当前位置:文档之家› (高中数学)定义法求轨迹方程

(高中数学)定义法求轨迹方程

(高中数学)定义法求轨迹方程
(高中数学)定义法求轨迹方程

定义法求轨迹方程

教学目标:

知识目标 通过本课的学习,增强运用圆锥曲线的定义解决问题的意识,综合运用平面几何的知识,进行几何等量关系的转换,理解“定义法”求轨迹方程的意义及解决问题的基本思路。 能力目标 用运动的观点理解曲线。培养学生观察、类比、推理的分析能力和抽象、概括的思维能力;培养学生数学的转化思想、数形结合思想,使学生养成仔细审视、全方位考虑问题的良好习惯。掌握从特殊?一般?特殊的认知规律。

情感目标 创设问题情景,激发学生观察、分析、探求的学习热情,强化学生的参与意识。 教学重点:“定义法”求曲线轨迹方程。灵活运用题设条件,确定动点所满足的等量关系,结合

圆锥曲线的定义确定曲线的类型。

教学难点:理解轨迹的完备性与纯粹性,并能准确地运用。(完备性是指符合条件的点都要在轨

迹上,不能遗漏;纯粹性是指轨迹上的所有点都符合条件,没有“假冒”。)

教学过程:

问题:

1、请你分别说出四种圆锥曲线的定义

圆的定义

椭圆的第一定义

双曲线的第一定义

圆锥曲线的统一定义

2、思考并回答:

(1)已知)3,2(A 且7||=PA ,则点P 的轨迹是 圆

(2)已知?ABC 的一边BC 的长为6,周长为16,则顶点A 的轨迹是什么?(椭圆,除去与BC 边共线的两个顶点。)

(3)若

4||||)0,5(),0,1(=--MB MA B A 且

则点M 的轨迹是 双曲线右支

(4)过点(2,3)且与y 轴相切的圆的圆心的轨迹是什么?(抛物线)

小结引出课题:灵活、准确地运用定义,为解决圆锥曲线的一些问题带来很大的方便。本课,我们重点讨论利用定义法求曲线的轨迹方程的问题。

定义法求轨迹方程的含义:先由题设条件,根据圆锥曲线的定义能确定曲线的形状后,直接写出曲线的方程。

例1:已知圆C :091622=-++x y x 及圆内一点P (3,0)

,求过点P 且与已知圆内切的圆的圆心M 的轨迹方程。

1、分析:(1)圆C 的半径与圆心坐标可定。

(2)两圆内切可得:外圆半径=内圆半径+连心距。

(3)动点M 满足的等量关系:| MC | + | MP | = 10>| PC |

(4)由定义可确定动点M 的轨迹为以P 、C 为焦点的椭圆。

2、演示动画,使抽象问题具体化。

3、学生口述解题过程。

4、板演解题过程。

例2:已知动圆与圆

49)5(:221=++y x C 和圆C 2:

1)5(22=+-y x 都外切,求动圆圆心P 的轨迹方程。

1、分析:(1)从已知条件可以确定圆C 1、C 2的圆心与半径。

(2)两圆外切可得:两圆半径和=圆心距

(3)动圆半径r,依题意有

r 1 + r = | P C 1 | ,

r 2 + r = | P C 2 |

两式相减得:| PC 1 | -- | PC 2 | = r 1 – r 2

< | C 1 C 2|

(4)由双曲线定义得:点P 的轨迹是C 1 、C 2以为焦点的双曲线的右支。

(5)再根据题设条件求出参数a 、b 即可。

2、动画验证,并观察动点的运动。

3、学生完成解题过程的书写表达。并巡视,纠正。

4、板演规范的书写表达。

引伸:1、若动圆P 与圆C 2内切,与圆C 1外切,则动圆圆心P 的轨迹是什么?(双曲线右支)

2、若动圆P 与圆C 1内切,与圆C 2外切,则动圆圆心P 的轨迹是什么?(双曲线左支)

3、若把圆C 1的半径改为1,那么动圆P 的轨迹又是什么?(两定圆连心线的垂直平分线)

1、 上述的结论是否具有一般性?也就是:与两个外离的定圆都外切或与其中一个内切,另

一个外切的圆的圆心的轨迹都是双曲线的一支?(当两个定圆不相等时,结论是肯定的,当两定圆相等时,轨迹为两定圆连心线的中垂线。)

利用“定义法”求轨迹方程的关键:找出动点满足的等量关系。

步骤:(1)依条件列出等量关系式;(2)由等式的几何意义,结合圆锥曲线的定义确定轨迹的形状;(3)写出方程。

A 组题

1、动点P 到直线6=x 的距离与它到点(2,1)的距离之比为

5,则点P 的轨迹是什么?(椭圆)

2、若动圆与圆1)2(:221

=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 (x y 82-= )

3、?ABC 中,已知

||)0,2(),0,2(AC B A 且-、|AB|、| BC |成等差数列,求点C 的轨迹方程。

B 组题

1、请你编写1-2道用“定义法”求轨迹方程问题的题目。

2、?ABC 中,A 为动点,B 、C 为定点,)0,2

(),0,2(a C a B -,且满足条件 A B C sin 2

1sin sin =-,求动点A 的轨迹方程。

3、动圆与64:221

=+y x C 内切,且与圆C 2: 0321222=+-+x y x 外切,求动圆 圆心的轨迹方程。

( 116

25)3(2

2=+-y x ) 4、一动圆过点F (-3,0)且与已知圆

4)3(22=+-y x 相切,求动圆圆心P 的轨迹方程。

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

高中数学求轨迹方程的六种常用技法汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 求轨迹方程的六种常用技法 轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则 y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习: Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程 是。 22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。的点,求点 3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是() A.直线B.椭圆C.抛物线D.双曲线 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 AB30ABCAC?(8,0)B(C?8,0),,2例.若的两顶点,和为两边上的中线长之和是?ABC。 _______________的重心轨迹方程是则. AB30ABCAC?)(x,yG可得,则由两边上的中线长之和是的重心为和解:设 2?30??CG?20BGG(8,0)8,0),CB(?B,C的轨迹为以,而点为定点,所以点3为焦点的椭圆。 228?20,c?2a?c?a6?a?10,b可得所以由22yx??1(y?0)?ABC的重心轨迹方程是故 10036练习: 22?|x?y?(y?1)x2(?1)2|?表示的曲线是( 4).方程 A.椭圆B.双曲线C.线段D.抛物线 3.点差法 圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y),B(x,y)x?x,的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得221211x?x2x?x?xyy?yy?AB),yP(x,

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

高考数学难点之轨迹方程的求法

高考数学难点之轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

2016年专项练习题集-定义法求轨迹方程

2016年专项练习题集-定义法求轨迹方程 选择题 1、点p (x ,y 10=,则点 p 的轨迹方程是( ) A .22 1259 x y += B .22 1259 x y -= C .22 1925 x y += D .22 1925 x y -= 分值:5 答案:A 【考查方向】本题考查椭圆的定义,熟练掌握椭圆的定义是解题的关键。 x,y )和点(4,0)之间的距离。 【解题思路】利用椭圆的定义即可得出. 【解析】∵点p (x ,y 10=, ∴点p 到两定点F (4,0),F′(-4,0)的距离之和满足:|PF|+|P F′|=1o >8. 故点P 的轨迹是以点F ,F′为焦点,10为长轴长的椭圆. 易知,c=4,a=5,∴b=3,∴椭圆的方程为22 1259 x y +=,故选A . 2、已知圆1c :(x+3)2+y 2=4,圆2c (x ﹣3)2+y 2=100,动圆c 与圆1c 、圆2c 都内切,则动圆圆心的轨迹是( ) A .椭圆

B .双曲线 C .抛物线 D .圆 【分值】5 【答案】A 【考查方向】本题主要考查椭圆的定义、轨迹方程、圆与圆的位置关系及其判定。菁优网版权所有 【易错点】找不出1cc +2cc 为定值这一关系。 【解题思路】设动圆的半径为r ,由相切关系建立圆心距与r 的关系,进而得到关于圆心距的等式,结合椭圆的定义即可解决问题. 【解析】设动圆的半径为r ,动圆圆心为c (x ,y ), 因为动圆与圆1c :(x+3)2+y 2=4及圆2c (x ﹣3)2+y 2=100都内切, 则1cc =r ﹣2,2cc =10﹣r . ∴1cc +2cc =8>12c c =6 因此动圆圆心为c 的轨迹是焦点为1c 、2c ,中心在( 0,0)的椭圆. 故选A . 3、设动圆M 与y 轴相切且与圆C :x 2+y 2﹣4x=0相外切,则动圆圆心M 的轨迹方程为( ) A .y 2=8x B .y 2=﹣8x C .y 2=8x 或y=0(x <0) D .y 2=8x 或y=0 【分值】5

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

高中数学轨迹求法

一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时 1.三角形ABC 中, ,且,则三角形ABC 面积最大值为__________. 2、 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2| || |=PB PA ),求动点P 的轨迹方程? 3、一动点到y 轴距离比到点()2,0的距离小2,则此动点的轨迹方程为 .1. 4.已知()1,0A -, ()2,0B ,动点(),M x y 满足 1 2 MA MB = .设动点M 的轨迹为C . (1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值; 5、已知曲线C 是动点M 到两个定点()0,0O 、()3,0A 距离之比为1 2 的点的轨迹. (1)求曲线C 的方程; (2)求过点()1,3N 且与曲线C 相切的直线方程. 6.一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上且 4AM MB =u u u u r u u u r ,则点M 的轨迹方程是( ) A .221664x y += B .22 1664x y += C .22168x y += D .22 168x y += B 7.已知坐标平面上一点M (x ,y )与两个定点M 1(26,1),M 2(2,1),且 =5. (Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形; (Ⅱ)记(Ⅰ)中的轨迹为C ,过点M (﹣2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程. 1、【解析】建立如图所示的平面直角坐标系,则: ,设点A 的坐标为 ,由题意有: , 整理可得: ,结合三角形 的性质可得点C 的轨迹方程为以 为圆 心, 为半径的圆出去其与x 轴的交点,据此可得三角形ABC 面积的最大值为

求轨迹方程的常用方法例题及变式

求轨迹方程的常用方法: 题型一直接法 此法是求轨迹方程最基本的方法, 根据所满足的几何条件, 将几何条件{M | P(M )}直接翻 译成x, y 的形式f(x, y) 0 ,然后进行等价变换,化简 f (x,y) 0,要注意轨迹方程的纯 粹性和完备性,即曲线上没有坐标不满足方程的点, 也就是说曲线上所有的点适合这个条件 而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性) 。 例1过点A(2,3)任作互相垂直的两直线 AM 和AN ,分别交x,y 轴于点M , N ,求线段 MN 中点P 的轨迹方程。 解:设P 点坐标为P(x, y),由中点坐标公式及M,N 在轴上得M (0,2y), AM AN k AM k AN 所以中点P 的轨迹方程为4x 6y 13 0。 变式1 已知动点M (x, y)到直线l : x 4的距离是它到点 (1) 求动点M 的轨迹C 的方程; (2) 过点P(0,3)的直线m 与轨迹C 交于A, B 两点。若A 是PB 的中点,求直线 m 的斜 率。 题型二定义法 圆锥曲线定义所包含的几何意义十分重要, 应特别重视利用圆锥曲线的定义解题, 包括用定 义法求轨迹方程。 2 2 例2 动圆M 过定点P( 4,0),且与圆C :x y 8x 0相切,求动圆圆心 M 的轨迹 方程。 解:根据题意|| MC | |MP || 4,说明点M 到定点C 、P 的距离之差的绝对值为定值, N(2x,0)(x,y R) 0 3 2y 2x 2 0 2 3 1 (x 1),化简得 4x 6y 13 0 (x 1) 当x 1时,M(0,3),N(2,0),此时MN 的中点 P(1,|)它也满足方程4x 6y 13 0, N (1,0)的距离的2倍。

定义法求点的轨迹

定义法求轨迹方程(期末复习微专题) 一.定义法 (1)圆:到定点的距离等于定长 (2)圆锥曲线的定义 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。当0时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 (3)、圆锥曲线的方程。 1.椭圆: + =1(a>b>0)或 + =1(a>b>0)(其中,a 2=b 2+c 2 ) 2.双曲线: - =1(a>0, b>0)或 - =1(a>0, b>0)(其中,c 2=a 2+b 2) 3.抛物线:y 2=±2px (p>0),x 2=±2py (p>0) 例2 。已知动圆P 过定点()03,-A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 例3:求与圆()495:22=++y x A 和圆()15:22 =+-y x B 都外切的圆的圆心轨迹方程。

例4:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5sin sin C A B =+求点C 的轨迹。 例5:一动圆与圆O :122=+y x 外切,而与圆C :08622=+-+x y x 内切,那么动圆 的圆心M 的轨迹是: A :抛物线 B :圆 C :椭圆 D :双曲线一支 例6::已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这 两个圆外切,求动圆圆心P 的轨迹方程。 练习: 1.求y 轴相切,并且和圆2240x y x +-=外切的圆的圆心的轨迹方程. 2.已知圆C :()2 2125x y ++=内一点A(1,0),Q 点为圆C 上任意一点,线段AQ 的垂直平分线与线段CQ 连线交于点M ,求点M 的轨迹方程.

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法 (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )() ()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ???=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 4.求轨迹方程还有整体法等其他方法。在此不一一缀述。 课前热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )【答案】:B A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x + 【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得15 4922=+y x ,选B 2. 圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是

参数法求轨迹方程

参数法求轨迹方程 一、教学目标 (一)知识教学点 深入理解曲线的参数方程与普通方程的区别与联系,进一步掌握参数方程与普通方程的互化方法. (二)能力训练点 掌握运用参数求轨迹方程的方法,了解设参的基本原则和选参的一般依据,能顺利消参并讨论轨迹的纯粹性和完备性,培养多向思维的流畅性. (三)学科渗透点 通过学习选参方法,学会透过现象挖掘本质的哲学思想方法. 二、教材分析 1.重点:运用参数求轨迹方程的方法. 2.难点:选择参数应遵循的一般依据,消参的技术与轨迹的纯粹性完备性讨论. 3.疑点:设参的基本原则. 三、活动设计 1.活动:问答、思考. 2.教具:投影仪. 四、教学过程 (一)回忆、点题和明确任务 求动点的轨迹方程,如果动点坐标x、y之间的关系比较明显,那么可以用直接法,也就是建系、列式、化简.如果动点坐标x、y之间的关系比较隐蔽,但动点在运动过程中符合某种二次曲线的定义,那么可以用定义法,也就是定型(曲线类型)、定位(曲线位置)、定量(曲线几何量),然后直接运用二次曲线的方程写出动点的轨迹方程.如果动点坐标x、y之间的关系很隐蔽并且很难判断动点符合某种二次曲线的定义,那么就可以引进一些参数,用这些参数把x、y之间的那种隐蔽关系间接地连起来,然后消掉参数,这就是所谓的参数法求轨迹方程.

同学们常用的交轨法、换标法,实际上也是消去一些元,留下动点坐标x、y的方法,都可以叫参数法.在实践中大家已经知道,参数法求轨迹方程的步骤是:首先根据运动系统的运动规律设参,然后运用这些参数列式,再从这些式子中消参,最后讨论轨迹的纯粹性和完备性,我们称之为议参.其中,最关键的一步是设参,参设得不同,整个思维和运算过程不同,参设得不好,运算量增大,甚至根本就算不出来;最畏难一步是消参,经常遇到参消不了而越消越复杂的情况;最易错的一步就是轨迹的纯粹性完备性讨论.如何做到设参合理、列式简易、消参顺利、议参严密,大家可以从下面的例子中来思考和总结. (二)讲例1,设参基本原则 请看屏幕(投影,读题). 例1 矩形ABCD中,AB=2a,BC=b,a>b,E、F分别是AB、CD的中点,平行于EC的直线l分别交线段EF、FC于M、N两点,求直线AM与BN交点P的轨迹(图3-9). 首先需要建立坐标系,请考虑,建立直角坐标系一般应选择什么位置? 学生1答: 选择边界、中心等特殊位置. 那么,这一题如何建立坐标系? 解:以E为原点,EB为x轴建立直角坐标系.各点坐标如图(投影换片,加上坐标系与相关点坐标). 运动系统中,l主动,M、N从动,P随之运动,请思考,在这一运动系统中有几种设参方法? 学生2答: (1)l的纵截距c, (2)|OM|=t,

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,, ,,动点()P x y ,满足2PA PB x = ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

求轨迹方程题型全归纳

求轨迹方程题型全归纳

2 求轨迹方程的六种常用方法 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 例1.已知线段6=AB ,直线BM AM ,相交于M , 且它们的斜率之积是4 9,求点M 的轨迹 方程。 解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为 (,) x y ,则直线 AM 的斜率 (3)3 AM y k x x = ≠-+,直线BM 的斜率(3)3 AM y k x x = ≠- 由已知有4 (3)339 y y x x x ?=≠±+- 化简,整理得点 M 的轨迹方程为 22 1(3)94 x y x -=≠± 练习: 1.平面内动点P 到点(10,0)F 的距离与到直线

4 x=的距离之比为2,则点P的轨迹方程是。 2.设动直线l垂直于x轴,且与椭圆2224 x y +=交 u u u r u u u r的点,求于A、B两点,P是l上满足1 ?= PA PB 点P的轨迹方程。 3. 到两互相垂直的异面直线的距离相等的 点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线 3

4 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 例2.若(8,0),(8,0)B C -为ABC ?的两顶点,AC 和AB 两 边上的中线长之和是30,则ABC ?的重心轨迹方程是_______________。 解:设ABC ?的重心为(,)G x y ,则由AC 和AB 两边上的中线长之和是30可得 2 3020 3 BG CG +=?=,而点(8,0),(8,0)B C -为定点, 所以点G 的轨迹为以,B C 为焦点的椭圆。 所以由220,8a c ==可得2 2 10,6a b a c ==-= 故ABC ?的重心轨迹方程是 22 1(0)10036 x y y +=≠ 练习: 4.方程2 2 2(1)(1)|2|x y x y -+-=++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线

二、定义法求轨迹方程(高中数学解题妙法)

二、定义法求轨迹方程 本内容主要研究定义法求轨迹方程.通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法.运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量. 先看例题: 例:已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.求曲线Γ的方 程. 解:设P (x ,y )为曲线Γ上任意一点,依题意, 点P 到点F (0,1) 的距离与它到直线y =-1的距离相等 , 24=x y 归纳整理: 熟悉一些基本曲线的定义是用定义法求曲线方程的关键. 圆:到定点的距离等于定长 椭圆:到两定点的距离之和为常数(大于两定点的距离) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) 抛物线:到定点与定直线距离相等. 再看一个例题,加深印象 例:已知(0,7),(0,7),(12,2),-A B C 以C 为一个焦点,作过A ,B 的椭圆,求椭圆的另一个焦点F 的轨迹方程.

故由双曲线定义知,F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支, 其方程为2 2 1(1)48x y y -=≤-. 总结: 1.用定义法求轨迹方程.熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,例如圆到定点的距离等于定长,椭圆到两定点的距离之和为常数(大于两定点的距离),双曲线到两定点距离之差的绝对值为常数(小于两定点的距离),抛物线到定点与定直线距离相等. 2.求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量. 练习: 1.已知点()1,0F ,点A 是直线1:1l x =-上的动点,过A 作直线2l ,12l l ⊥,线段AF 的垂直平分线与2l 交于点P .求点P 的轨迹C 的方程. 2.已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又 与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 3.如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上,将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N .现将圆形纸片放在平面直角坐标系xOy 中,设

相关主题
文本预览
相关文档 最新文档