当前位置:文档之家› 高中物理竞赛辅导讲义-第6篇-角动量

高中物理竞赛辅导讲义-第6篇-角动量

高中物理竞赛辅导讲义-第6篇-角动量
高中物理竞赛辅导讲义-第6篇-角动量

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

物理竞赛角动量

物理竞赛角动量文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力F 分解为平行于轴的分量F∥和垂直于轴的分量F⊥两部 分,其中F1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选定的 参照系中,从参考点0 指向力的作用点P的矢量r与作 用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢. 根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点的位矢.当质点受 F1、F2、…、F N N个力同时作用时,诸力对某参考点的力矩的矢量和等 于合力F=F1+F2+…+F N对同一参考点的力矩,即 r×F1+r×F2+…+r×F N=r×(F1+F2+…+F N)=r×F (5. 1-3) 2. 作用于质点系的力矩

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

物理竞赛 角动量

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅 与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力 F分解为平行于轴的分量F ∥ 和垂直于轴的分量F⊥两 部分,其中F // 对物体绕轴转动不起作用,而F⊥就是 在垂直于轴的平面(π)上的投影,故这时F对轴的 力矩可写成 τ=ρF⊥sinθ(5. 1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选 定的参照系中,从参考点0 指向力的作用点P的矢量r与作用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢.根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式(5.1-2)中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点 的位矢.当质点受F 1、F 2 、…、F N N个力同时作用时,诸力对某参考点的力矩的

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

第33届全国中学生物理竞赛决赛试题

第33届全国中学生物理竞赛决赛理论考试试题 可能用到的物理常量和公式: 真空中的光速82.99810/c m s =?; 地球表面重力加速度大小为g ; 普朗克常量为h ,2h π=; 2111ln ,1121x dx C x x x +=+<--?。 1、(15分)山西大同某煤矿相对于秦皇岛的高度为c h 。质量为t m 的火车载有质量为c m 的煤,从大同沿大秦铁路行驶路程l 后到达秦皇岛,卸载后空车返回。从大同到秦皇岛的过程中,火车和煤总势能的一部分克服铁轨和空气做功,其余部分由发电机转换成电能,平均转换效率为1η,电能被全部存储于蓄电池中以用于返程。空车在返程中由储存的电能驱动电动机克服重力和阻力做功,储存的电能转化为对外做功的平均转换效率为2η。假设大秦线轨道上火车平均每运行单位距离克服阻力需要做的功与运行时(火车或火车和煤)总重量成正比,比例系数为常数μ,火车由大同出发时携带的电能为零。 (1)若空车返回大同时还有剩余的电能,求该电能E 。 (2)问火车至少装载质量为多少的煤,才能在不另外提供能量的条件下刚好返回大同? (3)已知火车在从大同到达秦皇岛的铁轨上运行的平均速率为v ,请给出发电机的平均输出功率P 与题给的其它物理量的关系。 2、(15分)如图a ,AB 为一根均质细杆,质量为m ,长度为2l ;杆上端B 通过一不可伸长的软轻绳悬挂到固定点O ,绳长为1l 。开始时绳和杆均静止下垂,此后所有运动均在同一竖 直面内。 (1)现对杆上的D 点沿水平方向施加一瞬时冲量I ,若 在施加冲量后的瞬间,B 点绕悬点O 转动的角速度和杆 绕其质心转动的角速度相同,求D 点到B 点的距离和B 点绕悬点O 转动的初始角速度0ω。

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理竞赛讲义-角动量

角动量 一、力矩(对比力) 1、质点对轴的力矩可以使物体绕轴转动或改变物体的角速度 2、力矩可以用M 或τ表示 3、力矩是矢量 4、力矩的大小和方向 (1)二维问题 sin rF τθ= 注意,式中的角度θ为F 、r 两个矢量方向的夹角。 求力矩的两种方法:(类比求功的两种方法) (sin )r F τθ= (sin )r F τθ= 二维问题中,力矩的方向可以简单地用顺时针、逆时针表示。 (2)三维问题 r F τ=?r r r 力矩的大小为 sin rF τθ= 力矩的方向与r 和F 构成的平面垂直,遵循右手螺 旋法则 5、质点系统受到的力矩 只需要考虑外力的力矩,一对内力的力矩之和一定为0. 二、冲量矩(对比冲量) 1、冲量矩反映了冲量改变物体转动的效果,是一个过程量 2、冲量矩用L 表示 3、冲量矩的大小 L r I r Ft t τ=?=?=r r u r r r r 4、冲量矩是矢量,方向与r 和F 构成的平面垂直,遵循右手螺旋法则,即方向和力矩的方向相同 5、经常需用微元法(类比功和冲量这两个过程量的计算) 三、动量矩(即角动量)(对比动量) 1、角动量反映了物体转动的状态,是一个状态量 2、角动量用l 表示 3、角动量的大小 l r p r vm =?=?u r r r r r 4、角动量是矢量,方向与r 和v 构成的平面垂直,遵循右手螺旋法则 四、角动量定理(对比动量定理) 冲量矩等于角动量的变化量 L t l τ==?r r r

五、角动量守恒定律(对比动量守恒定律) 角动量守恒的条件:(满足下列任意一个即可) 1、合外力为0 2、合外力不为0,但合力矩为0 例如:地球绕太阳公转 此类问题常叫做“有心力”模型 3、合外力不为0,每个瞬时合力矩也不为0,但全过程总的冲量矩为0 例如:单摆从某位置摆动到对称位置的过程 注意:讨论转动问题一定要规定转轴,转轴不同结果也不同 六、转动惯量(对比质量) 1、转动惯量反映了转动中惯性 2、转动惯量用I 或J 表示 3、质点的转动惯量等于质量乘以和转轴距离的平方 2I mr = 4、转动惯量是标量 5、由于实际物体经常不能看作质点,转动惯量的计算需要用微元法或微积分 2 i i I m r =∑ 6、引入转动惯量后,角动量也可以表示为(类比动量的定义) l I ω=r r 七、转动问题中的牛顿第二定律(即转动定理)(对比牛顿第二定律) 合力矩等于转动惯量乘以角加速度 I τβ=r r 八、动能的另一种表示方式 221122 k E mv I ω= =

高中物理竞赛辅导讲义-5.3角动量例题

5.3角动量例题 例1、在一根长为3l的轻杆上打一个小孔,孔离一端的距离为l,再在杆 的两端以及距另一端为l处各固定一个质量为M的小球。然后通过此孔将杆悬挂于一光滑固定水平细轴O上。开始时,轻杆静止,一质量为m 的铅粒以v0的水平速度射入中间的小球,并留在其中。求杆摆动的最大高度。

例2、质量m=1.1 kg的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动.圆盘边缘绕有绳子,绳子下端挂一质量m1=1.0 kg的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动. 例3、两个质量均为m的质点,用一根长为2L的轻杆相连。两质点 以角速度ω绕轴转动,轴线通过杆的中点O与杆的夹角为θ。试求以 O为参考点的质点组的角动量和所受的外力矩。

例4、小滑块A位于光滑的水平桌面上,小滑块B位于桌 面上的小槽中,两滑块的质量均为m,并用长为L、不可 伸长、无弹性的轻绳相连。开始时,A、B之间的距离为 L/2,A、B间的连线与小槽垂直。突然给滑块A一个冲 击,使其获得平行与槽的速度v0,求滑块B开始运动时 的速度 例5、有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?

例6、一质量为M a,半径为a的圆筒A,被另一质量为M b,半 径为b的圆筒B同轴套在其外,均可绕轴自由旋转。在圆筒A 的内表面上散布了薄薄的一层质量为M o的沙子,并在壁上开了许多小孔。在t=0时,圆筒A以角速度ω0绕轴匀速转动,而圆筒B静止。打开小孔,沙子向外飞出并附着于B筒的内壁上。设单位时间内喷出的沙子质量为k,若忽略沙子从A筒飞到B筒的时间,求t时刻两筒旋转的角速度。 *例7、如图,CD、EF均为长为2L的轻杆,四个端点各有 一个质量为m的质点,CE、DF为不可伸长的轻绳,CD的 中点B处用一细线悬于天花板A点。突然剪断DF,求剪断 后瞬间,CE、AB上的张力分别是多少?

高中物理竞赛角动量

3v m 角动量定理 角动量守恒习题 1.如本题图,一质量为m 的质点自由降落,在某时刻具有速度v 。此时它相对于A 、B 、C 三参考点的距离分别为d 1、d 2、d 3。求 (1)质点对三个点的角动量; (2)作用在质点上的重力对三个点的力矩。 2.两个质量都是m 的滑雪者,在冰场两条相距为L 0的平直跑道上均以速度V 0迎面匀速滑行,当两者之间的距离等于L 0时,分别抓住一根长为L 0的轻绳两端,而后每个人用力对等的力缓慢向自己一边拉绳子,知道二者相距L (小于L 0)时为止,求这一过程中,两位滑冰者动能总增量。 111222l v l v θθ3.如本题图,圆锥摆的中央支柱是一个中空的管子,系摆锤的线穿过它, 我们可将它逐渐拉短。设摆长为时摆锤的线速度为,且与竖直方向的夹角为 摆长拉倒时,与竖直方向的夹角为,求摆锤的速度为多少

4.在光滑的水平面上,有一根原长Lo=0.6m、劲度系数k=8N/m的弹性绳,绳的一端系着一个质量m=0.2kg 的小球B,另一端固定在水平面上的A点.最初弹性绳是松弛的,小球B的位置及速度,AB的间距d=0.4m。如图所示,在以后的运动中当小球B的速率为v时,它与A点的距离最大,且弹性绳长L=0.8m,求B的速率v及初速率v0 5.在半顶角为α的圆锥面内壁离锥顶h高处以一定初速度沿内壁水平射出一质量为m的小球,设锥面内壁是光滑的,求: 1、为使小球在h高度的水平面上做匀速圆周运动,其初速度V0为多少? 2、若初速度V1=2V0,求小球在运动过程中的最大高度和最小高度。 6.小滑块A位于光滑的水平桌面上,小滑块B位于桌面上的光滑小槽中,两滑块的质量都是m,并用长为L,不可伸长的、无弹性的轻绳相连,如图所示,开始时,A,B的间距为L/2,A,B间的连线与小槽垂直,今给滑块A一冲击,使其获得平行于槽的速度V0,求滑块B开始运动时的速度。

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

高中物理竞赛辅导讲义-第8篇-稳恒电流

高中物理竞赛辅导讲义 第8篇 稳恒电流 【知识梳理】 一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律) 流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。即∑I =0。 若某复杂电路有n 个节点,但只有(n ?1)个独立的方程式。 2. 基尔霍夫第二定律(回路电压定律) 对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。即∑U =0。 若某复杂电路有m 个独立回路,就可写出m 个独立方程式。 二、等效电源定理 1. 等效电压源定理(戴维宁定理) 两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。 2. 等效电流源定理(诺尔顿定理) 两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。 三、叠加原理 若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。 四、Y?△电路的等效代换 如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系 时完全等效。 1. Y 网络变换为△网络 12 2331 123 R R R R R R R R ++=, 122331 231R R R R R R R R ++= 122331 312 R R R R R R R R ++= 2. △网络变换为Y 网络 12311122331R R R R R R = ++,23122122331R R R R R R =++,3123 3122331 R R R R R R =++

高中物理竞赛辅导 动量 角动量和能量

动量 角动量和能量 §4.1 动量与冲量 动量定理 4.1. 1.动量 在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv 遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv 来量度物体的“运动量”,称之为动量。 4.1.2.冲量 要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F 和力作用的时间t ?的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F t ?叫做冲量。 4.1.3.质点动量定理 由牛顿定律,容易得出它们的联系:对单个物体: 01mv mv v m t ma t F -=?=?=? p t F ?=? 即冲量等于动量的增量,这就是质点动量定理。 在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为: x tx x mv mv t F 0-=? y ty y mv mv t F 0-=? z tz z mv mv t F 0-=? 对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理: 第1个 1I 外+1I 内=10111v m v m t - 第2个 2I 外+2I 内=20222v m v m t - 第n 个 n I 外+n I 内=0n n nt n v m v m - 由牛顿第三定律: 1I 内+2I 内+……+n I 内=0 因此得到: 1I 外+2I 外+ ……+n I 外=(t v m 11+t v m 22+……+nt n v m )-(101v m +202v m +……0n n v m ) 即:质点系所有外力的冲量和等于物体系总动量的增量。 §4,2 角动量 角动量守恒定律 动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。 它的求法跟力矩完全一样,只要把力F 换成动量P 即可,故B 点上的动量P 对原点O 的动量矩J 为 P r J ?= (r =) 以下介绍两个定理:

物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 12C α β A B O

高中物理竞赛辅导教材讲义(高一适用)

第五讲:运动的基本概念、运动的合成与分解 5、如图所示,有一河面宽L=1km ,河水由北向南流动,流速v=2m/s ,一人相对于河水以u=1m/s 的速率将船从西岸划向东岸。 (1)若船头与正北方向成α=30°角,船到达对岸要用多少时间?到达对岸时,船在下游何处? (2)若要使船到达对岸的时间最短,船头应与岸成多大的角度?最短时间等于多少?到达对岸时,船在下游何处? (3)若要使船相对于岸划行的路程最短,船头应与岸成多大的角度?到达对岸时,船在下游何处?要用多少时间? (1)船头与正北方向成15°角,船到对岸花多少时间?何处? (2 已知水流速度 V =2m/s ,船在静水中的速度是 V`=S =1千米=1000米 (1)当船头与正北方向成15°角时,把静水中的航速V`正交分解在平行河岸与垂直河岸方向, 垂直河岸方向的速度分量是 V`1=V`*sin15°=1.5*sin15°=1.5*根号[(1-cos30°) / 2 ]=0.388m/s 平行河岸方向的速度分量是 V`2=V`*cos15°=1.5*cos15°=1.5*根号[(1+cos30°) / 2 ]=1.45m/s 船过河所用时间是 t1=S / V`1=1000 / 0.388=2575.8秒=42.93分钟 在沿河岸方向的总速度是 V 岸=V -V`2=2-1.45=0.55 m/s 在这段时间内,船向下游运动距离是L1=V 岸* t1=0.55*2575.8=1416.7米=1.42千米 即船到达对岸的位置是在出发点的下游1.42千米远的对岸处。 (2)要求时间最短,船头的指向必须与河对岸垂直,即船头与河岸应90度。 最短时间是 t 短=S / V`=1000 / 1.5=666.67秒=11.11分钟 在这段时间内,船向下游运动的距离是 L =V* t 短=2*666.67=1333.33米=1.33千米 即船到达对岸的位置是在出发点的下游1.33千米远的对岸处。 北 东

重点高中物理竞赛精品讲义之—程稼夫篇

精心整理 电磁学 静电学 1、 静电场的性质 静电场是一个保守场,也是一个有源场。 F dl o ?=?高斯定理 静电力环路积分等于零i q E ds E ?= ∑?? E ∑过程x E =2、 (1,空解:(1)在空腔中任选一点p , p E 可以看成两个均匀带电球体产生的电场强度之差, 即()121 2 333p o o o E r r r r E E E ρ ρ ρ = - = - 令12a o o = 这个与p 在空腔中位置无关,所以空腔中心处23o o E a E ρ =

(2)求空腔中心处的电势 电势也满足叠加原理 p U 可以看成两个均匀带电球体产生电势之差 即()()()22222 2212123303666o o o o U R a R R R a E E E ρ ρ ρ??= -- -= --? ? 假设上面球面上,有两个无限小面原i j s s ,计算i s ,受到除了i s 上电荷之处,球 面上其它电荷对i s 的静电力,这个静电力包含了j s 上电荷对i s 上电荷的作用力. 同样j s 受到除了i s 上电荷以外, 这个力同样包含了i s 对j s 的作用力. 如果把这里的i j s s ,i j s s 之间的相互作用力相抵消。 出于这个想法,现在把上半球面分成无限小的面元,把每个面元上所受的静电力(除 去各自小面元)相加,其和就是下半球面上的电荷对上半球面上电荷的作用力。 求法2 2 222 2=f 224o o o R Q F R R E E R σππππ??=?== ??? 再观察下,静电力?o f = 例:()R R R +≤ : 2o E E σ σ = 表面 而且可以推广到一般的面电荷()σ 在此面上电场强度()121 2 E E E = +表面 例:一个半径为R,带电量为Q 的均匀带电球面,求上下两半球之间的静电力? 解:原则上,这个作用力是上半球面上的电荷受到来自下半球面的电荷产生的电场强 度的空间分布,对上半球面上各电荷作用力之和,由于下半球面上电荷所产生的电场强度分布,所以这样计较有困难. 例:求半径为R,带电量为Q 的均匀带电球面,外侧的静电场能量密度. 解:静电场(真空)能量密度21 2 o E E ω=

江苏省南京物理竞赛讲义-5.3角动量例题

5.3角动量例题 例1、在一根长为3l 的轻杆上打一个小孔,孔离一端的距离为l ,再在杆 的两端以及距另一端为l 处各固定一个质量为M 的小球。然后通过此孔 将杆悬挂于一光滑固定水平细轴O 上。开始时,轻杆静止,一质量为m 的铅粒以v 0的水平速度射入中间的小球,并留在其中。求杆摆动的最大 高度。 例2、质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平 光滑固定轴转动.圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动. 例3、两个质量均为m 的质点,用一根长为2L 的轻杆相连。两质点 以角速度ω绕轴转动,轴线通过杆的中点O 与杆的夹角为θ。试求 以O 为参考点的质点组的角动量和所受的外力矩。 例4、小滑块A 位于光滑的水平桌面上,小滑块B 位于 桌面上的小槽中,两滑块的质量均为m ,并用长为L 、不 可伸长、无弹性的轻绳相连。开始时,A 、B 之间的距离 为L/2, A 、B 间的连线与小槽垂直。突然给滑块A 一个冲击,使其获得平行与槽的速度v 0,求滑块B 开始运动时的速度 例5、有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止? 例6、一质量为M a ,半径为a 的圆筒A ,被另一质量为M b ,半 径为b 的圆筒B 同轴套在其外,均可绕轴自由旋转。在圆筒A

的内表面上散布了薄薄的一层质量为M o的沙子,并在壁上开了许多小孔。在t=0时,圆筒A以角速度ω0绕轴匀速转动,而圆筒B静止。打开小孔,沙子向外飞出并附着于B筒的内壁上。设单位时间内喷出的沙子质量为k,若忽略沙子从A筒飞到B筒的时间,求t时刻两筒旋转的角速度。 *例7、如图,CD、EF均为长为2L的轻杆,四个端点各有 一个质量为m的质点,CE、DF为不可伸长的轻绳,CD 的中点B处用一细线悬于天花板A点。突然剪断DF,求剪 断后瞬间,CE、AB上的张力分别是多少?

相关主题
文本预览
相关文档 最新文档