波形,合成波波形,测量周期,幅度。

2.画波形图:分别画出方波信号波形、一、三、五次谐波波形,合成波五个信号的波形图(时间轴对应),标明周期,幅度。(注意实验过程中在下面空白处记录波形图,课后把数据整理在坐标纸上并粘贴在此处)

3.实验过程中的故障现象及解决方法。

四、思考题

篇二:信号分解与合成实验报告

实验二信号分解与合成

--谢格斯110701336聂楚飞110701324

一、实验目的

1、观察电信号的分解。

2、掌握带通滤波器的有关特性测试方法。

3、观测基波和其谐波的合成。

二、实验内容

1、观察信号分解的过程及信号中所包含的各次谐波。

2、观察由各次谐波合成的信号。

三、预备知识

1、了解李沙育图相关知识。

2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加

等相关内容。

四、实验仪器

1、信号与系统实验箱一台(主板)。

2、电信号分解与合成模块一块。

3、20m双踪示波器一台。

五、实验原理

任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的

傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。

通过一个选频网络可以将电信号中所包含的某一频率

成份提取出来。本实验采用性能较

佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波

器电

路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是?1?53hz

左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频率分别是?1、2?2、3?3、4?4、5?5,因而能从各有源带通滤波器的两端观察到基波和各次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有

限性都会使得偶次谐波分量不能达到理想零的情况。

六、实验步骤

1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上

的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。

2、调节函数信号发生器,使其输出53hz左右(其中在50hz~56hz之间进行选择,

使其合成的效果更好)的方波(要求方波占空比为50%,这个要求较为严格),峰峰值为5V

左右。将其接至该实验模块的各带通滤波器的“输入”端,用示波器观察各带通滤波器的输

出。(注:观察频率时,可打开实验箱上的频率计实验模块。即按下该模块电源开关s2。)

3、用示波器的两个探头,直接观察基波与三次谐波的相位关系,或者采用李沙育图的

方法,同时考察其幅度关系,看其相位差是否为零,幅度之比是否为3:1(可以用相应带通

滤波器中的调幅和调相电位器进行相关的调节,保证了相位和幅度满足实验的要求,以下

的步骤中均可用到调相和调幅,使我们认识到调相和调幅在信号分解和合成的重要性)。

4、将方波分解所得基波和三次谐波,用导线与其对应的

周期信号的分解与合成

实验一周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱。 2.观测基波和其谐波的合成。 二、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、...、n 等倍数分别称二次、三次、四次、...、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3.一个非正弦周期函数可用傅里叶级数来表示,级数各项系数之间的关系可用一各个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1 表1-1 各种不同波形的傅里叶级数表达式(下) 1.方波

2.三角波 3.半波 4.全波 5.矩形波 三、预习要求 在做实验前必须认真复习教材中关于周期性信号傅利叶级数分解的有关内容。 四、实验内容 1. 50HZ方波信号的频谱。 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi 3. 使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形发生的变化。 4. 使用不同频率的谐波合成矩形脉冲信号;注意观察随着谐波数的增加合成的波形。 五、思考题 1.什么样的周期性函数没有直流分量和余弦项?

附: 1. 50HZ方波信号的频谱。 >> w1= ; %基波角频率 >> n=0:1:30; >>bn= ; %三角级数中系数bn,参考书p122 >> stem(n*w1,bn),grid on >> xlabel('\omega(rad/s)'),ylabel('bn') >> title('方波信号频谱分析图') 2. 周期矩形脉冲的频谱;脉冲宽度为1;周期为4;则基波角频率为0.5pi tao= ; w1= ; n=-15:1:15; fn= ; %矩形脉冲级数系数fn,参考书p130,用matlab自带函数sinc stem(n,fn),grid on xlabel('n'); ylabel('Fn'); title('周期矩形脉冲的频谱图'); 3. %使用不同频率的谐波合成方波信号;注意观察随着谐波数的增加合成的波形 %发生的变化。 t=-1:0.001:1; omega=2*pi; y=square(2*pi*t,50); plot(t,y);grid on xlabel('t'); ylabel('周期方波信号'); axis([-1 1 -1.5 1.5]); n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2:n_max(k); b=4./(pi*n); x=b*sin(omega*n'*t); figure; plot(t,y) hold on; plot(t,x); hold off; xlabel('t'); ylabel('部分和的波形');

信号分解与合成实验报告

实验二信号分解与合成 --谢格斯110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用 的被测信号是 1 53Hz左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是「2 2、3 3、4 4、5 5,因而能从各有源带通滤波器的两端观察到基波和各 次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1: (1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方 波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入”和主板上 的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。 2、调节函数信号发生器,使其输出53Hz左右(其中在50Hz ~ 56Hz之间进行选择,

典型信号的合成和分解

实验指导书 实验项目名称:典型信号的合成和分解 实验项目性质:普 通 所属课程名称:工程测试技术 实验计划学时:2 一.实验目的 通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义和特点。 二.实验内容和要求 1.周期信号的合成和分解 在有限区间内,凡满足狄里赫利条件的周期信号x(t)都可以展开傅里叶三角函数级数。 001001 ()(cos sin )2 cos()(1,2,3,)2n n n n n n n a x t a n t b n t a A n t n ωωω?∞=∞==++=+-=∑∑ 式中 0a ——常值分量 00/20/202()T T a x t dt T -=? n a ——余弦分量的幅值

00/20/202()cos T n T a x t n tdt T ω-=? n b ——正弦分量的幅值 00/20/202()sin T n T b x t n tdt T ω-=? n A ——n 次谐波的振幅,是n 的偶函数 n A = n ?——n 次谐波的相角,是n 的奇函数 arctan n n n a b ?= 可见,周期信号是由周期信号是由一个或几个、乃至无穷多个不同频率的谐波叠加而成的。也就是说,复杂周期信号是由几个乃至无穷多个简单的周期信号组成的,这些组成的周期信号的频率具有公约数,周期具有公共的周期。 因此,周期信号可以分解成多个乃至无穷多个谐波信号。反过来说,我们可以用一组谐波信号来合 成任意形状的周期信号。 例如对于如右图所示的方 波,其时域描述表达式为 000()()02()02x t x t nT T A t x t T A t =+????<

信号分解与合成实验

深圳大学实验报告课程名称:信号与系统 实验项目名称:信号的分解与合成实验 学院:信息工程工程学院 专业: 电子信息工程 指导教师: 报告人:学号:班级: 实验时间: 实验报告提交时间: 教务处制

电位器W01、W02、W03可以将基波,三次谐波,五次谐波,七次谐波的幅度调节成1:1/3 : 1/5 : 1/7,通过导线将其连接至信号的合成的输入插座IN01、IN02、IN03、IN04J ,通过测试勾可以观察到合成后的波形。 2、验证三次谐波与基波之间的相位差是否为180,五次谐波与基波之间的相位差是否为0.可用李沙育图形法进行测量,其测量方法如下:用导线将函数发生器的方便输出端与带通滤波器输入端连接起来,即把方波信号分先后送入各带通滤波器,如图(1)所示. 具体方法:基波与各高次谐波相位比较(李沙育频率测试法) 把BFP-1ω处的基波送入示波器的X 轴,再分别把BFP-31ω、BFP-51ω处的高次谐波送入Y 轴,示波器采用X —Y 方式显示,观察李沙育图。 当基波与三次谐波相位差为0、90、180时,波形分别如图所示. 以上是三次谐波与基波产生的典型的李沙育图,通过图形上下端及两旁的波峰个数,确定频率比.

五、实验步骤与相应实验结果: 1、把电信号分解与合成模块插在主板上,用导线接通此模块“电源插入”和主板上的电源,并打开此模块的电源开关. 2、调节函数信号发生器,使其输出10KHz左右的方波,占空比为50%,峰峰值为6V左右,如图(2)所示。将其接至该实验模块的“输入端",用示波器观察各次谐波的输出即各次谐波,分别如图(3)、图(4)、图(5)、图(6)所示. 图(2)输出方波信号 图(3)基次谐波图(4)三次谐波 图(5)五次谐波图(6)七次谐波

周期信号分解与合成

信号与线性系统课程设计报告课题1 周期信号分解与合成 班级: 姓名: 学号: 组号及同组人: 成绩: 指导教师: 日期:

题目:周期信号分解与合成 摘要:本文主要利用多反馈带通滤波器的设计方法,设计五中不同中心频率的带通滤波器,分别对应于输入信号利用傅里叶级数展开后的基波分量频率、二次谐波分量频率、三次谐波分量频率、四次谐波分量频率、五次谐波分量频率,通过带通滤波器对原输入信号进行滤波将各个分量分开,实现信号的分解,利用加法器实现信号的合成,在设计时先采用Multisim 软件进行模拟电路设计及仿真,然后根据仿真结果进行元件参数的修改,当仿真结果比较理想后,进行硬件电路的调试。 关键词:周期信号,分解,合成,带通滤波器,加法器 1课程设计的目的、意义 本课题主要研究周期信号分解与合成的软硬件实现方法以及相关滤波器的设计及应用。通过本课题的设计,主要达到以下几个目的: 1.了解周期信号分解与合成电路的原理及实现方法。 2.深入理解信号频谱和信号滤波的概念,理解滤波器幅频响应和相频响应对信号的影响以及无失真传输的概念。 3.掌握模拟带通滤波器的原理与设计方法。 4.掌握利用Multisim软件进行模拟电路设计及仿真的方法。 5.了解周期信号分解与合成硬件电路的设计、制作、调试过程及步骤。 6.掌握新一代信号与系统实验系统及虚拟示波器、虚拟信号发生器的操作使用方法。 7.培养运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 本课题的任务包括周期信号分解与合成电路设计、电路(系统)仿真分析、电路板焊接、电路调试与测试、仿真和测试结果分析等内容,主要工作有: 1. 采用有源带通滤波器,选择适当的滤波器参数,设计一个能分解出周期信号(周期信

信号的分解与合成

实验十三 信号分解及合成 一、 实验目的 1、 了解和熟悉波形分解与合成原理。 2、 了解和掌握用傅里叶级数进行谐波分析的方法。 二、 实验仪器 1、 双踪示波器 2、 数字万用表 3、 信号源及频率计模块S2 4、 数字信号处理模块S4 三、 实验原理 (一)信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号 ()f t ,只要满足狄利克菜(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里 叶级数。 例如,对于一个周期为T 的时域周期信号()f t ,可以用三角形式的傅里叶级数求出它的 各次分量,在区间11(,)t t T +内表示为 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ ()01 ()cos sin n n n f t a a n t b n t ∞ ==+Ω+Ω∑ 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 图1 c a

信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图13-1来形象地表示。其中图(a)是信号在幅度—时间—频率三维坐标系统中的图形;图(b)是信号在幅度一时间坐标系统中的图形即波形图:把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度—频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分景频率-致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图132所示。 (二)方波的分解 我们以下图的方波为例:占空比为50% 方波在一个周期内的解析式为:0()2 A t T f t T A t T <≤?? =? -<≤?? 故有 () 01 ()cos sin 41,3,5,7,n n n f t a a n t b n t A k Tk ω ∞ ==+Ω+Ω=??? ∑ 于是,所求级数 b

信号的产生分解与合成

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第七次实验 实验名称:信号的产生、分解与合成 院(系):电子科学与工程学院专业: 姓名:姜勖学号:06A11315 实验室:104实验组别:27 同组人员:徐媛媛实验时间:年月日 评定成绩:审阅教师: 实验四信号的产生、分解与合成 一、实验内容及要求 设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。 1.基本要求 (1)设计一个方波发生器,要求其频率为1kHz,幅度为5V; (2)设计合适的滤波器,从方波中提取出基波和3次谐波; (3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。 2.提高要求 设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。 3.创新要求 用类似方式合成其他周期信号,如三角波、锯齿波等。 分析项目的功能与性能指标: 功能:通过振荡电路产生一个方波,并将其通过滤波得到1、3、5次谐波,最后通过加法电路合成新的波形。 性能指标: (1)方波:频率1KHz,幅度5V。 (2)滤波器:基础要求从方波中提取基波和三次谐波,提高要求提取五次谐波。 (3)移相电路:通过移相电路调节滤出来的1、3、5次谐波相位,使得其与原方波相位差近似为0。

(4)加法器电路:将基波和3次谐波和5次谐波信号按一定规律相加。 1、信号的产生 通过震荡电路产生1kHz ,幅度为5V 的方波信号。 2、滤波器的设计 根据方波的傅里叶展开式: 可知原信号分解只包含奇次谐波分量。因此设计不同中心频率的带通滤波器,可将各次谐波滤出。 3、相位校正电路 由于滤波器用到了对不同频率有不同响应的储能元件,对于滤除的波形会产生附加相位。若要让各次谐波叠加出原有信号,必须调节其相位使之同相。用全通滤波器可在不影响相对幅度的前提下改变相位。 4、加法电路 将滤除的基波、3次谐波、5次谐波相加,得到近似的方波信号。对于滤波器对不同频率分量不成比例的衰减,可在加法电路中选择合适的比例给予响应的补偿。 二、电路设计(预习要求) (1) 电路设计思想(请将基本要求、提高要求、创新要求分别表述): 1、信号发生电路: 利用运放和RC 回路构成振荡电路,通过分别调节正反向RC 回路的时间常数和运放同相输入端的参考电压来调节震荡电路的频率以及占空比。用一对稳压二极管限制输出电压幅度,并对稳压管导通压降进行一定的补偿。 2、有源带通滤波器: 根据实验要求,设计有源带通滤波器,将所需频率的信号以尽量小的衰减输出,同时对其它频率有非常大的衰减。因此需要增加滤波器的阶数。初步选择采用二阶有源带通滤波器,通过理论计算,调节其中一个电阻来改变中心频率。根据实际搭出的电路效果,可尝试使用四阶有源带通滤波器,以求获得更好的滤波效果。 3、相移电路: 由于滤波器难免对滤出的谐波分量产生附加相位,需要在选频电路之后加一全通网络校正相位,抵消相位差。移向电路有两种,分为正向移向和反向移向。 4、加法电路 将所得到的各次谐波分量叠加,得到近似的方波。同时,加法电路可对滤波对原信号分量的衰减进行补偿。 (2) 电路结构框图(请将基本要求、提高要求、创新要求分别画出): 基础要求:因基础要求与提高要求相比,除缺少5次滤波与移相电路外,其余部分均相同,其结构框图已包含在提高要求的框图中,故不单独列出。 提高要求: (3)电路原理图(各单元电路结构、工作原理、参数计算和元器件选择说明): 分工:徐媛媛(滤波电路的设计、搭建和调试);姜勖(方波产生、相移及加法电路设计搭建和调试) 方波振荡及鉴幅电路: 采用迟滞比较及RC 反馈回路以及比较器鉴幅电路,总电路图如下: 设从输出端的对输入端的负反馈电阻分别为1f R 和2f R ,则前部分方波的振荡周期为111222 ln(12)ln(12)f f R R T R C R C R R =+++,通过电位器分别调节1f R 和2f R 的阻值使方波的频率为1kHz ,占空比为50%。

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成. 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识. 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加等相关内容. 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M双踪示波器一台. 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的. 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3—1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出频 率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波.其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。 六、实验步骤 1、把系统时域与频域分析模块插在主板上,用导线接通此模块“电源接入"和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关. 2、调节函数信号发生器,使其输出Hz 53左右(其中在Hz Hz 56~50之间进行选择,

周期矩形脉冲的分解与合成

周期矩形脉冲的分解与合成

本科实验报告 实验名称:周期矩形脉冲的分解与合成

一、实验目的和要求 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验内容和原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin ) k k k x t a a k t b k t ωω∞ ==++∑ 2.2 矩形脉冲信号的幅度谱 一般利用指数形式的傅里叶级数计算周期信号的幅度谱。 0()jk t k k x t X e ω∞ =-∞ = ∑ (3) 式中0/2 /2 1()T jk t k T X x t e dt T ω--= ? 。计算出指数形式的复振幅k X 后,再利用单边幅 度谱和双边幅度谱的关系:0 2,0 ,0k k X k C X k ?≠?=?=??,即可求出第k 次谐波对应的振

幅。 内容: (1)方波信号的分解。调整“信号源及频率计模块”各主要器件,通过TP1~TP8观察500Hz方波信号的各次谐波,并记录各次谐波的峰峰值。 (2)矩形波信号的分解。将矩形脉冲信号的占空比变为25%,再通过TP1~TP8观察500Hz矩形脉冲信号的各次谐波,并记录各次谐波的峰峰值。 (3)方波的合成。将矩形脉冲信号的占空比再变为50%,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 (4)相位对矩形波合成的影响。将SW1调节到“0110”,通过调节8位拨码开关,观察不同组合的方波信号各次谐波的合成情况,并记录实验结果。 三、实验项目 周期矩形脉冲的分解与合成 四、实验器材 信号与系统实验箱一台 双踪示波器一台 五、实验步骤 5.1 方波信号的分解 ①连接“信号源与频率计模块”的模拟输出端口P2与“数字信号处理模块”的模拟输入端口P9; ②将“信号源及频率计模块”的模式切换开关S2置信号源方式,扫频开关S3置off,利用波形切换按钮S4产生矩形波(默认方波,即占空比为50%),利用频率调节按钮ROL1保证信号频率为500Hz; ③将“数字信号处理模块”模块的8位拨码开关调节为“00000000”; ④打开信号实验箱总电源(右侧边),打开S2、S4 两模块供电开关; ⑤用示波器分别观察测试点“TP1~TP7”输出的一次谐波至七次谐波的波形及TP8处输出的七次以上谐波的波形; ⑥根据表1,记录输入信号参数及测试结果。 5.2 矩形波信号的分解 ①按下“信号源及频率计模块”的频率调节按钮ROL1约1秒钟后,数码

实验二、 波形合成与分解

实验二 波形合成与分解 1.实验目的 在理论学习的基础上,通过本实验熟悉信号的合成、分解原理,了解信号频谱的含义,加深对傅里叶变换性质和作用的理解。 2.实验原理 根据傅里叶分析的原理,任何周期信号都可以用一组三角函数)}cos();{sin(00t n t n ωω的组合表示,即: )2sin()2cos()sin()cos()(020201010t b t a t b t a a t x ωωωω++++= 即可以用一组正弦波和余弦波来合成任意形状的周期信号。 3.实验内容 (1) 方波的合成 图示方波是一个奇谐信号,由傅里叶级数可知,它是由无穷个奇次谐波分量 合成的,本实验用图形的方式来表示它的合成。方波信号可以分解为: ,9,7,5,3,1,1)2sin(2)(10=?=∑∞ =n n t nf A t x n ππ 用前5项谐波近似合成50Hz,幅值为3的方波,写出实验步骤。 a.只考察从 0=t s 到10=t s 这段时间内的信号。 b.画出基波分量)sin()(t t y =。 c.将三次谐波加到基波之上,并画出结果,并显示。 3/)*3sin()sin()(t t t y += d.再将一次、三次、五次、七次和九次谐波加在一起。 9/)*9sin(7/)*7sin(5/)*5sin(3/)*3sin()sin()(t t t t t t y ++++= e.合并从基波到十九次谐波的各奇次谐波分量。 f.将上述波形分别画在一幅图中,可以看出它们逼近方波的过程。注意“吉布斯现象”。周期信号傅里叶级数在信号的连续点收于该信号,在不连续点收敛于信号左右极限的平均值。如果我们用周期信号傅里叶级数的部分和来近似周期信号,在不连续点附近将会出现起伏和超量。在实际中,如果应用这种近似,就应该选择足够大的N ,以保证这些起伏拥有的能量可以忽略。 (2) 设计谐波合成三角波的实验,写出实验步骤,并完成实验。

信号的分解与合成实验报告

竭诚为您提供优质文档/双击可除信号的分解与合成实验报告 篇一:实验报告二.信号的分解与合成 实验二信号的分解与合成 时间:第星期课号: 院系专业: 姓名:学号:座号: =================================================== ========================================= 一、实验目的 1、观察信号波形的分解与合成,加深对信号频谱的理解; 2、学会用软件multisim进行信号的分解和合成; 二、实验预习 1、方波信号是周期性信号,对周期信号进行傅里叶级数分解,(如果方波信号的频率是f)分解后基波信号的频率为多少?各次谐波频率是多少?各次谐波频率与基波频率的关系?。

2、方波信号有偶次谐波吗?为什么? 3、熟悉实验指导书第18页图1-24信号分解与合成电路。参考指导书50Khz方波信号的分解与合成的例子,设计一个30Khz方波信号的分解与合成的电路。30Khz方波信号的分解与合成的电路参数的要求: (1)五个滤波器的电容值c1?c2?c3?c4?c5?1?F (2)根据公式f?1 2?Lc计算出 ,,。并画出电路图。 三、实验内容 1.设计30Khz方波信号分解与合成电路:将30Khz的方波信号分解出一、三、五次谐波;首先在电子工作台上画出待分析的电路。(电路参考实验指导书第18页图1-24信号分解与合成电路)注意:函数信号发生器的设置:波形选择:方波;频率:30Khz;占空比:50%;信号幅度:1V。 再用示波器分别观测方波信号波形、一、三、五次谐波波形,合成波波形,测量周期,幅度。 2.画波形图:分别画出方波信号波形、一、三、五次谐波波形,合成波五个信号的波形图(时间轴对应),标明周期,幅度。(注意实验过程中在下面空白处记录波形图,课后把数据整理在坐标纸上并粘贴在此处)

信号分解与合成实验报告

实验二 信号分解与合成 --谢格斯 110701336 聂楚飞110701324 一、实验目的 1、观察电信号的分解。 2、掌握带通滤波器的有关特性测试方法。 3、观测基波和其谐波的合成。 二、实验内容 1、观察信号分解的过程及信号中所包含的各次谐波。 2、观察由各次谐波合成的信号。 三、预备知识 1、了解李沙育图相关知识。 2、课前务必认真阅读教材中周期信号傅里叶级数的分解以及如何将各次谐波进行叠加 等相关内容。 四、实验仪器 1、信号与系统实验箱一台(主板)。 2、电信号分解与合成模块一块。 3、20M 双踪示波器一台。 五、实验原理 任何电信号都是由各种不同频率、幅度和初相的正弦波迭加而成的。对周期信号由它的 傅里叶级数展开式可知,各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅度均趋向无限小,但其相对大小是不同的。 通过一个选频网络可以将电信号中所包含的某一频率成份提取出来。本实验采用性能较 佳的有源带通滤波器作为选频网络,因此对周期信号波形分解的实验方案如图2-3-1所示。 将被测方波信号加到分别调谐于其基波和各次奇谐波频率的一系列有源带通滤波器电 路上。从每一有源带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是Hz 531=ω左右的周期信号,而用作选频网络的五种有源带通滤波器的输出 频率分别是543215432ωωωωω、、、、 ,因而能从各有源带通滤波器的两端观察到基波和各次谐波。其中,在理想情况下,如方波的偶次谐波应该无输出信号,始终为零电平,而奇次谐波则具有很好的幅度收敛性,理想情况下奇次谐波中一、三、五、七、九次谐波的幅度比应为1:(1/3):(1/5):(1/7):(1/9)。但实际上因输入方波的占空比较难控制在50%,且方波可能有少量失真以及滤波器本身滤波特性的有限性都会使得偶次谐波分量不能达到理想零的情况。

实验2信号的分解与合成(学生用)

实验二矩形脉冲信号的分解与合成 一、实验目的 1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、观察矩形脉冲信号,进一步了解波形的分解与合成原理。 3、通过研究周期矩形脉冲信号,分析信号的周期、脉冲宽度对频谱特性的影响。 二、实验原理 1、信号的频谱与测量 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。 例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)T t ,t (11+内表示为 )sin cos ()(1 0t n b t n a a t f n n n ?+?+=∑∞=即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A A (c)图2-1信号的时域特性和频域特性 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图2-1来形象地表示。其中图(a)是信号在幅度——时间——频率三维坐标系统中的图形;图(b)是信号在幅度——时间坐标系统中的图形即时域波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图(c)是信号在幅度——频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱

称为相位频谱。在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。测量时利用了这些性质。从振幅频谱图上,可以直观地看出各频率分量所占的比重。测量方法有同时分析法和顺序分析法。 同时分析法的基本工作原理是利用多个滤波器,把它们的中心频率分别调到被测信号的各个频率分量上。当被测信号同时加到所有滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。在本实验中采用同时分析法进行频谱分析,如图2-2所示。 图2-2用同时分析法进行频谱分析 其中,P801输出的是基频信号,即基波;P802输出的是二次谐波;P803输出的是三次谐波,依此类推。 2、矩形脉冲信号的频谱 一个幅度为E,脉冲宽度为τ,重复周期为T 的矩形脉冲信号,如图2-3所示。 图2-3周期性矩形脉冲信号其傅里叶级数为 t n T n Sa T E T E t f n i ωπτττcos (2)(1 ∑=+=该信号第n 次谐波的振幅为 T n T n T E T n Sa T E a n /)/sin(2)(2τπτπττπτ==由上式可见第n 次谐波的振幅与E 、T 、τ 有关。 T P809

信号及系统中信号分解及合成实验报告

信号与系统实验报告 非正弦周期信号的分解与合成 专业: 班级: 姓名: 学号: 用同时分析法观测50H z非正弦周期信号的分解与合成 一、实验目的 1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。 2、观测基波和其谐波的合成。 二、实验设备 1、信号与系统实验箱:THKSS-A型或THKSS-B型或THKSS-C型。 2、双踪示波器,数字万用表。 三、实验原理 1、一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的 2、 3、 4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示 方波频谱图 各种不同波形的傅立叶级数表达式

1、方波 2、三角波 3、半波 4、全波 5、矩形波 实验装置的结构如下图所示 信号分解与合成实验装置结构框图, 图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。1BPF ~6BPF 为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 四、实验步骤 1、将50Hz 的方波信号,并将其接至信号分解实验模块BPF 的输入端,将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 2、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 3、在2的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 4、分别将50Hz 单相正弦半波、全波、矩形波和三角波的输出信号接至50HZ 电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。 5、将50Hz 单相正弦半波、全波、矩形波、三角波的基波和谐波分量接至加法器的相应的输入端,观测求和器的输出波形,并记录之。

实验二-周期矩形脉冲的分解与合成

周期矩形脉冲信号的分解与合成 一、实验目的 ? 进一步了解波形分解与合成原理。 ? 进一步掌握用傅里叶级数进行谐波分析的方法。 ? 分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 ? 观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 ? 观察相位对波形合成中的作用。 二、实验原理 2.1 信号的时域特性与频域特性 时域特性和频域特性是信号的两种不同的描述方式。一个时域上的周期信号,只要满足荻里赫勒(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。由于三角形式的傅里叶级数物理含义比较明确,所以本实验利用三角形式实现对周期信号的分解。 一个周期为T 的时域周期信号()x t ,可以在任意00(,)t t T +区间,精确分解为以下三角形式傅里叶级数,即 0001()(cos sin )k k k x t a a k t b k t ωω∞ ==++∑ (1) 式中,02T πω= 称为基波频率,0001()t T t a x t dt T +=?,00 02()cos t T k t a x t k tdt T ω+=?,00 t 0t 2 ()sin T k b x t k tdt T ω+= ? 。0k k a a b 、、分别代表了信号()x t 的直流分量、余弦分量和 正弦分量的振荡幅度。 将式(1)中的同频率的正余弦项合并,得到 001()cos()k k k x t c c k t ω?∞ ==++∑ (2) 其中,00c a = ,k c =k k k b tg a ?-= 。0c 为周期信号的平均值,它是周期信号()x t 中包含的直流分量;当1k =时,即为101cos()c t ω?+,称此为一次谐波或基波,它的频率与基波频率相同;当2k =时,即为202cos(2)c t ω?+,称此为二次

方波信号的分解与合成实验

方波信号的分解与合成实验 08电师班文里连 007号 实验三信号的基本运算实验 方波信号的分解与合成实验 1、实验目的: 2.3.1(1) 了解各基本运算单元的构成 (2) 掌握信号时域运算的运算法则 2.7.1(1)了解方波的傅里叶变换和频谱特性 (2) 掌握方波信号在十余上进行分解与合成的方法 (3)掌握方波谐波分量的幅值和相位对信号合成的影响 2、实验原理: 2.3.2信号在时域中的运算有相加、相减、相乘、数乘、微分、积分。 (1)相加:信号在时域中相加时,横轴(时间轴)的横坐标值不变,仅是将横坐标值所对应的纵坐标值相加。 加法器完成功能:OUT=IN1+IN2 (2)相减:信号在时域中相减时,横轴(时间轴)的横坐标值不变,仅是将横坐标值所对应的纵坐标值相减。 减法器完成功能:OUT=IN1-IN2 (3)数乘:信号在时域中倍乘时,横轴(时间轴)的横坐标值不变,仅是将横坐标值所对应的纵坐标值扩大n倍。(n>1时扩大;0

反相器完成功能:OUT=-IN (5)微分:信号在时域微分即是对信号求一阶导数。 )积分:信号在时域积分即讲信号在(-?,t)内求一次积分。 (6 2.7.2(1)信号的傅里叶变换与频谱分析 信号的时域特性与频域特性是对信号的两种不同描述方式。对一个时域的周期信号f(t),只要满足狄利克莱条件,就可展开成傅里叶级 数:f(t)=a0/2+Σancos(nΩt)+Σbnsin(nΩt)=A0/2+ΣAncos(nΩt+Φn) 由式子得,信号f(t)时有直流分量和许多余弦或正弦分量组成。其中A0/2是常数项,是周期信号中所包含的直流分量;第二项A1cos(Ωt+Φ1)称为基波,其角频率与原周期信号同,A1是基波振幅,Φ1是基波初相角;A2cos(Ωt+Φ2)称为二次谐波,其频率是基波的二倍,A2是基波振幅,Φ2是基波初相角。依此类推,还有三次四次等谐波分量。 (2)方波信号的频谱 将方波信号展开成傅里叶级数为: f(t)= 该公式说明,方波信号中只含有一、三、五等奇次谐波分量。并且其各奇次谐波分量的幅值逐渐减小,初相角为零。 (3)方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多有滤波器上,中心频率与信号所包含的某此谐波分量频率一致的滤波器便有输出。在呗测信号发生的实际时间内可以同时测得信号所包含的各频率分量。 (4)信号的合成

(完整word版)信号系统方波与三角波的傅里叶的分解与合成

实验<编号> 学号姓名分工 11350023 韦能龙编写代码 11350024 熊栗问题分析1.问题描述 实验二信号的合成与分解

2. 问题分析 此次主要是考察傅里叶的合成与分解,运用分解公式求出系数,运用合成公式合成函数,三角波和矩形波是很典型的连个列子,这个大作业只要分解出系数还有用合成公式,基本上就解决了问题了。 3. 实验代码与实验结果 (1)周期性矩形波的系数表示 ,.....7,5,3,1),2 sin(2==n npi kpi a k 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 2; W = 2*pi/T; f1 = 0*ones(1,length(t)); for n= -M:2:M a = 2/(n*pi)*sin(n*pi/2); f1 = f1+a*exp(j*n*W*t); end plot(t,f1) xlabel('t') ylabel('f(t)') title('M=1,7,29,99时的方波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off 图像: M =1时:

M= 7: M = 29

M = 99 (2)三角波的系数表示:

??--==101)()(1dt e t x dt e t x T a jkwt T jkwt k )2 (sin 42 1 2 2 20npi pi n a a n == 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 1; W = 2*pi/T; G1= 0*ones(1,length(t)); for n= -M:M if n==0 a =1/2; else a = 4/(n^2*pi^2)*(sin(n*pi/2)^2) ; end G1 = G1+a*exp(j*n*W*t); end G1 = G1-0.5; plot(t,G1) xlabel('t') ylabel('G(t)') title('M=1时的三角波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off M=1 时

实验四 周期信号的合成与分解(Gibbs现象)

实验四 周期信号的合成与分解(Gibbs 现象) 一、实验目的 ⑴熟悉信号的合成、分解原理,加深对傅里叶级数的理解; ⑵了解和认识吉布斯现象。 二、实验原理 信号可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现各频率的正弦分量在信号所占比重的大小不同。 根据周期信号的傅里叶级数的展开式可知,任何非正弦周期信号,只要满足狄里赫利条件都可以分解为一直流分量和由基波及各次谐波分量的叠加。 同样,由基波及各次谐波分量也可以叠加出一个周期方波信号。至于叠加出来的信号与原信号的误差,则取决于傅里叶级数的项数。根据傅里叶级数的原理,任何周期信号都可以用一组三角函数{sin (2πnf 0t ),cos (2πnf 0t )}的组合表示。 合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原方波信号,在间断点附近,随着所含谐波次数的增高,合成波形的尖峰越靠近间断点,但尖峰幅度并未明显减小,即当合成波形包含的谐波次数n →∞,在间断点附近仍有9%的偏差,这种现象称为吉布斯现象。 三、程序设计实验 方波的合成实验: 方波信号可以分解为n t nf x n 1)2sin(410∑∞ ==ππ n=1,3,5…… 用前5项谐波近似合成一频率为50Hz ,幅值为3的方波,写成相应的MATLAB 程序并给出结果。 程序代码: clear all clc T=0.02; w0=2*pi/T; fw=0.03; t=-fw:0.001:fw; N=9; a0=0; An=a0*ones(1,length(t)); for n=1:2:N An=An+3*(4/pi*sin(n*w0*t)/n); end plot(t,An); ylim([-5 5]);

信号分解与合成

非正弦周期信号分解与合成实验板设计 摘要 对于非正弦周期信号的分解与合成的研究,虽然可以利用作图将不同频率正弦量进行叠加,合成非正弦周期量,但是不够准确和直观,利用数学知识将非正弦周期两分解成不同频率正弦量的叠加的讲解有一些难度,但是通过设计实验板,可以让人直观地了解非正弦周期信号的分解与合成。 本论文采用Multisim2001进行实验仿真,设计非正弦周期信号分解与合成实验板,对非正弦周期信号-方波、三角波进行分解与合成。本论文首先介绍实验板的构成及其设计原理,然后对其内部构造一一进行介绍。还有对其各个元件的电路设计、仿真,最后介绍用设计好的实验板电路进行方波、三角波的分解与合成,得到仿真波形和数据,验证了本设计的可行性。 关键词:Multisim2001;非正弦周期信号;函数信号发生器;滤波器

Design of Non-sinusoidal periodic signal decomposition and synthetic experimental board ABSTRACT For a non-sinusoidal periodic signal decomposition and synthetic study, although can use different frequency sine drawing are united, synthesis of a non sinusoidal periodic quantity, but was not accurate enough and intuitive; Using mathematical knowledge of a non-sinusoidal periodic two down into different-frequency sine superposition explains some difficulties, but it can be achieved easily in the design of experimental board. This let a person be intuitive understanding of a non-sinusoidal periodic signal decomposition and synthesis. This paper by using Multisim2001 simulation experiments, the design of a non-sinusoidal periodic signal decomposition and synthetic experimental board, non-sinusoidal periodic signals of square wave, triangle wave-decomposition and composition. This paper firstly introduces the constitution and its experimental plate design principle, then one of its internal structure is introduced and its circuit design, simulation. It introduces using bread-board designs board circuit of square wave, triangle decomposition and synthesis, generating a simulation waveform and data and verifies the feasibility of this design. Keywords:Multisim2001;Non-sinusoidal periodic signals;Function signal generator;Filter 2

相关主题
文本预览
相关文档 最新文档