当前位置:文档之家› 变压吸附工艺

变压吸附工艺

变压吸附工艺
变压吸附工艺

变压吸附工艺

变压吸附工艺在国内已经有20年的发展历程,由最初的技术水增低下,收率低导致推广不利的局面,到逐渐更新技术,提高收率。

目录

1原理

2用途

?脱除变换气中的二氧化碳

?用在尿素生产中

3装置生产运行表明

4去掉动力设备的全吹扫工艺

5装置改进状况

6优化后数据

7全吹扫工艺已经开车运行企业

8与传统比较

1原理

PSA装置的设计其实取决于净化气要求的CO2的百分比(V),越高则可在均压设计上加多,以多回收气,尽量做到放空压力低,气体损失小。一段法因为要求PSA装置就将出口CO2控制在0.2%以下,均压次数过多将直接污染吸附器出口,导致难以控制CO2浓度,所以一段法均压数不宜过多。这样,一段法放空压力高,气体中CO2浓度不高,有效的减少气体损失大。在次种情况下,经过大时的实地工作,从理论到实际试验,成都天立化工科技有限公司开发出了两段法,将PSA装置分为第一段和第二段两段独立的装置,在第一段中间气出口控制在7%-8%,可以多设定均压次数以降低逆放压力和提高放空气体中CO2浓度,有效的减少气体。第二段将出口CO2控制在2%以下,且将第二段放空气体返回到第一段吸附器回收。这样就达到了提高放空气中CO2浓度的问题,相应的减少了有效气体损失。在两段法推出后,在化肥厂得到了广泛的应用。

2用途

目前,变压吸附工艺在化肥厂主要用于以下两种用途。

脱除变换气中的二氧化碳

一种是脱除变换气中的二氧化碳,生产液氨和联醇,这种方法不回收二氧化碳,而且应用较为普遍。

用在尿素生产中

另一种工艺是用在尿素生产中,除了要将变换气中的二氧化碳脱至0.2%以下外,还必须把二氧化碳提纯到98.5%以上送尿素生产,此种工艺要求比第一种要高,因为在保证有效气体收率下又要提纯二氧化碳,难度相对大一些。但是,不管是哪种脱碳,为提高有效气体收率,就必须提高解吸收空气中的二氧化碳的浓度,减少其中有效气体的含量。所以,前述两种工艺,设计思路上是完全一样的。

3装置生产运行表明

该装置自2000年11月23日投运一次成功,2H后得到合格的氢氮气和二氧化碳气体,生产运行表明:

1)装置采用DCS控制,增强了稳定必减轻了劳动强度。

2)CO2在压缩二出口被脱除,同等气量下4M20压缩机智负荷下降(吨氨节电

40KWh),解决了三段PC脱碳中超压问题。

3)净化气中的总硫在吸咐床中被脱除,省去了二次脱硫。

4)净化气中CO2〈0.2%,降低了精炼负荷。

5)因在吸附过程中损失约3.5%的氮气,使造气制气效率提高,煤耗约有降低。

6)由传统的湿法脱碳改为干法脱碳后,消除了溶剂损耗,而吸附剂使用寿命

长,进一步降低了操作费用。(注:全国吸附剂生产商中,山东辛化集团与四川某科技股份有限公司联手协作开发的变压吸附专用硅胶,针对变压吸附气体分离技术研究开发的专用吸附剂。通过特殊的吸附剂生产工艺,控制吸附剂的孔径分布和孔容,改变吸附剂的表面物理化学性质,使其具有吸附容量大,吸附、脱碳速度快,吸附选择性强,分离系数高的特点,包装和规格可根据用户需求定制。

本产品由四川某科技股份有限公司监制。)

7)工艺简单,开停车方便,设备维修费用低。

在本装置中,无任何气体返回系统,吨氨电耗在98KWH左右,在无任何气体返回系统的情况下,氢气收率97%,氮气收率为92%:在气体返回系统的情况下,氢气收率99%,氮气收率为96%。两段法变压吸附尿素脱碳工艺的优势已经体现出来,变压吸附尿素脱碳工艺的优势已经体现出来,变压吸附尿素脱碳在低压下(如0.65MPA)也能很好地将净化气中的二氧化碳控制在0.1%-0.2%(V)以内,操作稳定方便。而湿法脱碳需要在较高压力下(如1.6MPA)才能将净化气中的二氧化碳控制在0.2%(V)以内,碳丙脱碳需要在更高压力下(一般2.7MPA)才能将净化气中的二氧化碳控制在0.2%(V)以内。湿法脱碳需要把变换气中的硫化氢脱到20-30mg\Nm3以下,而变压吸附尿素脱碳则不需要对变换气进行脱硫,变换气可直接进入变填充吸附尿素脱碳装置。变压吸附尿素脱碳所用的吸附剂对人体没有毒性,对脱碳设备也没有腐蚀性。所有湿法脱碳均有不同程度的损耗,因此而增加的操作过程中,不会消耗吸附剂,因操作失误使吸附剂失活,可通过加温活化恢复到原来的性能。对湿法脱碳而言,操作一段时间后,溶剂将发生起泡和降解,脱碳效果降低,操作费用增高。变压吸附尿素脱碳所用的吸附剂在正常操作条件下,其性能不会下降,非常稳定。在本工艺中,变压吸附的优势已经一展无余,保证了性能,运行费用大大优于湿法脱碳。

4去掉动力设备的全吹扫工艺

为了进一步提高有效气体收率以及降低运行成本,成都天立化工科技有限公司技术人员又从吸附剂选型,工艺技术,程控阀寿合等方面进行深入细致的开发研究和不断改进,在宜化的几个PSA装置上反复论证,不断实验,开发出了成熟的去掉所有动力设备的变压吸附工艺。本新工艺,在原来的专利技术的两段法变压吸附尿素脱碳工艺基础上,减少了无用气体的排放量,降低了排放气体中有效气体的含量,利用本身气体压变的动能化替真空设备,从而达到了进一步提高有效气体的收率和吨氨消耗想当于原来十分之一的效果。并且,新工艺已经成功运用在了目前世界上最大气量的装置上。

山东瑞星生物化工股份有限公司14600NM3/H变压吸附脱附装置,是成都天立化工科技有限公司建成的世界上最大的和技术最先进的变压吸附脱碳置,装置于2005年1月投产,一次开车成功,产品二氧化碳纯度98.2%-98.5%。整装置去掉了所有的动力设备,除仪表和液压泵站处,没有任何电耗,PSA尿素脱装置工艺简单,操作稳定,能耗低,维修费用低,净化提纯指标好而稳定。

5装置改进状况

本装置的流程之前工艺的基础上有了以下改进:

1)提纯段通过调整优化流程,达到了可以回必净化段更多气体以及保证产品

气CO2纯度的;

2)提纯段去掉了所有动力设备,完全依靠自身解吸和净化段放空气体过来吹

扫解吸,达到了降低动力消耗的目的:低动力消耗的目的,实现了重大的技术突破;

3)提纯段的均压方式进行了调整优化,且取得了良好的效果,使得有效气体

回收的更充分;

4)净化段根据净化气要求来设置合理的均压次数,目的是为自身吹扫的气源

得到保证以及保证净化气指标;

5)净化段对均压的方式也进行了调整优化,使得有效气体回收的更充分;

6)净化段设置了吹扫这一全新的工序,利用本身的气体对自身进行吹扫解

吸,其作用完全代替了动力设备,而且实践证明效果更优于动力设备。

6优化后数据

经过以上的改进优化,开车后本装置运行稳定,气体放空的气量减少,放空气体中的有效气体减少,而且送尿素用的产品气二氧化碳指标稳定,净化气的二氧化碳指标控制灵活。实际运行吨氨电耗4度左右,冷却水每小时1T左右。合成氨产量与原来的碳丙相比提高2%左右。于2005年8月开车的渤海化工集团天津碱厂处理变换4000NM3/H变压吸附脱碳装置(生产纯碱),比之前的全吹扫工艺流程进行了细节调整。本装置难度相对大,因为原料组成CO224.13%,

H236.9%CH22.33%,N24.03%,可以看到CO含量很高,而CO2的含量低于CO含量,对于脱碳工艺来说,这种成分最不利因为CO2的分才低于CO分压,这样,CO被大量吸收,直接带来整个装置CO收率相当。CO的收率问题,一直是个难题,多年来难参摆脱收率低的局面,特别是针对上述气体成分,更加困难,成都天立化工科技有限公司在山东瑞星装置的基础上,又时流程加以优化,天津碱厂处理变换气40000NM3/H变压吸驸脱碳装置开车后,COH2收率达到了98%。

经过不断的总结经验,及时纠正思路不当之处,调整,优化工艺。湖北宜化集团贵州兴义化肥厂设计的处理变换气12000NM3/H变压吸附脱附脱碳装置(生产尿素)变换压力为2.0MPA变压吸附第一段和第二段吸附压力为1.8-1.9MPA,净化气中二氧化碳含量0.5%(V)第二段的放空气基本上完全返回逄一段回收,而第一段的放空气体中二氧化碳浓度又在新工艺的调整下又有增高,大幅度减速少了有效气体的排放量。

7全吹扫工艺已经开车运行企业

除上述装置之外,目前国内多装置采用此全吹扫工艺已经开车运行的有:湖北枝江三宁化工有限公司处理变换气30000NM3/H变压附脱碳装置(生产液氨),辽宁风城化肥厂处进变换气21000NM3/H变压吸附脱碳装置(生产液氨),湖南安乡化肥厂处进变换气1500NM3/H变压吸附脱碳装置(生产液氨),其中年产量过16万T的装置有:内蒙乌拉山化肥厂处理变换气96000NM3/H变压吸附脱碳装置、湖南当阳华强化工有限公司处理变换气88000nm3/H变压吸附脱附碳装置,净化气中二氧化碳含量一般在0.2%(V),氢气回收率大于99.5%(V)氮气回收率大于98%(V),没有动力设备电耗。

8与传统比较

在近几年不断的技术创新中,两段法变压吸附专利技术应用遍及全国,与传统的NHD法,改良碳丙法(PC),改良MDEA法及改良热钾碱法等相比,具有流程简单,工艺操作简便弹性大,运行费用低自动化程度等优点,两段法变压吸附技术取代正在运行的上述湿法脱碳装置,不到两年的时间内即可收回全部投资,随着能源的紧张,两段法变压吸附专利技术省电和节煤的优势更趋明显。

变压吸附原理

1.什么叫吸附? 答:当气体分子运动到固体表面上时,由于固体表面原子剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 2.气体分离的原理是什么? 当气体是混合物时,由于固体表面对不同气体分子的引力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 伴随吸附过程所释放的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 3.什么叫化学吸附?什么叫物理吸附? 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais)吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。物理吸附通常分为变温吸附和变压吸附。 4.变压吸附属化学吸附或物理吸附? 分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。 5.变压吸附常用吸附剂有哪几种?他们各自的作用是什么? 变压吸附常用的吸附剂有:硅胶、活性氧化铝、活性炭、分子筛等,另外还有针对某种组分选择性吸附而研制的吸附材料。气体吸附分离成功与否,很大程度上依赖于吸附剂的性能,因此选择吸附剂是确定吸附操作的首要问题。 硅胶是一种坚硬、无定形链状和网状结构的硅酸聚合物颗粒,分子式为SiO2.nH2O,为一种亲水性的极性吸附剂。它是用[wiki]硫酸[/wiki]处理硅酸钠的水溶液,生成凝胶,并将其水洗除去硫酸钠后经干燥,便得到玻璃状的硅胶,它主要用于干燥、气体混合物及[wiki]石油[/wiki]组分的分离等。工业上用的硅胶分成粗孔和细孔两种。粗孔硅胶在相对湿度饱和的条件下,吸附量可达吸附剂重量的80%以上,而在低湿度条件下,吸附量大大低于细孔硅胶。 活性氧化铝是由铝的水合物加热脱水制成,它的性质取决于最初[wiki]氢[/wiki]氧化物的结构状态,一般都不是纯粹的Al2O3,而是部分水合无定形的多孔结构物质,其中不仅有无定形的凝胶,还有氢氧化物的晶体。由于它的毛细孔通道表面具有较高的活性,故又称活性氧化铝。它对水有较强的亲和力,是一种对微量水深度干燥用的吸附剂。在一定操作条件下,它的干燥深度可达[wiki]露点[/wiki]-70℃以下。 活性炭是将木炭、果壳、煤等含碳原料经炭化、活化后制成的。活化方法可分为两大类,即药剂活化法和气体活化法。药剂活化法就是在原料里加入氯化锌、硫化钾等化学药品,在非活性气氛中加热进行炭化和活化。气体活化法是把活性炭原料在非活性气氛中加热,通常在700℃以下除去挥发组分以后,通入水蒸气、二氧化碳、烟道气、空气等,并在700~1200℃温度范围内进行反应使其活化。活性炭含有很多毛细孔构造,所以具有优异的吸附能力。因而它用途遍及水处理、脱色、气体吸附等各个方面。

商业计划书-变压吸附制氢工艺

0 工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组分在吸附床中的总量)之比。分离系数越大,分离越容易。一般而言,变压吸附气体分离装置中的吸附剂分离系数不宜小于3。 另外,在工业变压吸附过程中还应考虑吸附与解吸间的矛盾。一般而言,吸附越容易则解吸越困难。如对于C5、C6等强吸附质,就应选择吸附能力相对较弱的吸附剂如硅胶等,以使吸附容量适当而解吸较容易;而对于N2、O2、CO等弱吸附质,就应选择吸附能力相对较强的吸附剂如分子筛等,以使吸附容量更大、分离系数更高。 此外,在吸附过程中,由于吸附床内压力是周期性变化的,吸附剂要经受气流的频繁冲刷,因而吸附剂还应有足够的强度和抗磨性。 在变压吸附气体分离装置常用的几种吸附剂中,活性氧化铝类属于对水有强亲和力的固体,一般采用三水合铝或三水铝矿的热脱水或热活化法制备,主要用于气体的干燥。硅胶类吸附剂属于一种合成的无定形二氧化硅,它是胶态二氧化硅球形粒子的刚性连续网络,一般是由硅酸钠溶液和无机酸混合来制备的,硅胶不仅对水有极强的亲和力,而且对烃类和CO2等组分也有较强的吸附能力。 活性炭类吸附剂的特点是:其表面所具有的氧化物基团和无机物杂质使表面性质表现

变压吸附法变换气脱除二氧化碳装置

变压吸附法变换气脱除二氧化碳装置操作运行及维修说明书 设计阶段:施工图 常州唯都科技有限公司 2006年11月中国

第一章 本操作说明书是为18000Nm3/h变换气脱除二氧化碳装置编写的,用于指导操作人员对装置原始开车和维持装置正常运行。其主要内容包括工艺原理、工艺流程、工艺过程、开停车程序、操作方法、故障判断和相关的安全知识。本操作说明书是按设计条件编写的操作方法及操作参数,在偏离条件不大的情况下,操作者可根据生产需要对操作方法及操作参数作适当和正确的调整。但在任何情况下操作人员均不应违反工业生产中普遍遵循的安全规则和惯例。 本装置采用气相吸附工艺,因此原料气中不应含有任何液体和固体。 本操作说明书主要对该装置的工艺过程及操作方法作详细介绍。在启动和操作运行本装置之前,操作人需透彻地阅读本操作说明书,因为不适当的操作会影响装载的正常运行,影响产品的质量,导致吸附剂的损坏,甚至发生事故,危及人身及装置安全。除专门注明外,本操作说明书中涉及的压力均为表压,组份浓度为百分浓度,流量均为标准状态(760mmHg,273k)下的体积流量。 1 工艺原理及工艺过程 1.0 概述 本装置用于合成氨变换气脱除二氧化碳,装置建设规模为处理合成氨变换气18000Nm3/h(30%~110%) 1.1原料气 原料气为合成氨变换气 1.1.1压力: ≥0.74Mpa 1.1.2温度:≤40℃ 1.1.3流量: 5400-18000Nm3/h 1.1.4组份: 变换气经过本装置后,CO2、H2O、硫化物等组份将被除去。对脱除CO2、H2O、硫化物等组份的气体(H2、N2)称为产品气。 1.2.1纯度: 净化气CO2含量≤0.2%(V) 1.2.2压力: ≥0.60Mpa 1.2.3温度:≤40℃ 1.2.4流量: 3800-12600Nm3/h 1.3副产物 1.3.1压力: ≤0.01Mpa 1.3.2温度:≤40℃ 1.3.3流量: ~5400Nm3/h 1.4工艺设备 本装置包括水分离器(V0201)、吸附塔(T0201A、B、C、D、E、F、G、H、I、J)、储气罐(V0202)、以及动力设备真空泵机组P0201(A、B、C、D)、压缩机C0201A、B等,见表二,其中吸附器是本装置的核心设备。

变压吸附技术样本

变压吸附气体分离技术的应用和发展 摘要: 变压吸附气体分离技术在工业上得到了广泛应用, 已逐步成为一种主要的气体分离技术。它具有能耗低、投资小、流程简单、操作方便、 可靠性高、自动化程度高及环境效益好等特点。简单介绍了变压吸附分离技术 的特点, 重点介绍了近年来变压吸附技术各方面的进步和变压吸附技术当前所 达到的水平(工艺流程、气源、产品回收率、吸附剂、程控阀、自动控制等方面), 并对变压吸附技术未来的发展趋势进行了预测。 l 前言 变压吸附 (Pressure Swing Adsorption, PSA)的基本原理是利用气体组分在固体材料上吸附特性的差异以及吸附量随压力变化而变化的特性, 经过周期性的压力变换过程实现气体的分离或提纯。该技术于l962年实现工业规模的制氢。进入70年代后, 变压吸附技术获得了迅速的发展, 装置数量剧增, 规模不断增大, 使用范围越来越广, 工艺不断完善, 成本不断下降, 逐渐成为一种主要的、高效节能的气体分离技术。 变压吸附技术在中国的工业应用也有十几年历史。中国第一套PSA工业装置是西南化工研究设计院设计的, 于l982年建于上海吴淞化肥厂, 用于从合成氨弛放气中回收氢气。当前, 该院已推广各种PSA工业装置600多套, 装置规模从数m3/h到60000m3/h, 能够从几十种不同气源中分离提纯十几种气体。 在国内, 变压吸附技术已推广应用到以下九个主要领域:

1.氢气的提纯; 2.二氧化碳的提纯, 可直接生产食品级二氧化碳; 3.一氧化碳的提纯; 4.变换气脱除二氧化碳; 5.天然气的净化; 6.空气分离制氧; 7.空气分离制氮; 8.瓦斯气浓缩甲烷; 9.浓缩和提纯乙烯。 在H2的分离和提纯领域, 特别是中小规模制氢, PSA分离技术已占主要地位, 一些传统的H2制备及分离方法, 如低温法、电解法等, 已逐渐被PSA 等气体分离技术所取代。PSA法从合成氨变换气中脱除CO2技术, 可使小合成氨厂改变其单一的产品结构, 增加液氨产量, 降低能耗和操作成本。PSA分离提纯CO技术为C l化学碳基合成工业解决了原料气提纯问题。该技术已成功的为 国外引进的几套羰基合成装置相配套。PSA提纯CO2技术可从廉价的工业废气 制取食品级CO2。另外, PSA技术还能够应用于气体中NOx的脱除、硫化物的脱除、某些有机有毒气体的脱除与回收等, 在尾气治理、环境保护等方面也有广阔的应用前景。 变压吸附的特点 变压吸附气体分离工艺在石油、化工、冶金、电子、国防、医疗、环境保护等方面得到了广泛的应用, 与其它气体分离技术相比, 变压吸附技术具有以下优点: 1.低能耗, PSA工艺适应的压力范围较广, 一些有压力的气源能够省 去再次加压的能耗。PSA在常温下操作, 能够省去加热或冷却的能耗。 2.产品纯度高且可灵活调节, 如PSA制氢, 产品纯度可达99.999%, 并可根据工艺条件的变化, 在较大范围内随意调节产品氢的纯度。 3.工艺流程简单, 可实现多种气体的分离, 对水、硫化物、氨、烃类等杂质有较强的承受能力, 无需复杂的预处理工序。

变压吸附制氧技术方案

ZY-1000/80Nm3/h变压吸附制氧 技术方案 目录 第一章:公司简介

第二章:变压吸附制氧简介 第三章:技术方案 第四章:近两年变压吸附设备部分业绩表 第五章:公司投资成功案例 一、公司简介 宏达新元科技是一家专业从事气体设备及气体产品应用研究开发的专业公司。公司的核心业务包括:

设备销售、租赁、整改 ★VPSA真空变压吸附制氧 ★PSA变压吸附制氧设备 ★制氮设备、氮气纯化装置 ★LNG系统成套设备和LNG泵 企业拥有现代化标准生产车间和大批专业从事VPSA真空变压吸附、PSA变压吸附、气体分离及机械技术人员,为气体及气体设备领域用户提供独特的产品、服务、技术咨询和解决方案。 我公司下辖的企业有简阳天欣气体公司和广西聚源气体公司,为客户提供优质高纯度的气体。企业还在省与欣国力低温公司、简阳川空通用机械厂建立了良好的合作关系。 我公司于2011年3月17日在市苍梧县工商行政管理处登记注册成立的广西川桂气体科技。其性质为有限责任。注册资金2000万元人民币。 我们将不断完善售后服务、改善设备工艺、加强质量管理,并与研究机构密切配合,为广大用户提供更出色的产品与服务。。。。。。 二、变压吸附制氧技术简介 变压吸附制氧技术是近几十年发展起来的一种空分制氧工艺。与传统的深冷空分制氧装置相比,变压吸附制氧装置具有投资少、能耗低、运行维护费用低、工艺条件温和(常温、低压)、工艺流程简单、自动化程度高、操作灵活性高(可随时开停)、

建设工期短和安全性好等优点,因此得到国外大型气体公司和研究机构的广泛关注,并纷纷投入巨大的人力物力研究开发。自九十年代国外开发成功高效锂基制氧分子筛后,变压吸附空分制氧技术开始迅猛发展并得到广泛应用。目前,在很多用氧场合下变压吸附空分制氧可替代深冷空分制氧,并且装置的经济性明显优于传统的深冷空分制氧装置。 2.1.变压吸附空气分离制氧原理 空气中的主要组份是氮和氧,因此可选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。氮和氧都具有四极矩,但氮的四极矩 (0.31?\u65289X比氧的(0.10 ?\u65289X大得多,因此氮气在沸石分子筛上的吸附能力比氧气强(氮与分子筛表面离子的作用力强,如图1 所示)。因此,当空气在加压状态下通过装有沸石分子筛吸附剂的吸附床时,氮气被分子筛吸附,氧气因吸附较少,在气相中得到富集并流出吸附床,使氧气和氮气分离获得氧气。当分子筛吸附氮气至接近饱和后,停止通空气并降低吸附床的压力,分子筛吸附的氮气可以解吸出来,分子筛得到再生并重复利用。两个以上的吸附床轮流切换工作,便可连续生产出氧气。

变压吸附技术在焦炉煤气制氢中的应用

变压吸附技术在焦炉煤气制氢中的应用 戴四新 (厦门市建坤实业发展公司,福建厦门 361012) 摘要:介绍了变压吸附(PSA)技术的基本原理及其应用于焦炉煤气提氢的Sysiv和Bergbau PSA制氢典型工艺。指出PSA技术是近年国内外发展最快、技术最成熟、成本最低的煤气制氢方法,在国内焦炉煤气制氢中最具发展前途,应大力推广应用。 关键词:变压吸附(PSA)技术;焦炉煤气;制氢技术 中图分类号:TQ028.1+5 文献标识码:B 文章编号:1004-4620(2002)02-0065-02 Application of the Pressure Shift Absorbing Technique in Hydrogen Making Process from COG DAI Si-xin (Xiamen Jiankun Industry Developing Corp.,Xiamen 361012,China) Abstract:The basic pinciple of the Pressure Shift Absorbing(PSA) Technique and the representative technics(Sysiv and Bergban)of it`s application for hydrogen making process from COG are discribing.It is pointed out that in recend past years the development of the PSA technique for the hydrogen-making process from COG is the most rapid and the technique is also the most perfect and economical way in the world,and it has the best developing foreground in hydrogen-making process from COG in China.It should be expanded and applied widely soon. Key words:pressure shift absorbing(PSA);coke oven gas(COG);hydrogen making technology

最新参考变压吸附制氢工艺

历史资料,供大家参考学习,下载后自行修改使用 工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残余量/弱吸附组分在吸附床中的总量)与(强吸附组分在吸附床死空间中残余量/强吸附组

变压吸附基础知识

一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084% (空气中各种气体的容积组分为:N2: 78.084%、02: 20.9476%、氩气:0.9364%、CO2: 0.0314%、其它还有 H2、 CH4、 N2O、 O3、 SO2、NO2 等,但含量极少),分子量为 28,沸点: -195.8C,冷凝点:-210C。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂一一碳分子筛最佳吸附压力为 0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: 变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示: 碳分子筛的孔径分布特性使其能够实现 O2 、N2 的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对 O2、 N2 的分离作用是基于这两种气体的动力学直径的微小差别,O2 分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率, N2 分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和 CO2 的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是 N2 和 Ar 的混合气。

变压吸附原理及应用

变压吸附气体分离技术 目录 第一节气体吸附分离的基础知识 (2) 一、吸附的定义 (2) 二、吸附剂 (3) 三、吸附平衡和等温吸附线—吸附的热力学基础 (6) 四、吸附过程中的物质传递 (10) 五、固定床吸附流出曲线 (12) 第二节变压吸附的工作原理 (14) 一、吸附剂的再生方法 (14) 二、变压吸附工作基本步骤 (16) 三、吸附剂的选择 (17) 第三节变压吸附技术的应用及实施方法 (20) 一、回收和精制氢 (20) 二、从空气中制取富氧 (24) 三、回收和制取纯二氧化碳 (25) 四、从空气中制氮 (26) 五、回收和提纯一氧化碳 (28) 六、从变换气中脱出二氧化碳 (31) 附Ⅰ变压吸附工艺步骤中常用字符代号说明 (32) 附Ⅱ回收率的计算方法 (32)

第一节气体吸附分离的基础知识 一、吸附的定义 当气体分子运动到固体表面上时,由于固体表面的原子的剩余引力的作用,气体中的一些分子便会暂时停留在固体表面上,这些分子在固体表面上的浓度增大,这种现象称为气体分子在固体表面上的吸附。相反,固体表面上被吸附的分子返回气体相的过程称为解吸或脱附。 被吸附的气体分子在固体表面上形成的吸附层,称为吸附相。吸附相的密度比一般气体的密度大得多,有可能接近液体密度。当气体是混合物时,由于固体表面对不同气体分子的压力差异,使吸附相的组成与气相组成不同,这种气相与吸附相在密度上和组成上的差别构成了气体吸附分离技术的基础。 吸附物质的固体称为吸附剂,被吸附的物质称为吸附质。伴随吸附过程所释放的的热量叫吸附热,解吸过程所吸收的热量叫解吸热。气体混合物的吸附热是吸附质的冷凝热和润湿热之和。不同的吸附剂对各种气体分子的吸附热均不相同。 按吸附质与吸附剂之间引力场的性质,吸附可分为化学吸附和物理吸附。 化学吸附:即吸附过程伴随有化学反应的吸附。在化学吸附中,吸附质分子和吸附剂表面将发生反应生成表面络合物,其吸附热接近化学反应热。化学吸附需要一定的活化能才能进行。通常条件下,化学吸附的吸附或解吸速度都要比物理吸附慢。石灰石吸附氯气,沸石吸附乙烯都是化学吸附。 物理吸附:也称范德华(van der Waais) 吸附,它是由吸附质分子和吸附剂表面分子之间的引力所引起的,此力也叫作范德华力。由于固体表面的分子与其内部分子不同,存在剩余的表面自由力场,当气体分子碰到固体表面时,其中一部分就被吸附,并释放出吸附热。在被吸附的分子中,只有当其热运动的动能足以克服吸附剂引力场的位能时才能重新回到气相,所以在与气体接触的固体表面上总是保留着许多被吸附的分子。由于分子间的引力所引起的吸附,其吸附热较低,接近吸附质的汽化热或冷凝热,吸附和解吸速度也都较快。被吸附气体也较容易地从固体表面解吸出来,所以物理吸附是可逆的。分离气体混合物的变压吸附过程系纯物理吸附,在整个过程中没有任何化学反应发生。本文以下叙述的除了注明之外均为气体的物理吸附。

变压吸附制氢工艺

变压吸附制氢工艺 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残

变压吸附设计说明

内蒙古宜化化工有限公司30万吨/年聚氯乙烯 变压吸附装置 (工程号:KY9304) 工艺设计说明书 设计阶段:施工图 图号:KY9304-30-01 天津渤海化工集团规划设计院 中国天津 2009年06月

编制:方玉云09.6 校核:陶建设09.6 审核:许淑萍09.6

目录 1概述 (6) 1.1设计概况 (6) 1.2原料、产品及副产品 (7) 1.3公用工程参数及消耗量 (9) 1.4 生产制度和劳动定员 (10) 2 工艺 (12) 2.1 概述 (12) 2.2工艺原理 (12) 2.3工艺流程叙述 (13) 2.4设备选型说明 (14) 2.5能源利用 (14) 2.6主要控制指标 (15) 2.7装置布置 (16) 2.8吸附剂的装填及数量 (18) 2.9消耗定额 (18) 3管道设计 (20) 3.1概述 (20) 3.2变压吸附装置工艺管道特性 (20) 3.3设计遵循的标准规范 (20)

3.4管道及管道器材的选用 (21) 3.5吸附剂装填注意事项 (22) 3.6管道施工及验收 (22) 3.7管架设计 (24) 3.8静电接地与跨接 (24) 3.9程控阀安装方向 (24) 4防腐设计 (26) 4.1设计范围 (26) 4.2涂料选型 (26) 4.3施工要求 (26) 5绝热设计 (28) 5.1概述 (28) 5.2施工要求 (28)

1概述 1.1设计概况 1.1.1设计依据 1.1.1.1内蒙宜化(甲方)与四川开元科技有限公司(乙方)签订的《内蒙古宜化化工有限公司30万吨/年聚氯乙烯变压吸附装置》合同及技术附件; 1.1.1.2业主提供的气象、水文及地质概况、布置区域等设计基础资料。 1.1.2设计原则 1.1. 2.1采用先进、可靠的变压吸附气体分离技术,技术方案力求新近可靠,既要体现技术先进的优势,又要切实解决好工程放大和工程配套问题。 1.1. 2.2贯彻“五化”(一体化、露天化、轻型化、社会化、国产化)原则。 1.1. 2.3依托工厂现有设施,充分发掘工厂潜力,以节省投资,缩短建设周期,创造尽可能好的经济效益和社会效益。 1.1. 2.4严格执行国家和行业有关设计规范、规定及标准。 1.1. 2.5本装置的原料及产品为易燃易爆物质,在设计中严格执行国家及有关部委关于消防、环保、劳动安全与工业卫生的有关规范,采取有效措施,改善劳动条件,保证安全生产。 1.1.3设计范围及设计分工 1.1.3.1装置界区划分

CO-H2分离变压吸附工艺方案

PSA净化项目 初步方案 附件1 装置设计要求 1.1 技术条件及规格 1.1.1 原料气条件 CO 理论含量为30.5%(此时H 含量为68.31%,其它组份的百分比同上表)。 2 流量:79200Nm3/h(CO含量为30.5%即理论含量时,装置所需的原料气量)压力:3.2 MPag 温度:40℃ 1.1.2 CO产品气 压力:0.005~0.02 MPag 温度:40℃ 产品气 1.1.3 H 2 压力:3.0MPag 温度:40℃ 1.2 装置工艺流程与物料平衡

图1 变压吸附提纯CO/H 2 流程框图 物流说明:1-原料气,2-CO产品气,3-氢气产品气, 4-PSA-CO吸附尾气,5-解吸废气,6-CO置换气 附件3 装置工艺流程描述 3.1工艺流程简述 本设计方案拟采用变压吸附(PSA)气体分离技术从原料气中分离提纯CO 和H 2 。整个工艺过程分为三个工序,即原料气预处理工序、变压吸附提纯CO工 序(PSA-CO)、变压吸附提纯氢气工序(PSA-H 2 )。 经过低温甲醇洗脱硫脱碳后的原料气,首先通过预处理将其中的重组分杂质 脱除,然后送入PSA-CO工序分离提纯得到CO产品气,PSA-CO吸附尾气送入PSA-H 2 工序,在PSA-H 2工序得到H 2 产品气。 流程框图见图1。 3.1.1预处理工序 经过低温甲醇洗脱硫脱碳后的原料气首先进入预处理工序。 预处理工序的目的是将经过低温甲醇洗后的原料气中的甲醇等重组分杂质脱除,保护PSA-CO工序吸附剂。 3.1.2变压吸附提纯CO工序(PSA-CO) PSA-CO工序的作用是使CO进一步与其它组份如H 2、N 2 等杂质组份分离,得 到CO产品。来自预处理工序的原料气,进入PSA-CO吸附塔,吸附尾气从塔顶流入PSA-H 2 工序。经过一定循环步骤后,吸附塔内合格的CO通过逆向放压和抽真空方式排出吸附塔,进入CO产品气缓冲罐。 为了保证CO产品的连续性,PSA-CO装置由18个吸附塔组成,任何时刻均有

变压吸附基本原理(整理)

变压吸附技术 一、概况: 变压吸附(简称PSA)是一种新型的气体吸附分离技术,它有如下优点:(1)产品纯度高。(2)一般可在室温和不高的压力下工作,床层再生时不用加热,节能经济。(3)设备简单,操作、维护简单。(4)连续循环操作,可完全达到自动化。因此,当这种新技术问世后,就受到各国工业界的关注,竞相开发和研究,发展迅速,并日益成熟。 1960年Skarstrom提出PSA专利,他以5A沸石分子筛作为吸附剂,用一个两床PSA装置,从空气中分离出富氧,该过程经过改进,于60年代投入了工业生产。70年代,变压吸附技术的工业应用取得突破性的进展,主要应用在氧氮分离、空气干燥与净化以及氢气净化等。其中,氧氮分离的技术进展是把新型的吸附碳分子筛与变压吸附结合起来,将空气中的O2和N2加以分离,从而获得氮气。随着分子筛性能改进和质量提高,以及变压吸附工艺的不断改进,使产品纯度和回收率不断提高,这又促使变压吸附在经济上立足和工业化的实现。 二、基本原理: 利用吸附剂对气体的吸附有选择性,即不同的气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量随压力的变化而变化的特性,实现气体混合物的分离和吸附剂的再生。变压吸附脱碳技术就是根据变压吸附的原理,在吸附剂选择吸附的条件下,加压吸附原料气中的CO2等杂质组分,而氢气、氮气、甲烷等不易吸附的组分则通过吸附床层由吸附器顶部排出,从而实现气体混合物的分离,而通过降低吸附床的压力是被吸附的CO2等组分脱附解吸,使吸附剂得到再生。 吸附器内的吸附剂对不同的组分的吸附是定量的,当吸附剂对有效组分的吸附达到一定量后,有效组分西欧哪个吸附剂上能有效的解吸,使吸附剂能重复使用时,吸附分离工艺才有实用的意义。故每个吸附器在实际过程中必须经过吸附和再生阶段。对每个吸附器而言,吸附过程是间歇的,必须采用多个吸附器循环操作,才能连续制取产品气。 多床变压吸附的意义在于:保证在任何时刻都有相同数量的吸附床处于吸附

真空变压吸附技术

真空变压吸附技术分离煤矿瓦斯气体中的甲烷 A.OLAJOSSY1, A. GAWDZIK2, Z. BUDNER2 and J. DULA2 1.波兰克拉科夫矿冶大学 2.波兰重型有机合成研究所‘Blachownia’,Kedzierzyn~Koz′le 从对真空变压吸附技术的实验室研究和计算机计算中得出的结论,有助于回收煤矿瓦斯气体中的甲烷。这种煤矿瓦斯气体分离过程需在绝对值为25kPa 解吸压力、绝对值为300kPa吸附压力和温度为237K的条件下进行。甲烷含量为55.2%的煤矿瓦斯气体·浓缩于甲烷含量为96~98%的富甲烷气体。在再循环甲烷与进给下降量比率P/F=1.8~2.12条件下,甲烷回收率达到86~91%。当从富甲烷气体中移除96~98%的氮和氧条件下时,吸附气体中甲烷含量是11~15%。在吸附阶段时,甲烷吸附波带来了吸附床的排放点,煤矿瓦斯气体可以实现分离,然后在对流吹扫阶段,甲烷吸附波带来了吸附床的进入点。 关键词:真空变压吸附技术;煤矿瓦斯气体;甲烷分离;氮气抑制;计算机过程仿真;活性炭 前言 在开采前预处理的煤层中,煤矿瓦斯气体中的甲烷和从煤层中释放出来的甲烷充当一个很有价值的能量搬运者——它的价值相当可观但还没有充分利用。它向大气的排放量会导致温室效应。在部分热能厂或热电站,煤矿瓦斯气体作为一种低能量气体燃料被充分用于其自用。它普遍用于燃气涡轮机。一种利用煤矿瓦斯气体的替代方法是将其转换成富含至少96%体积比例的甲烷的气体,然后运输到部分天然气供应系统中。在已知的分体气体混合物的方法中,PSA(变压吸附)法在实践中从煤层气中回收甲烷。迄今为止,从20世纪80年代煤层气回收甲烷的试验工厂在德国建成(Pilarczyk和Knoblauch, 1987)。此方法已应用于从天然气公司富含氮的小溪流中分离出氮(达米科等,1993年;Buras 和Mitariten,1994年;Shirley等,1996年)。

变压吸附流程说明

变压吸附流程说明 4.1工艺过程简述 本装置VPSA过程,以一个吸附塔T0101A为例,简述如下: a. 吸附过程(A) 压力为1.7~1.9Mpa的变换气自装置外来,首先进入原料气气水分离器中分离掉其中夹带的液滴,经FIRQ-0101计量后进入VPSA系统。 打开程控阀KS0101A、KS0102A,变换气自塔底进入T0101A (同时有2个吸附塔处 于吸附状态)内。在多种吸附剂的依次选择吸附下,其中的H 2O、CO 2 等组分被吸附下来, 未被吸附的氢氮气及一氧化碳等从塔顶流出,经压力调节系统PICA-0101稳压该工序。 当被吸附杂质的传质区前沿(称为吸附前沿)到达床层出口预留段时,关掉该吸附塔的原料气进料阀和产品气出口阀,停止吸附。吸附床开始转入再生过程。 b. 顺放-1过程(P1) 这是在吸附过程结束后,吸附塔内的气体与产品气非常接近,打开程控阀KS0103A、KS0110,缓慢打开随动调节阀HV0102顺着吸附方向将吸附塔内的气体流向产品气管道的过程,该过程不仅回收了吸附塔内有效气体,同时也降低了吸附塔内压力,相当于增加一次均压降。 c.均压降压过程(1D~10D) 这是在顺放-1过程结束后,顺着吸附方向将塔内的较高压力的氢氮气放入其它已完成再生的较低压力吸附塔或到均压罐的过程,该过程不仅是降压过程,更是回收床层死空间有效气体的过程,本流程共包括10次均压降压过程以保证有效气体的充分回收。 d.顺放-2过程(P2) 这是在均压降过程结束后,打开程控阀KS0106a,KS0114顺着吸附方向,将吸附塔内含量较高的有效气体放入煤气气柜的过程,该过程充分回收了吸附塔内有效气体,不仅降低工厂消耗,而且对工厂系统物料平衡和动力平衡有利。 E.逆放过程(D)

变压吸附(PSA)法制氢操作规程

变压吸附(PSA)法 变换气制氢 操作手册(工艺部分) XXXX化工 2009年9月

第一章前言 第二章工艺说明 第一节装置概述 第二节一段系统工作原理和过程实施 第三节二段系统工作过程 第四节工艺流程 第三章变压吸附装置的开停车 第一节系统的置换 第二节系统仪器仪表及自控系统开车前的准备工作第三节系统试车 第四节系统运行调节 第五节系统停车 第六节系统停车后的再启动 第四章安全技术 第一节概述 第二节本装置有害物质对人体的危害及预防措施 第三节装置的安全设施 第四节氢气系统运行安全要点 第五节消防 第六节安全生产基本注意事项 第五章安全规程

第一章前言 本装置是采用两段法变压吸附(Pressure Swing Adsorption简称PSA)工艺分离原料气,获得合格的二氧化碳及产品氢气。其中一段将原料气中二氧化碳分离提浓(≥98.5%)后送往下工段,脱除部分二氧化碳后的中间气再经二段完全脱除CO2及其他杂质气体,使产品氢气中H2含量≥99.9%。装置设计参数如下: 原料气组成(V): H2 N2 CO2 CO CH4 41~43% 0.5~2% 55~60% 0.5~2% ~1.0% 处理能力:4500Nm3/h 中间气CO2含量:10%(V) 产品氢气中H2含量:≥99.9% 产品气CO2浓度:≥98.5% 吸附压力: 一段0.72~0.977 MPa(G) 二段0.7~0.957 MPa(G) 吸附温度:≤40 ℃ 本装置为吹扫解吸PSA脱碳工艺,就本工艺特点而言,氢气中杂质含量越低,氢气等气体回收率就越低。所以操作中不应单纯追求氢气的纯度,而应视实际需要,控制适当纯度,以获较高的经济效益。 在启动和运转这套装置前,要求操作人员透彻地阅读这份操作手册,因为不适当的操作会导致运行性能低劣和吸附剂损坏。 本手册中所涉及压力均为表压,组成浓度均为体积百分数,以下不再专门标注。

变压吸附制氧技术

变压吸附制氧技术 对变压吸附制医用氧过程中的吸附剂选择、流程开发、多层过滤系统等技术问题进行了研究,它将有助于变压吸附制氧技术在我国各级医院中的使用。 变压吸附(简称PSA)制氧是国际上最近三十年新兴起来的制氧技术,它的特点是就地产氧,只要将制氧设备接通电源,就可由空气中生产出氧气,且设备的体积小、操作简单,可省去大量的人力、物力,尤其适合实施管道化中心供氧的医院以及工业不发达地区的医院。 1原理和方法 变压吸附制医用氧是采用物理吸附的方法,使用的吸附剂是沸石分子筛(zeolite molecular sieve)。空气中的主要成分是氮气、氧气及其它稀有气体,它们的分子极性各不相同,其中氮气的极性较氧气的极性要大。沸石分子筛是一种极性吸附剂,在等温条件下,当吸附压力增加时,它对氮气的平衡吸附量要比氧气增加很多;当吸附压力减少时,它对氮气的平衡吸附量比氧气减少很多。利用沸石分子筛的这一特性,可采用加压吸附,减压解吸循环操作的方法制取氧气。 2吸附剂的选择 在PSA吸附床中,至少有两层吸附剂,靠近进料端的吸附剂称为“预处理”吸附剂,它的主要作用是除去进料空气中的水和二氧化碳。氧化铝通常被用作预处理吸附剂,但是,使用中人们发现在氧化铝与其它吸附剂的接触面上会产生一个低温区,称为“冷点”,会影响吸附剂的再生。随着人们对“冷点”的进一步认识,氧化铝已被NaX型的沸石分子筛代替,因为它比氧化铝具有更高的氧、氮吸附容量和吸附热,可以帮助减少“冷点”的损害。目前,具有更高吸附容量的NaX吸附剂已经被开发出来,可以进一步减低“冷点”效应。靠近吸附床产品端的第二层吸附剂称为“主吸附剂”,它的主要作用是氧气、氮气的分离,一般选用具有优先吸附氮气的沸石分子筛。在有些场合,NaX既被用来作主吸附剂,也被用作预处理吸附剂,但CaA型的沸石分子筛是变压吸附法制氧最常用的吸附剂。为了提高分子筛的吸附性能,又开发其它类型的分子筛如CaX型的沸石分子筛,目前吸附选择性能最好的吸附剂是LiX型和MgA型沸石分子筛。 3制氧流程 变压吸附常压解吸制氧流程通常有四床、三床、两床三种形式。 四床吸附流程的特点是空气中氧气的收率比较高,可达40%,缺点是吸附床较多,工艺流程复杂,技术要求高,可靠性较差。 三床吸附流程的特点是氧气收率一般,可达35%,工艺也比较复杂。 二床吸附流程的缺点是空气中氧气收率比较低,只有30%,但这种流程比较简单,工艺也不复杂,操作容易,可靠性高,是目前制医用氧设备采用最多的流程。 4多层气体过滤系统

变压吸附技术浅析

变压吸附技术浅析 摘要介绍变压吸附技术,以及其的广泛应用、工艺改进和展望未来发展方向。 关键词变压吸附;气体分离;工艺改进;有机气体 变压吸附技术是20世纪40年代发展起来的一项新型气体分离技术。步入90年代后,在世界能源危机日益严重的国际环境下,变压吸附技术也得到了更为广泛的关注,已成为现代工业中较为重要的气体分离及净化方法。目前有数千套变压吸附装置在世界各地运行,用于各类气体的分离、提纯和工业气体的净化。如氢气、一氧化碳等气体的分离与提纯,天然气、乙炔气体的净化,空气分离制氧气和制氮气,废气的综合利用等。如同所有的新兴技术一样,伴随着变压吸附分离的技术进步,特别是吸附材料性能的提和吸附工艺的不断创新,环保、节能和节约的优点愈显突出,变压吸附分离技术正在加速占领工业气体分离的市场。 1变压吸附介绍 1.1 变压吸附概念 变压吸附( pressure swing adsorption, PSA) 是一种很常用的分离或提纯气体混合物的工艺,其主要的工业应用包括: a) 气体干燥; b) 溶剂蒸汽回收; c) 空气分馏; d) 分离甲烷转化炉排放气和石油精炼尾气中的氢; e) 分离垃圾埯埋废气中的二氧化碳和甲烷; f) 一氧化碳和氢的分离; g ) 异链烷烃分离; h) 酒精脱水。全世界大量的变压吸附操作单元应用于这些领域和其它一些领域。实际上,上述所列的a~ d 领域中,变压吸附已成为规定的分离工艺,并且适用范围很大,从个人医用的空气中 分离90% 的O2到甲烷转化炉排放气中分离99. 999%以上的氢均可适用。 变压吸附分离气体的概念比较简单。在一定的压力下,将一定组分的气体混合物和多微孔-中孔的固体吸附剂接触,吸附能力强的组分被选择性吸附在吸附剂上,吸附能力弱的组分富集在吸附气中排出。然后降低压力,被吸附的组分从吸附剂中解吸出来,吸附剂得到再生,解吸气中富集了气体中吸附能力强的组分,一般解吸时没有外部加热。 这个概念定义有许多不同的术语。变压吸附过程是在高于大气压的压力下吸附,在常压下解吸。真空变压吸附( vacuum swing adsorption,VSA) 过程是常压下吸附,真空下解吸。压力-真空变压吸附( pressure-vacuum swing adsorption,PVSA) 过程是则利用了上两种过程的优点。虽然概念比较简单,变压吸附/ 真空变压吸附的应用却相当的复杂,因为它包括了多层柱的设计,在多层柱上完成一系列连续的非等温、非等压、非稳定的循环吸附操作,包括了吸附、解吸、冲洗等过程,以控制产品气纯度、回收率以及分离操作的最优化。 1.2变压吸附的基本原理 变压吸附法的基本原理是利用吸附剂对不同气体的吸附容量、吸附力、吸附速度随压的不同而有差异的特性,在吸附剂选择吸附的条件下,加压吸附混合物中的易吸附组分(通常是物理吸附) ,当吸附床减压时,解吸这些吸附组分,从而使吸附剂再生。 1.3变压吸附的优点 1) 能耗低。它只在增压时消耗功,而且工作压力较低。真空解吸流程采用鼓风机 就可以增压。吸附剂再生不需要加热,只需消耗真空泵不大的功。制氧电耗0. 41kWh/

相关主题
文本预览
相关文档 最新文档