当前位置:文档之家› uc3842开关电源设计流程

uc3842开关电源设计流程

uc3842开关电源设计流程
uc3842开关电源设计流程

目的

希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 设计步骤:

绘线路图、PCB Layout. 变压器计算. 零件选用. 设计验证.

设计流程介绍(以DA-14B33为例): 线路图、PCB Layout 请参考资识库中说明. 变压器计算:

变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍. 决定变压器的材质及尺寸: 依据变压器计算公式

Gauss x NpxAe

LpxIp

B 100(max)=

B(max) =

铁心饱合的磁通密度(Gauss)

Lp = 一次侧电感值(uH) Ip

=

一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae

=

铁心截面积(cm 2)

B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。 决定一次侧滤波电容:

滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。

决定变压器线径及线数:

当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。 决定Duty cycle (工作周期):

由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。

xD

Vin D x V Vo Np Ns D (min))

1()(-+=

N S = 二次侧圈数 N P = 一次侧圈数 V o = 输出电压 V D = 二极管顺向电压

Vin(min) = 滤波电容上的谷点电压

D = 工作周期(Duty cycle) 决定Ip 值:

I Iav Ip ?+

=2

1 η

xDx Vin Pout

Iav (min)=

f

P

x Lp Vin I (min)=

?

Ip = 一次侧峰值电流 Iav = 一次侧平均电流 Pout = 输出瓦数

=η效率

=f PWM 震荡频率

决定辅助电源的圈数:

依据变压器的圈比关系,可决定辅助电源的圈数及电压。 决定MOSFET 及二次侧二极管的Stress(应力):

依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准。 其它:

若输出电压为5V 以下,且必须使用TL431而非TL432时,须考虑多一组绕组提供Photo coupler 及TL431使用。 将所得资料代入Gauss x NpxAe

LpxIp

B 100(max)=公式中,如此可得出B(max),若B(max)值太高或太低则参数必须重新

调整。

DA-14B33变压器计算:

输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm ,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm. 假设f T = 45 KHz ,Vin(min)=90V ,η=0.7,P.F.=0.5(cos θ),Lp=1600 Uh 计算式:

变压器材质及尺寸:

由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm 2,可绕面积(槽宽)=10mm ,因Margin Tape 使用2.8mm ,所以剩余可绕面积为4.4mm.

假设滤波电容使用47uF/400V ,Vin(min)暂定90V 。 决定变压器的线径及线数:

A x x x x Vin Pout Iin 42.05

.07.0902

.13cos (min)===

θη

假设N P 使用0.32ψ的线 电流密度=

A x x 286.11024

.014.342

.0232.014.342.02

==

?

?

? ??

可绕圈数=

()圈線徑

剩餘可繞面績57.1203.032.04

.4=+= 假设Secondary 使用0.35ψ的线

电流密度=

A x x 07.440289

.014.34

235.014.342

==

?

?

? ??

假设使用4P ,则 电流密度=

A 02.114

07

.44= 可绕圈数=

()

圈57.1103.035.04

.4=+

决定Duty cycle:

假设Np=44T ,Ns=2T ,V D =0.5(使用schottky Diode)

()()D

Vin D V Vo Np Ns D (min)1-+= ()()%2.489015.03.3442=?-+=D D

D

决定Ip 值:

I Iav Ip ?+

=2

1

A x x xD x Vin Pout Iav 435.0482

.07.0902

.13(min)===

η

A K

x u f D x Lp Vin I 603.045482

.0160090(min)===

?

A Ip 737.02

603

.0435.0=+

= 决定辅助电源的圈数: 假设辅助电源=12V

128.31=A N Ns 12

8

.321=

A N N A1=6.3圈

假设使用0.23ψ的线 可绕圈数=

圈13.19)

02.023.0(4

.4=+

若N A1=6Tx2P ,则辅助电源=11.4V

决定MOSFET 及二次侧二极管的Stress(应力): MOSFET(Q1) =最高输入电压(380V)+()D V Vo Ns Np

+ =()5.03.32

44380++ =463.6V

Diode(D5)=输出电压(V o)+

Np

Ns

x 最高输入电压(380V) =38044

2

3.3x +

=20.57V

Diode(D4)=)380()(2V x Np

Ns

N A 最高輸入電壓輸出電壓+

=38044

4

6.6x +=41.4V 其它:

因为输出为3.3V ,而TL431的Vref 值为2.5V ,若再加上photo coupler 上的压降约1.2V ,将使得输出电压无法推动Photo coupler 及TL431,所以必须另外增加一组线圈提供回授路径所需的电压。 假设N A2 = 4T 使用0.35ψ线,则 可绕圈数=

()

T 58.1103.035.04

.4=+,所以可将N A2定为4Tx2P

228

.3A A V N Ns =

V

V V A A 6.78.34222

=?=

Gauss x x x Gauss x NpxAe LpxIp B 3.311610086

.044737

.01600)(100(max)===

变压器的接线图:

零件选用:

零件位置(标注)请参考线路图: (DA-14B33 Schematic) FS1:

由变压器计算得到Iin 值,以此Iin 值(0.42A)可知使用公司共享料2A/250V ,设计时亦须考虑Pin(max)时的Iin 是否会超

0.32Φx1Px22T

0.32Φx1Px22T

0.35Φx2Px4T

0.35Φx4Px2T

0.23Φx2Px6T

过保险丝的额定值。

TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器):

当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。

CY1,CY2(Y-Cap):

Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。CX1(X-Cap)、RX1:

X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction 可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。

LF1(Common Choke):

EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。

BD1(整流二极管):

将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。

C1(滤波电容):

由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。

D2(辅助电源二极管):

整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异:

耐压不同(在此处使用差异无所谓)

V F不同(FR105=1.2V,BYT42M=1.4V)

R10(辅助电源电阻):

主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输

出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。

C7(滤波电容):

辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。

Z1(Zener 二极管):

当回授失效时的保护电路,回授失效时输出电压冲高,辅助电源电压相对提高,此时若没有保护电路,可能会造成零件损坏,若在3843 VCC与3843 Pin3脚之间加一个Zener Diode,当回授失效时Zener Diode会崩溃,使得Pin3脚提前到达1V,以此可限制输出电压,达到保护零件的目的.Z1值的大小取决于辅助电源的高低,Z1的决定亦须考虑是否超过Q1的V GS耐压值,原则上使用公司的现有料(一般使用1/2W即可).

R2(启动电阻):

提供3843第一次启动的路径,第一次启动时透过R2对C7充电,以提供3843 VCC所需的电压,R2阻值较大时,turn on 的时间较长,但短路时Pin瓦数较小,R2阻值较小时,turn on的时间较短,短路时Pin瓦数较大,一般使用220KΩ/2W M.O。. R4 (Line Compensation):

高、低压补偿用,使3843 Pin3脚在90V/47Hz及264V/63Hz接近一致(一般使用750KΩ~1.5MΩ 1/4W之间)。

R3,C6,D1 (Snubber):

此三个零件组成Snubber,调整Snubber的目的:1.当Q1 off瞬间会有Spike产生,调整Snubber可以确保Spike不会超过Q1的耐压值,2.调整Snubber可改善EMI.一般而言,D1使用1N4007(1A/1000V)EMI特性会较好.R3使用2W M.O.电阻,C6的耐压值以两端实际压差为准(一般使用耐压500V的陶质电容)。

Q1(N-MOS):

目前常使用的为3A/600V及6A/600V两种,6A/600V的R DS(ON)较3A/600V小,所以温升会较低,若I DS电流未超过3A,应该先以3A/600V为考虑,并以温升记录来验证,因为6A/600V的价格高于3A/600V许多,Q1的使用亦需考虑V DS是否超过额定值。

R8:

R8的作用在保护Q1,避免Q1呈现浮接状态。

R7(Rs电阻):

3843 Pin3脚电压最高为1V,R7的大小须与R4配合,以达到高低压平衡的目的,一般使用2W M.O.电阻,设计时先决定R7后再加上R4补偿,一般将3843 Pin3脚电压设计在0.85V~0.95V之间(视瓦数而定,若瓦数较小则不能太接近1V,以免因零件误差而顶到1V)。

R5,C3(RC filter):

滤除3843 Pin3脚的噪声,R5一般使用1KΩ 1/8W,C3一般使用102P/50V的陶质电容,C3若使用电容值较小者,重载可能不开机(因为3843 Pin3瞬间顶到1V);若使用电容值较大者,也许会有轻载不开机及短路Pin过大的问题。

R9(Q1 Gate电阻):

R9电阻的大小,会影响到EMI及温升特性,一般而言阻值大,Q1 turn on / turn off的速度较慢,EMI特性较好,但Q1的温升较高、效率较低(主要是因为turn off速度较慢);若阻值较小,Q1 turn on / turn off的速度较快,Q1温升较低、效率较高,但EMI较差,一般使用51Ω-150Ω 1/8W。

R6,C4(控制振荡频率):

决定3843的工作频率,可由Data Sheet得到R、C组成的工作频率,C4一般为10nf的电容(误差为5%),R6使用精密电阻,以DA-14B33为例,C4使用103P/50V PE电容,R6为3.74KΩ 1/8W精密电阻,振荡频率约为45 KHz。

C5:

功能类似RC filter,主要功用在于使高压轻载较不易振荡,一般使用101P/50V陶质电容。

U1(PWM IC):

3843是PWM IC的一种,由Photo Coupler (U2)回授信号控制Duty Cycle的大小,Pin3脚具有限流的作用(最高电压1V),目前所用的3843中,有KA3843(SAMSUNG)及UC3843BN(S.T.)两种,两者脚位相同,但产生的振荡频率略有差异,UC3843BN较KA3843快了约2KHz,f T的增加会衍生出一些问题(例如:EMI问题、短路问题),因KA3843较难买,所以新机种设计时,尽量使用UC3843BN。

R1、R11、R12、C2(一次侧回路增益控制):

3843内部有一个Error AMP(误差放大器),R1、R11、R12、C2及Error AMP组成一个负回授电路,用来调整回路增益的稳定度,回路增益,调整不恰当可能会造成振荡或输出电压不正确,一般C2使用立式积层电容(温度持性较好)。

U2(Photo coupler)

光耦合器(Photo coupler)主要将二次侧的信号转换到一次侧(以电流的方式),当二次侧的TL431导通后,U2即会将二次侧的电流依比例转换到一次侧,此时3843由Pin6 (output)输出off的信号(Low)来关闭Q1,使用Photo coupler的原因,是为了符合安规需求(primacy to secondary的距离至少需5.6mm)。

R13(二次侧回路增益控制):

控制流过Photo coupler的电流,R13阻值较小时,流过Photo coupler的电流较大,U2转换电流较大,回路增益较快(需要确认是否会造成振荡),R13阻值较大时,流过Photo coupler的电流较小,U2转换电流较小,回路增益较慢,虽然较不易造成振荡,但需注意输出电压是否正常。

U3(TL431)、R15、R16、R18

调整输出电压的大小,

()

()16

//

15

18

16

//

13

R

R

R

R

R

x

Vref

Vo

+

=,输出电压不可超过38V(因为TL431 V KA最大为36V,若再加

Photo coupler的V F值,则V o应在38V以下较安全),TL431的Vref为2.5V,R15及R16并联的目的使输出电压能微调,且R15与R16并联后的值不可太大(尽量在2KΩ以下),以免造成输出不准。

R14,C9(二次侧回路增益控制):

控制二次侧的回路增益,一般而言将电容放大会使增益变慢;电容放小会使增益变快,电阻的特性则刚好与电容相反,电阻放大增益变快;电阻放小增益变慢,至于何谓增益调整的最佳值,则可以Dynamic load来量测,即可取得一个最佳值。

D4(整流二极管):

因为输出电压为3.3V,而输出电压调整器(Output V oltage Regulator)使用TL431(Vref=2.5V)而非TL432(Vref=1.25V),所以必须多增加一组绕组提供Photo coupler及TL431所需的电源,因为U2及U3所需的电流不大(约10mA左右),二极管耐压值100V即可,所以只需使用1N4148(0.15A/100V)。

C8(滤波电容):

因为U2及U3所需的电流不大,所以只要使用1u/50V即可。

D5(整流二极管):

输出整流二极管,D5的使用需考虑:

电流值

二极管的耐压值

以DA-14B33为例,输出电流4A,使用10A的二极管(Schottky)应该可以,但经点温升验证后发现D5温度偏高,所以必须换为15A的二极管,因为10A的V F较15A的V F值大。耐压部分40V经验证后符合,因此最后使用15A/40V Schottky。C10,R17(二次侧snubber) :

D5在截止的瞬间会有spike产生,若spike超过二极管(D5)的耐压值,二极管会有被击穿的危险,调整snubber可适当的减少spike的电压值,除保护二极管外亦可改善EMI,R17一般使用1/2W的电阻,C10一般使用耐压500V的陶质电容,snubber调整的过程(264V/63Hz)需注意R17,C10是否会过热,应避免此种情况发生。

C11,C13(滤波电容):

二次侧第一级滤波电容,应使用内阻较小的电容(LXZ,YXA…),电容选择是否洽当可依以下三点来判定:

输出Ripple电压是符合规格

电容温度是否超过额定值

电容值两端电压是否超过额定值

R19(假负载):

适当的使用假负载可使线路更稳定,但假负载的阻值不可太小,否则会影响效率,使用时亦须注意是否超过电阻的额定值(一般设计只使用额定瓦数的一半)。

L3,C12(LC滤波电路):

LC滤波电路为第二级滤波,在不影响线路稳定的情况下,一般会将L3 放大(电感量较大),如此C12可使用较小的电容值。

设计验证:(可分为三部分)

设计阶段验证

样品制作验证

QE验证

设计阶段验证

设计实验阶段应该养成记录的习惯,记录可以验证实验结果是否与电气规格相符,以下即就DA-14B33设计阶段验证做说明(验证项目视规格而定)。

电气规格验证:

3843 PIN3脚电压(full load 4A) :

90V/47Hz = 0.83V

115V/60Hz = 0.83V

132V/60Hz = 0.83V

180V/60Hz = 0.86V

230V/60Hz = 0.88V

264V/63Hz = 0.91V

Duty Cycle , f T:

%

5.4735.2115.108.4647/90====Cycle Duty us T us ton KHz

f Hz

V T

%

2.1535.2125.38.4660/264====Cycle Duty us t us

ton KHz

f Hz

V T

Vin(min) = 100V (90V / 47Hz full load) Stress (264V / 63Hz full load) : Q1 MOSFET:

D5: D4:

辅助电源(开机,满载)、短路Pin max.:

.)

(max 2.1)4(26.11)

0.18A(8.4V 47/90W A V Hz V ===短路滿載開機

.)

(max 8.8)4(26.11)

0.13A(8.4V 63/264W A V Hz V ===短路滿載開機

Static (full load)

Full Range 负载(0.3A-4A) (验证是否有振荡现象)

回授失效(输出轻载) 90V/47Hz ↓ V out = 8.3V 264V/63Hz ↓ V out = 6.03V O.C.P.(过电流保护) 90V/47Hz = 7.2A 264V/63Hz = 8.4A Pin(max.) 90V/47Hz = 24.9W 264V/63Hz = 27.1W Dynamic test

H=4A ,t1=25ms ,slew Rate = 0.8A/ms (Rise) L=0.3A ,t2=25ms ,slew Rate = 0.8A/ms (Full) 90V/47Hz

90V/47Hz = OK 115V/60Hz = OK 132V/60Hz = OK 180V/60Hz = OK 230V/60Hz = OK 264V/63Hz = OK

264V/63Hz

HI-POT test:

HI-POT test一般可分为两种等级:

输入为3 Pin(有FG者),HI-POT test为1500Vac/1 minute。Y-CAP使用Y2-CAP

输入为2 Pin(无FG者),HI-POT test为3000Vac/1 minute。Y-CAP使用Y1-CAP

DA-14B33属于输入3 PIN HI-POT test 为1500Vac/1 minute。

Grounding test:

输入为3 Pin(有FG者),一般均要测接地阻(Grounding test),安规规定FG到输出线材(输出端)的接地电阻不能超过100m

Ω(25A/3 Second)。

温升记录

设计实验定案后(暂定),需针对整体温升及EMI做评估,若温升或EMI无法符合规格,则需重新实验。温升记录请参考附件,D5原来使用BYV118(10A/40V Schottky),因温升较高改为PBYR1540CTX(15A/40V)。

EMI测试:

EMI测试分为二类:

Conduction(传导干扰)

Radiation(幅射干扰)

前者视规范不同而有差异(FCC : 450K - 30MHz,CISPR 22 :150K - 30MHz),前者可利用厂内的频谱分析仪验证;后者(范围由30M - 300MHz,则因厂内无设备必须到实验室验证,Conduction,Radiation测试数据请参考附件) 。

机构尺寸:

设计阶段即应对机构尺寸验证,验证的项目包括: PCB尺寸、零件限高、零件禁置区、螺丝孔位置及孔径、外壳孔寸….,若设计阶段无法验证,则必须在样品阶段验证。

样品验证:

样品制作完成后,除温升记录、EMI测试外(是否需重新验证,视情况而定),每一台样品都应经过验证(包括电气及机构尺寸),此阶段的电气验证可以以ATE(Chroma)测试来完成,ATE测试必须与电气规格相符。

QE验证:

QE针对工程部所提供的样品做验证,工程部应提供以下交件及样品供QE验证。

最新uc3842开关电源设计流程

u c3842开关电源设计 流程

目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教. 设计步骤: 绘线路图、PCB Layout. 变压器计算. 零件选用. 设计验证. 设计流程介绍(以DA-14B33为例): 线路图、PCB Layout 请参考资识库中说明. 变压器计算: 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍. 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max )= B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为 Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。 xD Vin D x V Vo Np Ns D (min))1()(-+= N S = 二次侧圈数

UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高 压经电网导入电源时,由MOV1、 MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏 电阻两端的电压超过其工作电压 时,其阻值降低,使高压能量消耗 在压敏电阻上,若电流过大,F1、

F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC 输入滤波电路原理: ①输入滤波电 路:C1、L1、 C2组成的双π 型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

影视制作收费及流程标准范文

影视小组关于影视业务开展方案日来在网络上、朋友间问讯搜索的资料,具体数据整理如下: 一、 拍摄和制作企业影视专题片,广告片,功能演示片,相约洽谈,必要时我们也可登门拜访,安排主创人员出谋划策,介绍以往成功作品。 二、若双方沟通成功,准备合作,则须签订《企业专题片摄制合同》,并由委托方支付预定金。 三、 我方在收到预定金之日起一周内,充分听取委托方的意见并与委托方共同商讨拍摄脚本或制作方案,反复研究修改,最终由委托方审阅,确认。 四、摄制脚本或制作方案一经确认,我方将根据被确认之方案进行正式拍摄或制作。 五、摄制过程是一个技术和艺术再创作的过程,建议委托方有负责人参与关键内容研讨和审阅。 客户可能需要提供的资料 类别名称要求主要用途 文案类制作专题片的意图说清楚要解决什么问题,字数不限专题片市场定位专题片的主要内容可以结合解说词来写,字数不限专题片创作定位片名字数12个字以内片头制作 落幕名字数200字以内片尾制作 解说词录音长度约每一分钟240个字(中速)录制话外音 图片类专题片中出现的图片电子文件(300dpi),照片(光面)界面设计制作专题片中出现的标识电子文件,照片,印刷品等界面设计制作有关客户的VI形象手册电子文件,照片、高质量印刷品界面设计制作 音像类专题片中出现的背景音乐.wav格式,磁带,mid格式,(无版权问题)音频处理专题片中出现的录像素材 avi或mov格式的电子文件或录像带(高质量 无版权问题) 视频处理其它相关音频、视频资料(高质量无版权问题)视频处理 主要服务项目与报价 项目明细价格预算参考质量标准

广告片 由国内资深广告编导、高级摄像师、高级剪辑师共同参 与创作,广播电视级质量标准(不含电视台广告播出费) 18000元/每秒钟广播级、高清晰 企业宣传片 由专业摄像师和编辑师负责,DVCAM机拍摄,视频采集,视 频修正,后期非线编辑、艺术转场,背景音效等。重在企业宣 传介绍或产品介绍。 3000-5000元/分钟企业级、DVD、VCD 动画特效 根据客户提交的动画要求原创角色,动作,背景、文 字、LOGO片头、配解说和音效等,表现效果分二维和三维。 二维200-400元/每秒 钟 出版级、高清或标清 三维500-1500元/每秒 钟 产品演示片 互动图文演示使用动画软件或PPT文稿,可适当插入少 量视频。详情可浏览首页“演示文稿PPT设计” 500元/主页面 100元/幻灯页面 电脑、投影仪 多媒体 互动程序设计,页面链接,光盘启动,详情可浏览首页 “多媒体光盘制作” 800元/主页面 200元/页面 电脑、多媒体光盘 旁白配音 中文:由市级电台、电视台(男或女)播音员标准国语配 音。 1500元/每5分钟 电脑、CD、MP3英文:由英美籍电台、电视台(男或女)播音员标准英语 配音。 2500元/每5分钟 拍摄专业DVCAM、3CCD数码摄像机跟踪摄像850元/小时(关内)352×288或720×576分辩率专业HDV高清专业数码摄像机跟踪摄像2600元/小时 720×576或1440×1080分辩 率 BETACAM或HDV高清广播级摄像机跟踪摄像3000元/小时 1440×1080或1920×1080分 辩率 简单编辑可按“点菜”方式收费、廉价实惠 特别说明:本收费方式只适用于简单、无需规划或自主作好规划的客户,如果客户能够提供可编辑的影像文件.AVI.MPEG.MOV等,可按如下方式收费.我们根据客户的“点菜”数量按件计费。如果是高清视频(1080分辩率),编辑费用是以下报价的三倍。 片段剪切 20元/段加背景音乐50元/分加卡啦OK字幕 200元/分加普通字幕 50元/每1-24个字/屏去原音 20元/分选配录制音效200元/段转场及效果20元/段动画文字片头 180元/秒电脑同步录音(自助)150元/10分钟 声画对位20元/段视频转换/生成100元/10分钟DVD加刻一张母盘 20元/盘 照片修改 10元/张加照片 10元/张VCD加刻一张母盘 10元/盘

基于UC3842的单端反激式开关电源设计_本科毕业设计

毕业设计 基于UC3842的开关电源设计 摘要 电源是实现电能变换和功率传递的主要设备。在信息时代,农业、能源、交通运输、通信等领域迅猛发展,对电影产业提出个更多、更高的要求,如节能、节材、减重、环保、安全、可靠等。这就迫使电源工作者不断的探索寻求各种乡关技术,做出最好的电源产品,以满足各行各业的要求。开关电源是一种新型的电源设备,较之于传统的线性电源,其技术含量高、耗能低、使用方便,并取得了较好的经济效益。 UC3842是一种性能优良的电流控制型脉宽调制器。假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均值电压下降,从而达到稳压目的,反之亦然。UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。设计思路,并附有详细的电路图。 关键词:开关电源,uc3842,脉宽调制,功率,IGBT

前言 (1) 第1章开关电源的简介 (2) 1.1 开关电源概述 (2) 1.1.1 开关电源的工作原理 (2) 1.1.2 开关电源的组成 (3) 1.1.3 开关电源的特点 (4) 1.2 开关器件 (4) 1.2.1开关器件的特征 (4) 1.2.2器件TL431. (5) 1.2.3电力二极管 (5) 1.2.4光耦PC817 (6) 1.2.5电力场效应晶体管MOSFET (7) 第2章主要开关变换电路 (1) 2.1 滤波电路 (1) 2.2 反馈电路 (1) 2.2.1电流反馈电路 (1) 2.2.2电压反馈电路 (2) 2.3电压保护电路 (2) 第3章UC3842 (3) 3.1 UC3842简介 (3) 3.1.1 UC3842的引脚及其功能 (4) 3.1.2 UC3842的内部结构 (4) 3.1.3 UC3842的使用特点 (5) 3.2 UC3842的典型应用电路 (6) 3.2.1反激式开关电源 (6) 3.2.2 UC3842控制的同步整流电路 (6) 3.2.3升压型开关电源 (8) 第4章利用UC3842设计小功率电源 (9)

UC3842开关电源电路图

1、UC3842的内部结构和特点 UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。 UC3842为8脚双列直插式封装,其内部原理框图如图1所示。主要由5.0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。端1为COMP 端;端2为反馈端;端3为电流测定端;端4接Rt、Ct确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。 2、电路结构与工作原理 图2所示为笔者在实际工作中使用的电路图。输入电压为24V 直流电。三路直流输出,分别为+5V/4A,+12V/0.3A和-12V/0.3A。所有的二极管都采用快速反应二极管,核心PWM器件采用UC3842。开关管采用快速大功率场效应管。 2.1 启动过程

首先由电源通过启动电阻R 1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。根据同名端标识情况,此时变压器各路副边没有能量输出。当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。同时反馈线圈向UC3842供电。UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V 和10V,如图3所示。在开启之前,UC3842消耗的电流在1mA以内。电源电压接通之后,当7端电压升至16V时UC3842开始工作,启动正常工作后,它的消耗电流约为15mA。因为UC3842的启动电流在1mA以内,设计时参照这些参数选取R1,所以在R1上的功耗很小。 当然,若VCC端电压较小时,在R1上的压降很小,全部供电工作都可由R1降压后来完成。但是,通常情况下,VCC端电压都比较大,这样完全通过R1来提供正常工作电压就会使R1自身功耗太大,对整个电源来说效率太低。一般来说,随着UC3842的启动,R1的工作也就基本结束,余下的任务交给反馈绕组,由反馈绕组产生电压来为UC3842供电。故R1的功率不必选得很大,1W、2W就足够了。笔者认为,虽然理论上UC3842启动电流在1mA以内,但实际

电影制作的流程图

电影制作流程图解析 2008-09-30 01:12:21 电影制作流程图 将真正拍摄的阶段全部砍掉,从毛片(此毛片非彼毛片)已经拍完开始说。但这基本上是一个真空假设,因为一般情况下电影都是一边拍一边剪的。 声音和画面是分开处理的,但首先需要做一个时间码的同步,便于最后将声音和画面合起来。首先,冲洗出一个原底。这个原底就是拍的所有画面,不管这一个镜头是拍了70条还是80条。然后由原底翻印出一个工作样片,由工作样片做胶转磁,配上同期声,然后导演制片人七七八八

一群人坐在一起看工作样片,开始选,这一条不错,那一条还可以,选这一条吧。全部选好以后,这些素材进入非线性编辑工作站把所有的画面按照时间排列到一起,拼成一个电影。在这里导出所谓的EDL和CUTLIST,据说就是一个TXT文档,里面记录着时间线、磁带码、胶片码等等。将这个TXT转给两边,一边是用原底进行正式的剪接,最终间接完毕的底片要重新配光及印片,印片自然是翻成了正片,因此还要再重新翻回去一次变成底片;另一边找到对应的音频制成数字多路音轨,最终印成声底片。这样,影像底片和声底片通过声画对位合成印制成最终的拷贝。 那么大家一定就有几个问题: 1.为什么要印工作样片呢? 因为原底是最重要最重要的东西,如果用原底直接胶转磁相当于拿江南丝绸擦桌子擦完以后还要做丝巾。 2.红色的步骤是什么意思呢? 是80年代的剪辑方法,做工作样片之后直接导演自己摇着看,觉得哪儿好就剪下来拿透明胶条沾上。老师说,那会儿剪完的工作样片那叫一个热闹啊,整个全是胶条手印,有时候中午吃完包子回来下午就直接上手接着剪,送走的时候恨不得你看看那样片就知道这阵子导演吃的都是什么。本条惨不忍睹的胶片讲直接被送回去套底。 3.数字中间片是什么呢? 数字中间片就是指这个画面一会儿翻正一会儿翻负的浪费资源,于是将这部分数字化,首先由原底转数字,在这个过程当中制作特技效果并且加字幕。 大概这个图就解释完了。啊……累死我了。

用UC3842设计开关电源的几个技巧

用UC3842设计开关电源的几个技巧 用UC3842做的开关电源的典型电路见图1。 过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hiccup)保护。 在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。仔细调整这个电阻的数值,一般都可以达到满意的保护。使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。 图2、3、4是常见的电路。

图2采取拉低第1脚的方法关闭电源。 图3采用断开振荡回路的方法。

图4采取抬高第2脚,进而使第1脚降低的方法。 在这3个电路里R3电阻即使不要,仍能很好保护。注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。在过载或短路保护时,它也起延时保护的左右。在灯泡、马达等启动电流大的场合,C4的取值也要大一点。 图1是使用最广泛的电路,然而它的保护电路仍有几个问题: 1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦; 2. 在输出电压较低时,如 3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值; 3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。 这时如果采用辅助电路来实现保护关断,会达到更好的效果。辅助关断电路的实现原理:在过载或短路时,输出电压降低,电压反馈的光耦不再导通,辅助关断电路当检测到光耦不再导通时,延迟一段时间就动作,关闭电源。 相关文章

影视制作流程

影视制作流程。 一、剧本的研发与影视剧策划。 1、剧本的创作方式。 (1)编剧独立完成的剧本创作; (2)根据文学作品改编成剧本; (3)集体创作剧本;(注:制片单位确定某一题材之后,由制片人组织策划人员、专业编剧、导演组成团队来构思和创作作品。) 2、剧本研发要考虑的因素。 (1)受众期望;(根据不同的收视群体的不同审美趣味,积极考虑受众的接受心理和收看期望。 (2)市场状况;(制片人要明确作品的市场定位,紧紧把握市场脉搏,和发展方向,密切关注影视剧交易市场的动向和各类电影、电视节等活动,避免项目的重复和资源的浪费。) (3)政策因素;(剧本研发时,必须密切关注国家关于影视剧的政策法规,避免因违反或不符合国家的政策法规,而造成拍完的影视作品在审查时不能通过。) 3、市场调研。 在有了选题后,制作人可根据个人经验和近期同类题材影视剧的成本和投资回报率,制作出初步的预算和项目策划书,

市场调研能够给成本和投资回报率寻求依据,通过对目标受众群体的预先调查,为剧本创作和影视剧拍摄提供明确的依据,也为广告招标和融资提供必要参照。 4、剧本创作过程。 四个步骤:撰写故事梗概、分集大纲、初稿、第二稿、润色 剧本创作大致两种情况: (1)故事梗概—分集梗概—文学剧本; (2)人物小传—人物关系设置—故事梗概—分集梗概—(分场景提纲)—文学剧本 导演及早确定参与的创作可以提高效率,节省修改剧本时间、开支。 二、筹拍期的组织与任务。 1、组建摄制组。(如下图)

(1)制片部门;制片部门是整个摄制组正常运作的基础和保障。(2)导演部门;导演部门的核心人物是导演,他是影视剧艺术创作的灵魂对已经完成的剧本提出自己的修改意见,并根据自己的理解和拍摄风格进行二度创作。 (3)摄影部门;摄影部门负责影视剧的拍摄并保证画面的效果。(4)美术部门;美术部门负责整部影视剧的美术设计,统筹整个剧的美术风格,包括和演员有关的服装、化妆、道具组,也包括前期准备布景的美术组,拍摄时营造气氛的烟火组。

12种开关电源拓扑及计算公式

输入输出电压关系 D T Ton Vin Vout == 开关管电流 Iout Iq =(max)1开关管电压 Vin Vds =二极管电流 ) 1(1D Iout Id ?×=二极管反向电压 Vin Vd =12、BOOST 电路 输入输出电压关系 D Ton T T Vin Vout ?= ?=11 开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vds =二极管电流 Iout Id =1二极管反向电压 Vout Vd =13、BUCK BOOST 电路 输入输出电压关系 D D Ton T Ton Vin Vout ?= ?=1开关管电流 11( (max)1D Iout Iq ?×=开关管电压 Vout Vin Vds ?=二极管电流 Iout Id =1二极管反向电压 Vout Vin Vd ?=1

输入输出电压关系 D D Vin Vout ?= 1开关管电流 )1( (max)1D D Iout Iq ?×=开关管电压 Vout Vin Vds +=二极管电流 Iout Id =1二极管反向电压 Vin Vout Vd +=15、FLYBACK 电路 输入输出电压关系 Lp Iout Vout T D Vin Vout ×××=2开关管电流 (max)1Lp Ton Vin Iq ×= 开关管电压 Ns Np Vout Vin Vds × +=二极管电流 Iout Id =1二极管反向电压 Np Ns Vin Vout Vd × +=16、FORW ARD 电路 输入输出电压关系 D Np Ns T Ton Np Ns Vin Vout ×=×=开关管电流 Iout Np Ns Iq ×= (max)1开关管电压 Vin Vds ×=2二极管电流 D Iout Id ×=1

用UC3842进行开关电源的设计

用UC3842进行开关电源的设计 一、 设计目的 用UC3842新型集成开关电源芯片进行开关电源设计,市 电输入采用无工频变压器设计,开关管的触发调整信号采用高 频40KHZ 的PWM (脉宽调制信号),达到额定输出为5V,7A 的高 精度稳压输出,电源轻便,简洁明快。 1、 UC3842的性能特点: (1) 它属于电流型单端PWM 调制器,具有管脚数 量少、外围电路简单、安装调试简便、性能优良、价格 低廉等优点。能通过高频变压器与电网隔离,适于构成 无工频变压器的20~50W 小功率开关电源。 (2) 最高开关频率为500kHZ,频率稳定度达%。电 源效率高,输出电流大,能直接驱动双极型功率晶体管 或VMOS 管、DMOS 管、TMOS 管。 (3) 内部有高稳定度的基准电压源,典型值为, 允许有±的偏差。温度系数为℃。 (4) 稳压性能好。其电压调整率可达%/V,能同第 二代线性集成稳压器(例如LM317)相媲美。启动电流 小于1mA,正常工作电流为15mA 。 (5) 除具有输入端过压保护与输出端过流保护之 外,还设有欠压锁定电路,使工作稳定、可靠。 (6) 最高输入电压IM V =30V ,输出最大峰值电流 PM I =1A,平均电流为,本身最大功耗DM P =1W,最大输出

功率OM P =50W 。 2、 UC3842的引脚排列及内部框图 UC3842采用DIP-8封装如上图1,管脚I V 、O V 、GND 端分别接 输入电压、输出电压、地。REF V 为内部基准电压引出端。T R /T C 是 外接定时电阻、定时电容的公共端。UC3842内部框图如图2,其主要 包括基准电源,振荡器、误差放大器,过流检测电压比较器、PWM 锁 存器、输入欠压锁定电路、门电路、输出级、34V 稳压管。 二、 总体电路框图及单元功能分析

开关电源的制作流程

开关电源的制作流程 开关电源(Switch Mode Power Supply,SMPS)具有高效率、低功率、体积小、重量轻等显著优点,代表了稳压电源的发展方向,现已成为稳压电源的主流产品。开关电源的设计与制作要求设计者具有丰富的实践经验,既要完成设计制作,又要懂得调试、测试与分析等。本文章介绍开关电源组成及制作、调试所需的基本步骤和方法。 第一节开关电源的电路组成 开关电源一般是指输入与输出隔离的电源变换器,包括AC/DC电源变换器和DC/DC电源变换器,也称为AC/DC开关电源和DC/DC开关电源。非隔离式DC/DC变换器也属于开关电源,通常称之为开关稳压器。 1、AC/DC开关电源的组成 AC/DC开关电源的典型结构如图1-1-1所示。电源由输入电磁干扰(EMI)滤波器、输入整流/滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。 图1-1-1 AC/DC开关电源的典型结构 其中输入整流/滤波电路、功率变换电路、输出整流/滤波电路和PWM控制器电路是主要电路,其他为辅助电路。有些开关电源中还有防雷击电路、输入过压/欠压保护电路、输出过压保护电路、输出过流保护电路、输出短路保护电路等其他辅助电路。 2. DC/DC开关电源的组成 DC/DC开关电源的组成相对AC/DC开关电源要简单一点,其典型结构如图1-1-2所示。电源由输入滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。当然,有些DC/DC开关电源也会包含其他辅助电路。 图1-1-2 DC/DC开关电源的典型结构

第二节开关电源的制作流程 开关电源的设计与制作要从主电路开始,其中功率变换电路是开关电源的核心。功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。下面介绍开关电源设计与制作一般流程。 1.解定电路结构(DC/DC变换器的结构) 无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。因此,开关电源的电路结构就是指DC/DC变换器的结构。开关电源中常用的DC/DC变换器拓扑结构如下: (1)降压式变换器,亦称降压式稳压器。 (2)升压式变换器,亦称升压式稳压器。 (3)反激式变换器。 (4)正激式变换器。 (5)半桥式变换器。 (6)全桥式变换器。 (7)推挽式变换器。 降压式变换器和升压式变换器主要用于输入、输出不需要隔离的DC/DC变换器中;反激式变换器主要用于输入、输出需要隔离的小功率AC/DC或DC/DC变换器中;正激式变换器主要用于输入/输出需要隔离的较大功率AC/DC或DC/DC变换器中;半桥式变换器和全桥式变换器主要用于输入/输出需要隔离的大功率AC/DC或DC/DC变换器中,其中全桥式变换器能够提供比半桥式变换器更大的输出功率;推挽式变换器主要用于输入/输出需要隔离的较低输入电压的DC/DC或DC/AC变换器中。 顾名思义,降压式变换器的输出电压低于输入电压,升压式变换器的输出电压高于输入电压。在反激式、正激式、半桥式、全桥式和推挽式等具有隔离变压器的DC/DC变换器中,可以通过调节高频变压器的一、二次匝数比,很方便地实现电源的降压、升压和极性变换。此类变换器既可以是升压型,也可以是降压型号,还可以是极性变换型。在设计开关电源时,首先要根据输入电压、输出电压、输出功率的大小及是否需要电气隔离,选择合适的电路结构。 2.选择控制电路(PWM) 开关电源是通过控制功率晶体管或功率场效应管的导通与关断时间来实现电压变换的,其控制方式主要有脉冲宽度调制、脉冲频率调制和混合调制三种。脉冲宽度调制方式,简称脉宽度调制,缩写为PWM;脉冲频率调制方式,简称脉频调制,缩写PFM;混合调制方式,是指脉冲宽度与开关频率均不固定,彼此都能改变的方式。 PWM方式,具有固定的开关频率,通过改变脉冲宽度来调节占空比,因此开关周期也是固定的,这就为设计滤波电路提供了方便,所以应用最为普通。目前,集成开关电源大多采用此方式。为便于开关电源的设计,众多厂家将PWM控制器设计成集成电路,以便用户选择。开关电源中常用的PWM控制器电路如下: (1)自激振荡型PWM控制电路。 (2)TL494电压型PWM控制电路。 (3)SG3525电压型PWM控制电路。 (4)UC3842电流型PWM控制电路。 (5)TOPSwitch-II系列的PWM控制电路。 (6)TinySwitch系列的PWM控制电路。 3.确定辅助电路

影视制作流程介绍

影视制作流程介绍 影视制作使用的一直是价格极端昂贵的专业硬件及软件,非专业的人员很难有机会见到这些设备,更不用说熟练掌握这些工具来制作自己的作品了。下面是影视制作流程介绍,欢迎阅读~ 影视制作步骤锦集 动画制作是一个非常繁琐而吃重的工作,分工极为细致。通常分为前期制作、中期制作、后期制作等。前期制作又包括了企划、作品设定、资金募集等;制作包括了分镜、原画、中间画、动画、上色、背景作画、摄影、配音、录音等;后期制作包括剪接、特效、字幕、合成、试映等。 如今的动画,计算机的加入使动画的制作变简单了,所以网上有好多的人用FLASH做一些短小的动画。而对于不同的人,动画的创作过程和方法可能有所不同,但其基本规律是一致的。传统动画的制作过程可以分为总体规划、设计制作、具体创作和拍摄制作四个阶段,每一阶段又有若干个步骤。 总体设计阶段 1)剧本。任何影片生产的第一步都是创作剧本,但动画片的剧本与真人表演的故事片剧本有很大不同。一般影片中的对话,对演员的表演是很重要的,而在动画影片中则应尽可能避免复杂的对话。在这里最重的是用画面表现视觉动作,最好的动画是通过滑稽的动作取得的,其中没有对话,而是由视觉创作激发人们的想象。

2)故事板。根据剧本,导演要绘制出类似连环画的故事草图(分镜头绘图剧本),将剧本描述的动作表现出来。故事板有若干片段组成,每一片段由系列场景组成,一个场景一般被限定在某一地点和一组人物内,而场景又可以分为一系列被视为图片单位的镜头,由此构造出一部动画片的整体结构。故事板在绘制各个分镜头的同时,作为其内容的动作、道白的时间、摄影指示、画面连接等都要有相应的说明。一般30分钟的动画剧本,若设置400个左右的分镜头,将要绘制约800幅图画的图画剧本——故事板。 3)摄制表。这是导演编制的整个影片制作的进度规划表,以指导动画创作集体各方人员统一协调地工作。 设计制作阶段 1)设计。设计工作是在故事板的基础上,确定背景、前景及道具的形式和形状,完成场景环境和背景图的设计和制作。另外,还要对人物或其他角色进行造型设计,并绘制出每个造型的几个不同角度的标准画,以供其他动画人员参考。 2)音响。在动画制作时,因为动作必须与音乐匹配,所以音响录音不得不在动画制作之前进行。录音完成后,人员还要把记录的声音精确地分解到每一幅画面位置上,即第几秒(或第几幅画面)开始说话,说话持续多久等。最后要把全部音响历程(即音轨)分解到每一幅画面位置与声音对应的条表,供动画人员参考。 具体创作阶段

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:

开关电源开发流程

开关电源开发流程 1 目的 希望以簡短的篇幅,將公司目前設計的流程做介紹,若有介紹不當之處,請不吝指教. 2 設計步驟: 2.1 繪線路圖、PCB Layout. 2.2 變壓器計算. 2.3 零件選用. 2.4 設計驗證. 3 設計流程介紹(以DA-14B33為例): 3.1 線路圖、PCB Layout請參考資識庫中說明. 3.2 變壓器計算: 變壓器是整個電源供應器的重要核心,所以變壓器的計算及驗証是很重要的,以 下即就DA-14B33變壓器做介紹. 3.2.1 決定變壓器的材質及尺寸: 依據變壓器計算公式 B(max) = 鐵心飽合的磁通密度(Gauss) Lp = 一次側電感值(uH) Ip = 一次側峰值電流(A) Np = 一次側(主線圈)圈數 Ae = 鐵心截面積(cm2) B(max) 依鐵心的材質及本身的溫度來決定,以TDK Ferrite Core PC40為 例,100℃時的B(max)為3900 Gauss,設計時應考慮零件誤差,所以一般 取3000~3500 Gauss之間,若所設計的power為Adapter(有外殼)則應取3000 Gauss左右,以避免鐵心因高溫而飽合,一般而言鐵心的尺寸越大,Ae越 高,所以可以做較大瓦數的Power。 3.2.2 決定一次側濾波電容: 濾波電容的決定,可以決定電容器上的Vin(min),濾波電容越大,Vin(win) 越高,可以做較大瓦數的Power,但相對價格亦較高。 3.2.3 決定變壓器線徑及線數: 當變壓器決定後,變壓器的Bobbin即可決定,依據Bobbin的槽寬,可 決定變壓器的線徑及線數,亦可計算出線徑的電流密度,電流密度一般 以6A/mm2為參考,電流密度對變壓器的設計而言,只能當做參考值, 最終應以溫昇記錄為準。 3.2.4 決定Duty cycle (工作週期): 由以下公式可決定Duty cycle ,Duty cycle的設計一般以50%為基準,Duty cycle若超過50%易導致振盪的發生。 NS = 二次側圈數 NP = 一次側圈數 V o = 輸出電壓 VD= 二極體順向電壓 Vin(min) = 濾波電容上的谷點電壓 D = 工作週期(Duty cycle)

开关电源热阻计算方法及热管理

开关电源热阻计算方法及热管理 我们设计的DC-DC电源一般包含电容、电感、肖特基、电阻、芯片等元器件;电源产品的转换效率不可能做到百分百,必定会有损耗,这些损耗会以温升的形式呈现在我们面前,电源系统会因热设计不良而造成寿命加速衰减。所以热设计是系统可靠性设计环节中尤为重要的一面。但是热设计也是十分困难的事情,涉及到的因素太多,比如电路板的尺寸和是否有空气流动。 我们在查看IC产品规格书时,经常会看到R JA 、T J 、T STG 、T LEAD 等名词;首先R JA 是指芯 片热阻,即每损耗1W时对应的芯片结点温升,T J 是指芯片的结温,T STG 是指芯片的存储温 度范围,T LEAD 是指芯片的加工温度。 二、术语解释 首先了解一下与温度有关的术语:T J 、T A 、T C 、T T 。由“图1”可以看出,T J 是指芯片 内部的结点温度,T A 是指芯片所处的环境温度,T C 是指芯片背部焊盘或者是底部外壳温度, T T 是指芯片的表面温度。 数据表中常见的表征热性能的参数是热阻R JA ,R JA 定义为芯片的结点到周围环境的热阻。 其中T J = T A +(R JA *P D ) 图1.简化热阻模型 对于芯片所产生的热量,主要有两条散热路径。第一条路径是从芯片的结点到芯片 顶部塑封体(R JT ),通过对流/辐射(R TA )到周围空气;第二条路径是从芯片的结点到背部焊 盘(R JC ),通过对流/辐射(R CA )传导至PCB板表面和周围空气。 对于没有散热焊盘的芯片,R JC 是指结点到塑封体顶部的热阻;因为R JC 代表从芯片内 的结点到外界的最低热阻路径。 三、典型热阻值 表1典型热阻

一款基于UC3842的单端反激式开关电源的设计

一款基于UC3842的单端反激式开关电源的设计 164908060( 楼主 ) 2013-8-31 11:00:32只看该作者 981 | 21 倒序浏览引言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。 电路设计和原理 1 UC3842工作原理 UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图如图l所示。其中脚1外接阻容元件,用来补偿误差放大器的频率特性。脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压。脚3是电流检测输入端,与电阻配合,构成过流保护电路。脚4外接锯齿波振荡器外部定时电阻与定时电容,决定振荡频率,基准电压VREF为0.5V。输出电压将决定变压器的变压比。由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而控制PWM序列的占空比,达到电路稳定的目的。

影视制作的具体流程

数字视频的编辑与制作流程 1).影视的编辑和制作流程 一般来说,影视制作的过程,包括把原始素材镜头编织成影视节目所必需的全部工作过程。 它包括了以下几个步骤: (1)整理素材 所谓素材指的是用户通过各种手段得到的未经过编辑(或者称剪接)的视频和音频文件,它们都是数字化的文件。制作影片时,得将拍摄到的胶片中包含声音和画面图像的输入计算机,转换成数字化文件后再进行加工处理。这里的素材可以指: 从摄像机﹑录像机或其他可捕获数字视频的仪器上的视频文件;? Adobe? Premiere或其他软件建立的Video for windows或Quick Time Video;Adobe? Photoshop文件; Adobe Illustrator?文件; 数字音频﹑各种数字化的声音﹑电子合成音乐以及音乐;? 各种动画文件(.Fli﹑.Fic);? 不同图像格式的文件,如BMP﹑TIF和GIF等;? (2)确定编辑点(切入点和切出点)和镜头切换的方式 编辑时,选择自己所要编辑的视频和音频文件,对它设置合适的编辑点,就可达到改变素材的时间长度和删除不必要素材的目的。镜头的切换是指把两个镜头衔接在一起,使一个镜头突然结束,下一个镜头立即开始。在影视制作上,这既指胶片的实际物理接合(接片),又指人为创作的银幕效果。Premiere 6.0可以对素材中的镜头进行切换,实际上是软件提供的过渡效果,操作过程是这样的,素材被放在时间线视窗(Timeline Windows)中分离的Video1A 和Video1B轨道中,然后将过渡效果视窗中选择的过渡效果放到T轨道中即可。 (3)制作编辑点记录表 传统的影片编辑工作离不开对磁带或胶片上的镜头进行搜索和挑选。编辑点实际上就是指磁带上和某一特定的帧画面相对应的显示数码。操纵录像机寻找帧画面时,数码计数器上都会显示出一个相应变化的数字,一旦把该数字确定下来,它

相关主题
文本预览
相关文档 最新文档