当前位置:文档之家› 数字电路常用芯片应用设计

数字电路常用芯片应用设计

数字电路常用芯片应用设计
数字电路常用芯片应用设计

74ls138

摘要:

74LS138 为3 -8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其中LS是指采用低功耗肖特基电路.

引脚图:

工作原理:

当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器。

内部电路结构:

功能表真值表:

简单应用:

74ls139:

74LS139功能:

54/74LS139为2 线-4 线译码器,也可作数据分配器。其主要电特性的典型值如下:型号 54LS139/74LS139 传递延迟时间22ns 功耗34mW

当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,139 还可作数据分配器。

74ls139引脚图:

引出端符号:

A、B:译码地址输入端

G1、G2 :选通端(低电平有效)

Y0~Y3:译码输出端(低电平有效74LS139内部逻辑图:

74LS139真值表:

74ls164:

164 为8 位移位寄存器,其主要电特性的典型值如下:54/74164 185mW 54/74LS164 80mW当清除端(CLEAR)为低电平时,输出端(QA-QH)均为低电平。串行数据输入端(A,B)可控制数据。当A、B任意一个为低电平,则禁止新数据输入,在时钟端(CLOCK)脉冲上升沿作用下Q0 为低电平。当A、B 有一个为高电平,则另一个就允许输入数据,并在CLOCK 上升沿作用下决定Q0 的状态。

引脚功能:

CLOCK :时钟输入端CLEAR:同步清除输入端(低电平有效)A,B :串行数据输入端QA-QH:输出端

(图1 74LS164封装图)

(图2 74LS164 内部逻辑图)

极限值电源电压7V输入电压……… 5.5V

工作环境温度

54164………… -55~125℃

74164………… -0~70℃

储存温度……-65℃~150℃

(图3 真值表)

H-高电平L-低电平X-任意电平↑-低到高电平跳变QA0,QB0,QH0 -规定的稳态条件建立前的电平

QAn,QGn -时钟最近的↑前的电平

(图4 时序图)

应用实例:

如图所示的电原理图,利用74LS164串行输入并行输出芯片作一个简单的电子钟,要求四个数码管显示时钟;其中LED1显示小时的十位,LED2显示小时的个位,LED3显示分钟的十位,LED4显示分钟的个位。

解:采用单片机的串行口输出字形码,用74LS164和74LS139作为扩展芯片。

74LS164的功能是将80C51串行通信口输出的串行数据译码并在其并口线上输出,从而驱动LED 数码管。74LS139是一个双2-4线译码器,它将单片机输出的地址信号译码后动态驱动相应的LED。因74LS139电流驱动能力较小,故用末级驱动三极管9013作为地址驱动。将4只LED的字段位都连在一起,它们的公共端则由74LS139分时选通,这样任何一个时刻,都只有一位LED在点亮,也即动态扫描显示方式,其优点使用串行口进行LED通信程序编写相当简单,用户只需将需显示的数据直接送串口发送缓冲器,等待串行发送完毕标志位即可。

串行动态LED扫描电路

参考程序:

org 0100h

mov scon,#00h

main:mov r3,#00h

loop:mov r4,#0e8h

delay:acall display

dinz r4,delay

inc r3

cjne r3,#oah,loop

ajmp main

display:clr p3.2

clr p3.3

acall disp

acall delay1

setb p3.3

acall disp

acall delay1

setb p3.3

clr p3.2

acall disp

acall delay1

setb p3.2

setb p3.3

acall disp

acall delay1

ret

disp: mov a,r3

mov dptr,#table

movc a,@a+dptr

mov buff,a

wait: jnb ti,wait

clr ti

ret

delay1:mov r6,#10h

loop1:mov r7,#38h

loop2:djnz r7,loop2

djnz r6,loop1

ret

table :db 0c0h,0f9h,oa4h,0b0h,99h

db 92h,82h,0f8h,80h,90h

end

74ls373:

简要说明:

74LS373是八D锁存器(3S,锁存允许输入有回环特性),常应用在地址锁存及输出口的扩展中。

SN74LS373, SN74LS374 常用的8d锁存器,常用作地址锁存和i/o输出. 可以用74hc373代换. 74LS373是低功耗肖特基TTL8D锁存器,74H373是高速CMOS器件,功能与74LS373相同,两者可以互换。

74LS373内有8个相同的D型(三态同相)锁存器,由两个控制端(11脚G或EN;1脚OUT、CONT、OE)控制。当OE接地时,若G为高电平,74LS373接收由PPU输出的地址信号;

如果G为低电平,则将地址信号锁存。

工作原理:

74LS373的输出端O0~O7可直接与总线相连。当三态允许控制端OE为低电平时,O0~O7为正常逻辑状态,可用来驱动负载或总线。当OE为高电平时,O0~O7呈高阻态,即不驱动总线,也不为总线的负载,但锁存器内部的逻辑操作不受影响。当锁存允许端LE为高电平时,O 随数据D而变。当LE为低电平时,O被锁存在已建立的数据电平。

74LS373引脚(管脚)图:

74LS373内部逻辑图:

74LS373真值表:

利用74LS373设计的一个超实用型抢答器:

利用74LS373设计的抢答器电路它由一片8D锁存器74LS373。8只组别按键开关S1-S8,8组别抢答有效的状态显示发光二极管L1-L8,一个复位按键FW等组成。

该8路竞赛抢答器,每组受控于一个抢答按键开关,高电平表示抢答有效。

设置主持人控制键FW用于控制整个系统清0和抢答有效开始控制的启动。每按下一次复位键FW时,使8D锁存器的控制端G为高电平,若组别按键开关S1~S8中任何一个都没按下,即对应8D锁存器的输入端D均为低电平,则此时8个输出端均为低电平,对应的发光二极管均不点亮,表示抢答者正在准备抢答状态。按下复位键FW时,8D锁存器的控制端G为高电平,若组别按键开关S1-S8中存在一个或几个处于按下状态,即与之对应的8D锁存器的输入端D为高电平,此时与之对应的8D锁存器的输出端立即为高电平,对应的发光二极管被点亮,表示抢答者违规了。只有每按下一次复位键FW,并在复位键FW抬起后,抢答才是有效的。

系统具有第一抢答信号鉴别和锁存功能。在主持人将系统复位并使抢答有效开始后,第一抢答者按下抢答按钮。对应的输入引脚接高电位1,8D锁存器的对应输出端立即为高电平1。二极管VD1-VD8组成了或门电路。使三极管VT1基极得到高电位而饱和导通使锁存器的G 为低电平,将8D锁存器的输入信号锁存在了输出端,输入端的信号变化将不在影响输出端。对应点亮的发光二极管指示出第一抢答者的组别。在显示有效的组别的同时,也可同时采用蜂鸣器警示。

设计特点:8D锁存器74LS373的允许端G的控制信号不是周期固定的脉冲信号,而是将取自锁存器输出端的信号处理后得到的,保证电路结构最简洁、处理时间最快捷,同时减少了脉冲源存在可能带来的干扰,使电路性能更可靠。

74ls151:

简要说明:

8选1数据选择器(有选通输入端,互补输出)

151为互补输出的8选1数据选择器,共有54/74151、54/74S151、74LS151三种线路结构形式,其主要电特性的典型值如下:

数据选择端(ABC)按二进制译码,以从8个数据(D0-D7)中选取1个所需的数据。只有在选通端STROBE为低电平时才可选择数据。

151有互补输出端(Y、W),Y输出原码,W输出反码。

管脚图:

引出端符号:

A、B、C 选择输入端

D0-D7 数据输入端

STROBE 选通输入端(低电平有效)W 反码数据输出端

Y数据输出端

功能表:

逻辑图:

极限值:

电源电压 ------------------------------------------7V 输入电压

54/74151、54/74S151---------------------------------5.5V 54/74LS151 ------------------------------------7V

CD4532:

图为CD4532编码芯片引脚仿真分布图(GND 为第8脚,VCC为16脚省略未画出)

EI引脚为高电平的时候,D0~D7输入相应的电平信号时Q0~Q2可以输出不同的二进制数据,同时EO输出低电平,GS输出高电平,D0~D7与Q0~Q2的关系如下:

D0 为高电平Q2Q1Q0 输出000

D1 为高电平Q2Q1Q0 输出001

D2 为高电平Q2Q1Q0 输出010

D3 为高电平Q2Q1Q0 输出011

D4 为高电平Q2Q1Q0 输出100

D5 为高电平Q2Q1Q0 输出101

D6 为高电平Q2Q1Q0 输出110

D7 为高电平Q2Q1Q0 输出111。

以下电路可以印证这种状态,在D6按键按下输入高电平时,GS EO Q2 Q1 Q0分别输出10110。

图为测试CD4532引脚的状态

我们都非常熟悉7LS138这个芯片把3个引脚的输出状态扩展为8个引脚输出的状态。使用CD4532你就可以将8个输入引脚的状态转化为3个引脚的输入状态。在单片机项目开发过程中,如果单片机引脚作为接收外界信号不够用时,实用CD4532是非常实用的。

555:

555时基电路的特点:

555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体.

图为555集成电路内部结构图:

555集成电路是8脚封装,双列直插型,如图所示:

555时基集成电路各引脚功能描述:

脚①是公共地端为负极;

脚②为低触发端TR,低于1/3电源电压以下时即导通;

脚③是输出端V,电流可达2000mA;

脚④是强制复位端MR,不用可与电源正极相连或悬空;

脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;

脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;

脚⑦是放电端DIS;⑧是电源正极VC。

555时基集成电路的主要参数为(以NE555为例):

电源电压4.5~16V。

输出驱动电流为200毫安。

作定时器使用时,定时精度为1%。

作振荡使用时,输出的脉冲的最高频率可达500千赫。使用时,驱动电流若大于上述电流时,在脚③输出端加装扩展电流的电路,如加一三极管放大。

555集成电路封装图:

我们也可以把555电路等效成一个带放电开关的R-S触发器,如图1)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端V o,V o可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS 端悬空。另外还有复位端MR,控制电压端Vc,电源端VDD和

地端GND。这个特殊的触发器有两个特点:

(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s即触发端(TR)则要求低电乎;

(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD是高电平1,<1/3VDD是低电平0。如果在控制端(Vc)上控制电压Vc时,这时上触发电平就变成Vc值,下触发电平就变成1/2Vc值,可见改变控制端的控制电压值就可以改变上下触发电平值。它的功能表见图2)所示。

用555定时器组成施密特触发器

(1)当ui=0时,由于比较器C1=1、C2=0,触发器置1,即Q=1、,uo1=uo=1。ui升高时,在未到达2VCC/3以前,uo1=uo=1的状态不会改变。

(1)当ui=0时,由于比较器C1=1、C2=0,触发器置1,即Q=1、,uo1=uo=1。ui升高时,在未到达2VCC/3以前,uo1=uo=1的状态不会改变。

(2)ui升高到2VCC/3时,比较器C1输出为0、C2输出为1,触发器置0,即Q=0、,uo1=uo=0。此后,ui上升到VCC,然后再降低,但在未到达VCC/3以前,uo1=uo=0的状态不会改变。

(1)当ui=0时,由于比较器C1=1、C2=0,触发器置1,即Q=1、,uo1=uo=1。ui升高时,在未到达2VCC/3以前,uo1=uo=1的状态不会改变。

(2)ui升高到2VCC/3时,比较器C1输出为0、C2输出为1,触发器置0,即Q=0、,uo1=uo=0。此后,ui上升到VCC,然后再降低,但在未到达VCC/3以前,uo1=uo=0的状态不会改变。

(3)ui下降到2VCC/3时,比较器C1输出为1、C2输出为0,触发器置1,即Q=1、,uo1=uo=1。此后,ui继续下降到0,但uo1=uo=1的状态不会改变

555集成电路有双极型和CMOS型两种。CMOS型的优点是功耗低、电源电压低、输入阻抗高,但输出功率较小,输出驱动电流只有几毫安。双极型的优点是输出功率大,驱动电流达200毫安,其他指标则不如CMOS型的。

555的应用电路很多,只要改变555集成电路的外部附加电路,就可以构成几百种应用电路,大体上可分为555单稳、555双稳及555无稳(即振荡器)三类。

555单稳电路:

单稳电路有一个稳态和一个暂稳态,是利用电容的充放电形成暂稳态的,因此它的输入端都带有定时电阻和定时电容,常见的555单稳电路有两种:

1)人工启动型

将555电路的6、2脚并接起来接在RC定时电路上,在定时电容CT,两端接按钮开关SB,就成为人工启动型555单稳电路,用等效触发器替代555,下面分析它的工作原理:稳态:接上电源后,电容CT很快充电到VDD,触发器输入R=1,S=1,输出V o=0,这是它的稳态。

暂稳态:按下开关SB,CT上电荷很快放到零,相当于触发器输入R=0,S=0,输出立即翻转成V o=l,暂稳态开始。开关放开后,电源又向CT充电,经过时间TD后,CT上电压上升到>2/3VDD时,输出又翻转成V o=O,暂稳态结束。TD就是单稳电路的定时时间或延时时间,它和定时电阻RT和定时电容CT的值有关:T D=1.1R T C T。

2)脉冲启动型

将555电路的6、7脚并接起来接在定时电容CT上,用2脚作输入就成为脉冲启动型单稳电路,电路的2脚平时接高电平,当输入接低电平或输入负脉冲时才启动电路,下面分析它的工作原理:

稳态:接上电源后,R=1,S=1,输出V o=0,DIS端接地,CT上的电压为0即R=0,输出仍保持V o=0,这是它的稳态。

暂稳态:输入负脉冲后,输入S=0,输出立即翻转成V o=1,DIS端开路,电源通过RT 向CT充电,暂稳态开始。经过时间TD后,CT上电压上升到>2/3VDD时,输入又成为R=1,S=1,这时负脉冲已经消失,输出又翻转成V o=0,暂稳态结束。这时内部放电开关接通,DIS端接地,CT上电荷很快放到零,为下一次定时控制作准备。电路的定时时间T D=1.1R T C T。

这两种单稳电路常用作定时延时控制。

555双稳电路

常见的555双稳电路有两种:

1)R-S触发器型双稳

将555电路的6、2脚作为两个控制输入端,7端不用,就成为一个R-S触发器。注意两个输入端的触发电平和阈值电压不同,有时可能只有一个控制端,这时另外一个控制端要设法接死,根据电路要求可以把R端接到电源端,也可以把S接地,用R端作输入。

有两个输入端的双稳电路常用作电机调速、电源上下限告警等用途。有一个输入端的双稳电路作为单端比较器用于各种检测电路。

2)施密特触发器型双稳

将555电路的6、2脚并接起来接成只有一个输入端的触发器,这个触发器输出电压和输入电压的关系是一个长方形的回线形,当输入V1=0时输出V o=1,当输入电压从0上升到>2/3VDD后,V o翻转成0,当输入电压从最高值下降到<1/3VDD后,V o又翻转成1。由于它的输入有两个不同的阈值电压,所以,这种电路常用于电子开关,各种控制电路、波形的变换和整形。

4 555无稳电路(振荡器)

由555定时器构成的多谐振荡器。

接通电源后,电源VDD通过R1和R2对电容C充电,当Uc<1/3VDD时,振荡器输出V o=1,放电管截止。当Uc充电到≥2/3VDD后,振荡器输出V o翻转成0,此时放电管导通,使放电端(DIS)接地,电容C通过R2对地放电,使Uc下降。当Uc下降到≤1/3VDD后,振荡器输出V o又翻转成1,此时放电管又截止,使放电端(DIS)不接地,电源VDD通过R1和R2又对电容C充电,又使Uc从1/3VDD上升到2/3VDD,触发器又发生翻转,如此周而

复始,从而在输出端V o得到连续变化的振荡脉冲波形。脉冲宽度TL≈0.7R2C,由电容C放电时间决定;TH=0.7(R1+R2)C,由电容C充电时间决定,脉冲周期T≈TH+TL。

上面仅讨论了由555定时器构成的几种典型应用实例。实际上,由于555定时器灵敏度高,功能灵活,因而在电子电路中获得广泛应用。

由555+4017构成的流水灯电路:

1.555用来定时,用它产生某种方波,相当于有的时钟信号

2.4017是个十进制计数器,按照时钟信号从10个口依次输出

CLK时钟信号。

E,低为计数使能。

MR,高为复位。

Q0-Q9是十进制输出。

CO,carry-out是进位输出。

ADC0809:

概述:

ADC0809是采样分辨率为8位的、以逐次逼近原理进行模—数转换的器件。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。

1.主要特性

1)8路输入通道,8位A/D转换器,即分辨率为8位。

2)具有转换起停控制端。

3)转换时间为100μs(时钟为640kHz时),130μs(时钟为500kHz时)

4)单个+5V电源供电

5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度

7)低功耗,约15mW。

2.内部结构

ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图13.22所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近

3.外部特性(引脚功能)

ADC0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路

ALE:地址锁存允许信号,输入,高电平有效。

START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

EOC: A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

数字电路实验芯片引脚图

数字电路实验一、芯片引脚图

二、组合逻辑电路实验设计题 1.举重比赛有3个裁判,一个主裁判A和两个辅裁判B和C,杠铃完全举上的裁决由每个裁判按下自己的按键来决定。当3个裁判判为成功或两个裁判(其中一个为主裁判)判为成功则成功绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。 2.设输入数据为4位二进制数,当该数据能被3整除时绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。 3.设输入数据为4位二进制数,当该数据能被5整除时绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。 4.试设计一个四人表决器,当四个人中有3个人或4个人赞成时绿灯亮表示建议被通过,否则红灯亮表示建议被否决。试用74LS151设计此逻辑电路。 5.设输入数据为4位二进制数,设计由此二进制数决定的偶校验逻辑电路,即当此二进制数中有偶数个1时绿色指示灯亮,否则红色指示灯亮。试用74LS151设计此逻辑电路。。 6.某楼道内住着A、B、C、D 四户人家,楼道顶上有一盏路灯。请设计一个控制电路,要求A、B、C、D 都能在自己的家中独立地控制这盏路灯。试用74LS151设计此逻辑电路。 7.用74LS151实现一个函数发生器,其功能是:当S1S0=00时,Y=AB;当S1S0=01时,Y=A+B;当S1S0=10时,Y=A B;当S1S0=11时,Y=。试用74LS151设计此逻辑电路。 8.试用两片74LS151实现16选1数据选择器。 三、时序逻辑电路实验设计题 1.用十进制计数-译码器CC4017设计一个8盏灯的流水灯电路。 2.用74LS161设计一个12进制的加1计数器。其代码转换图为:0000→0001→0010→…→1011循环。每循环一次产生一个进位脉冲。 3.用74LS161设计一个12进制的加1计数器。其代码转换图为:0100→0101→0110→…→1111循环。每循环一次产生一个进位脉冲。 4.用74LS161设计一个10进制的加1计数器。其代码转换图为:0000→0001→0010→…→1001循环。每循环一次产生一个进位脉冲。 5.用74LS161设计一个12进制的加1计数器。其代码转换图为:0110→0111→1000→…→1111循环。每循环一次产生一个进位脉冲。 6.用74LS161设计一个9进制的加1计数器。其代码转换图为:0000→0001→0010→…→1000循环。每循环一次产生一个进位脉冲。 7.用74LS161设计一个9进制的加1计数器。其代码转换图为:0111→1000→1001→…→1111循环。每循环一次产生一个进位脉冲。 8.用两片74LS161设计一个72进制的加1计数器。其代码转换图为:00000000→00000001→00000010→…→01001000循环。每循环一次产生一个进位脉冲。 9.用两片74LS161设计一个132进制的加1计数器。00000000→00000001→00000010→…→1000100循环。每循环一次产生一个进位脉冲。 10.用两片74LS161设计一个加1计数器。其代码转换图为:00110101→00110110→00110111→…→11111111循环。每循环一次产生一个进位脉冲。 11.用两片74LS161设计一个加1计数器。其代码转换图为:11000110→11000111→11001000→…→11111111循环。每循环一次产生一个进位脉冲。 12.用74LS151和74LS161设计一个序列信号发生器,当输入周期脉冲信号时循环输出

数字电路芯片大全资料

芯片大全 -- 74系列芯片资料(还算可以)! 74系列芯片资料 反相器驱动器 LS04 LS05 LS06 LS07 LS125 LS240 LS244 LS245 与门与非门 LS00 LS08 LS10 LS11 LS20 LS21 LS27 LS30 LS38 或门或非门与或非门 LS02 LS32 LS51 LS64 LS65 异或门比较器 LS86 译码器 LS138 LS139 寄存器 LS74 LS175 LS373 反相器: Vcc 6A 6Y 5A 5Y 4A 4Y 六非门74LS04 ┌┴─┴─┴─┴─┴─┴─┴┐六非门(OC门) 74LS05 _ │1413 12 11 10 9 8│六非门(OC高压输出) 74LS06 Y = A )│ │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1Y 2A 2Y 3A 3Y GND 驱动器: Vcc 6A 6Y 5A 5Y 4A 4Y ┌┴─┴─┴─┴─┴─┴─┴┐ │1413 12 11 10 9 8│ Y = A )│六驱动器(OC高压输出) 74LS07 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1Y 2A 2Y 3A 3Y GND Vcc -4C 4A 4Y -3C 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ _ │1413 12 11 10 9 8│

Y =A+C )│四总线三态门 74LS125 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ -1C 1A 1Y -2C 2A 2Y GND Vcc -G B1 B2 B3 B4 B8 B6 B7 B8 ┌┴─┴─┴─┴─┴─┴─┴─┴─┴─┴┐8位总线驱动器 74LS245 │20 19 18 17 16 15 14 13 12 11│ )│DIR =1 A=>B │ 1 2 3 4 5 6 7 8 9 10│DIR=0 B=>A └┬─┬─┬─┬─┬─┬─┬─┬─┬─┬┘ DIR A1 A2 A3 A4 A5 A6 A7 A8 GND 页首非门,驱动器与门,与非门或门,或非门异或门,比较器译码器寄存器 正逻辑与门,与非门: Vcc 4B 4A 4Y 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ │1413 12 11 10 9 8│ Y = AB )│2输入四正与门 74LS08 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 4B 4A 4Y 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ __ │1413 12 11 10 9 8│ Y = AB )│2输入四正与非门 74LS00 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 1Y 2A 2B 2Y GND Vcc 1C 1Y 3C 3B 3A 3Y ┌┴─┴─┴─┴─┴─┴─┴┐ ___ │1413 12 11 10 9 8│ Y = ABC )│3输入三正与非门 74LS10 │ 1 2 3 4 5 6 7│ └┬─┬─┬─┬─┬─┬─┬┘ 1A 1B 2A 2B 2C 2Y GND Vcc H G Y

常用数字芯片型号解读

常用数字芯片型号解读 逻辑电平有:TTL、CMOS、LVTTL、LVCMOS、ECL、PECL、LVDS、GTL、BTL、ETL、GTLP;RS232、RS422、RS485等。 图1-1:常用逻辑系列器件 TTL:Transistor-Transistor Logic CMOS:Complementary Metal Oxide Semicondutor LVTTL:Low Voltage TTL LVCMOS:Low Voltage CMOS ECL:Emitter Coupled Logic, PECL:Pseudo/Positive Emitter Coupled Logic LVDS:Low Voltage Differential Signaling GTL:Gunning Transceiver Logic BTL:Backplane Transceiver Logic ETL:enhanced transceiver logic GTLP:Gunning Transceiver Logic Plus TI的逻辑器件系列有:74、74HC、74AC、74LVC、74LVT等 S - Schottky Logic LS - Low-Power Schottky Logic CD4000 - CMOS Logic 4000 AS - Advanced Schottky Logic 74F - Fast Logic ALS - Advanced Low-Power Schottky Logic HC/HCT - High-Speed CMOS Logic BCT - BiCMOS Technology AC/ACT - Advanced CMOS Logic FCT - Fast CMOS Technology ABT - Advanced BiCMOS Technology LVT - Low-Voltage BiCMOS Technology LVC - Low Voltage CMOS Technology LV - Low-Voltage CBT - Crossbar Technology ALVC - Advanced Low-Voltage CMOS Technology AHC/AHCT - Advanced High-Speed CMOS CBTLV - Low-Voltage Crossbar Technology ALVT - Advanced Low-Voltage BiCMOS Technology AVC - Advanced Very-Low-Voltage CMOS Logic TTL器件和CMOS器件的逻辑电平 :逻辑电平的一些概念 要了解逻辑电平的内容,首先要知道以下几个概念的含义: 1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。 2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。 3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的

电子设计常用芯片

741 运算放大器 2063A JRC杜比降噪 20730 双功放 24C01AIPB21 存储器 27256 256K-EPROM 27512 512K-EPROM 2SK212 显示屏照明 3132V 32V三端稳压 3415D 双运放 3782M 音频功放 4013 双D触发器 4017 十进制计数器/脉冲分配器4021 游戏机手柄 4046 锁相环电路 4067 16通道模拟多路开关 4069 游戏机手柄 4093 四2输入施密特触发器 4098 41256 动态存储器 52432-01 可编程延时电路 56A245 开关电源 5G0401 声控IC 5G673 八位触摸互锁开关 5G673 触摸调光 5G673 电子开关 6116 静态RAM 6164 静态RAM 65840 单片数码卡拉OK变调处理器7107 数字万用表A/D转换器74123 单稳多谐振荡器 74164 移位寄存器 7474 双D触发器 7493 16分频计数器 74HC04 六反相器 74HC157 微机接口 74HC4053 74HCU04 六反相器 74LS00 与门 74LS00 4*2与非门 74LS00 四2与非门 74LS00 与门 74LS04 6*1非门 74LS08 4*2与门 74LS11 三与门 74LS123 双单稳多谐振荡器 74LS123 双单稳多谐振荡器 74LS138 三~八译码器 74LS142 十进制计数器/脉冲分配器74LS154 4-16线译码器 74LS157 四与或门74LS161 四2计数器 74LS161 十六进制同步计数器 74LS161 四~二计数器 74LS164 数码管驱动 74LS18 射频调制器 74LS193 加/减计数器 74LS193 四2进制计数器 74LS194 双向移位寄存器 74LS27 4*2或非门 74LS32 四或门 74LS32 4*2或门 74LS374 八位D触发器 74LS374 三态同相八D触发器 74LS377 74LS48 7位LED驱动 74LS73 双J-K触发器 74LS74 双D触发器 74LS85 四位比较器 74LS90 计数器 75140 线路接收器 75141 线路接收器 75142A 线路接收器 75143A 线路接收器 7555 时钟发生器 79MG 四端负稳压器 8051 空调单片机 8338 六反相器 A1011 降噪 ACVP2205-26 梳状滤波视频处理 AD536 专用运放 AD558 双极型8位D-A(含基准电压)变换器AD558 双极型8位D-A(含基准电压)变换器AD574A 12比特A/D变换器 AD650 AD670 8比特A/D变换器(单电源)1995s-2、15 AD7523 D-A变换器1994x-125 AD7524 D-A变换器1994x-126 AD7533 模数转换器1994x-141 AD7533 模数转换器1995s-184 ADC0804 8比特A/D变换器1995s-2、20 ADC0809 8CH8比特A/D 1995s-2、23 ADC0833 A/D变换4路转换器1995s-2 ADC80 12比特A/D变换器1995s-2、8 ADC84/85 高速12比特A/D变换器1995s-2 AG101 手掌游戏机1993x-155 AM6081 双极型8位D-A变换器1994x-127 AMP1200 音频功放皇后1993s-104 AN115 立体声解码1991-135 AN2510S 摄象机寻象器1994x-109 AN2661NK 影碟机视频1995s-45

数字电路常用芯片应用设计

74ls138 摘要: 74LS138 为3 -8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其中LS是指采用低功耗肖特基电路. 引脚图: 工作原理: 当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器。 内部电路结构:

功能表真值表: 简单应用:

74ls139: 74LS139功能: 54/74LS139为2 线-4 线译码器,也可作数据分配器。其主要电特性的典型值如下:型号54LS139/74LS139 传递延迟时间22ns 功耗34mW 当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,139 还可作数据分配器。 74ls139引脚图:

引出端符号: A、B:译码地址输入端 G1、G2 :选通端(低电平有效) Y0~Y3:译码输出端(低电平有效74LS139内部逻辑图:

74LS139真值表: 74ls164: 164 为8 位移位寄存器,其主要电特性的典型值如下:54/74164 185mW 54/74LS164 80mW当清除端(CLEAR)为低电平时,输出端(QA -QH)均为低电平。串行数据输入端(A,B)可控制数据。当A、B任意一个为低电平,则禁止新数据输入,在时钟端(CLOCK)脉冲上升沿作用下Q0 为低电平。当A、B 有一个为高电平,则另一个就允许输入数据,并在CLOCK 上升沿作用下决定Q0 的状态。 引脚功能: CLOCK :时钟输入端CLEAR:同步清除输入端(低电平有效)A,B :串行数据输入端QA-QH:输出端 (图1 74LS164封装图)

单片机常用芯片引脚图

单片机常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O接口 无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时 传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O接口,第二功能作为为单片机的控 制信号。 ALE/ PROG:地址锁存允许/编程脉冲输入信号线(输出信号) PSEN:片外程序存储器开发信号引脚(输出信号) EA/Vpp:片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD:复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件资源,适 用于要求较高的实时控制场合。它分为48引脚和 68引脚两种,以48引脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发送和接受 引脚,同时也作为P2口的两条口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有两个和 HS1共用) Vcc:主电源引脚(+5V) Vss:数字电路地引脚(0V) Vpd:内部RAM备用电源引脚(+5V)RST INT0/P3.2 INT1/P3.3 WR/P3.6 RD/P3.7 V SS

数字逻辑实验内容及芯片引脚图

数字逻辑实验计划及要求(附录:实验所用芯片引脚图及功能说明) 实验一逻辑门功能验证及应用电路实验 1.实验目的: (1)了解并掌握基本逻辑门电路的逻辑功能; (2)熟悉基本逻辑门电路的应用; (3)熟悉三态门和OC门电路的应用; (4)学习实验台的使用方法。 2.实验所用器件: 四二输入端与非门组件2片,型号为:74LS00 四二输入端与非门(OC)组件1片,型号为:74LS01 四二输入端或非门组件1片,型号为:74LS02 二与或非门组件1片,型号为:74LS51 四异或门组件1片,型号为:74LS86 四三态门组件1片,型号为:74LS125 排电阻(上拉电阻) 3.预习要求: (1)查出实验用器件引脚功能,画出实验电路图; (2)复习TTL各逻辑门电路的工作原理; (3)按实验内容要求设计电路。 4.实验内容 (1)测试实验所用器件的逻辑功能,填写真值表。 (2)用一片74LS00实现一2输入端异或门的功能。 (3)用一片74LS01及排电阻实现芯片74LS51的功能,做(AB+CD)’一组。 (4)用三态门组成两路总线传输电路。 5.实验要求 记录各实验观察结果并与理论所得各真值表进行比较。 6.思考 任何一逻辑电路均可分别用与非门,或非门,与或非门实现,为什么? 实验二组合电路功能验证及应用电路实验 1.实验目的: (1)熟悉常用组合逻辑芯片的功能; (2)掌握组合逻辑电路的设计方法。 2.实验所用器件 3-8线译码器一片,型号为:74LS138 8路数据选择器一片,型号为:74LS151 4位数码比较器一片,型号为:74LS85 四输入端与非门一片,型号为:74LS20 3.实验内容 (1)74LS85,74LS151的功能。 (2)用一片74LS85及一片74LS00组成5位二进制数值比较器。

数字电路知识点汇总(精华版)

数字电路知识点汇总(东南大学)第1章数字逻辑概论 一、进位计数制 1.十进制与二进制数的转换 c.分配律:) A? ?=+ B (C A? A C ?B A+ B + +) ? = C )() ) (C A B A 3)逻辑函数的特殊规律 a.同一律:A+A+A b.摩根定律:B A+ B ? A = A B A? = +,B

b.关于否定的性质A=A 二、逻辑函数的基本规则 代入规则 在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则 B⊕ C A 解:先用摩根定理展开:AB=B A+再用吸收法 L=E AB+ + B A =E A+ + B + B D A =) A A+ D + + ( ) (E B B =) A A+ + D + ) 1( 1(E B B

=B A + 3)消去法 利用B A B A A +=+ 消去多余的因子 例如,化简函数L=ABC B A B A A +++ 解: L=ABC E B A B A B A +++ B A B A B A =)()()(BC A C B A C B A C B C B A B A +++?++? =)()1()1(B B C A A C B C B A +++++? =C A C B B A ++? 2.应用举例 将下列函数化简成最简的与-或表达式

1)L=A D DCE BD B A +++ 2) L=AC C B B A ++ 3) L=ABCD C B C A AB +++ 解:1)L=A D DCE BD B A +++ =DCE A B D B A +++)( A B B =)()(C B A C A ABCD C AB AB ++++ =)1()1(B C A CD C AB ++++ =C A AB + 四、逻辑函数的化简—卡诺图化简法: 卡诺图是由真值表转换而来的,在变量卡诺图中,变量的取值顺序是按循环码

常用基本数字集成电路应用设计

课程设计题目:常用基本数字集成电路应用设计 学生姓名: 学号: 院系: 专业班级: 指导教师姓名及职称: 起止时间: 课程设计评分: 常用基本数字集成电路应用设计 1.多谐振荡器概述 多谐振荡器是一种自激振荡器,它不需要输入触发信号,接通电源后就可自动输出矩形脉冲。由于矩形脉冲含有丰富的谐波分量,因此,常将矩形脉冲产生电路称为多谐振荡器。 1.1非门电路构成的多谐振荡器设计

1.1.1基本原理 门电路构成多谐振荡器 非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。电路的基本工作 原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT 时,门的输出状态即发生变化。因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。 (1)不对称多谐振荡器 非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度 tw1=RC, tw2=1.2RC, T=2.2RC 调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改 变电位器R实现输出频率的细调。 图1为不对称多谐振荡器,为了使电路产生振荡,要求U1A和U1B两个反向器都工作在电压传输特性的转折区,即工作在放大区。 (2)对称型多谐振荡器 电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。改变R和C的值, 可以改变输出振荡频率。非门3用于输出波形整形。 一般取R≤1KΩ?,当R1=R2=1KΩ,C1=C2=100pf~100μf时,f可在几Hz~MHz 变化。

脉冲宽度tw1=tw2=0.7RC,T=1.4RC. 图2中,U1A和U1B两个反向器之间经电容C1和C2耦合形成正反馈回路。 (3) 石英晶体稳频的多谐振荡器 当要求多谐振荡器的工作频率稳定性很高时,上述几种多谐振荡器的精度已不能满足要 求。为此常用石英晶体作为信号频率的基准。用石英晶体与门电路构成的多谐振荡器常用来 为微型计算机等提供时钟信号。 图3所示为常用的晶体稳频多谐振荡器。(a)、 (b)为TTL器件组成的晶体振荡电路;(c)、 (d)为CMOS器件组成的晶体振荡电路,一般用于电子表中,其中晶体的f0=32768Hz。 图3(c)中,门1用于振荡,门2用于缓冲整形。Rf是反馈电阻,通常在几十兆欧之 间选取,一般选22MΩ。R起稳定振荡作用,通常取十至几百千欧。C1是频率微调电容器, C2用于温度特性校正。

51单片机常用芯片引脚图

常用芯片引脚图 一、 单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O 接口,第二功能作为为单片机的控 制信号。 ALE/ PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 12345678910111213141516171819204039383736353433323130292827262524232221P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS V CC P0.0/AD 0P0.1/AD 1 P0.2/AD 2P0.3/AD 3P0.4/AD 4P0.5/AD 5P0.6/AD 6P0.7/AD 7 EA/V PP ALE/PROG PSEN P2.7/A 15P2.6/A 14P2.5/A 13 P2.4/A 12P2.3/A 11P2.2/A 10P2.1/A 9P2.0/A 8803180518751

常用数字电路单元的结构

第3章常用数字单元电路结构 3.1 引言 本章介绍CMOS数字电路中常用单元电路的结构。本章暂不考虑电路性能问题,因此可将MOS管看成受电压控制的开关。 3.2 互补静态CMOS逻辑 互补静态逻辑是CMOS电路中最重要的逻辑系列,目前多数CMOS逻辑电路采用这种方法设计,其一般结构如图3-1。 互补静态逻辑的任何单元电路都是由一个连接VDD的pMOS上拉网络和一个连接GND的nMOS下拉网络构成。所谓互补关系指这样一种对应关系,在上拉网络中的PMOS管个数与下拉网络中NMOS管个数相等,且在nMOS网络中串联的晶体管,必须对应pMOS网络中的并联晶体管,nMOS网络中的并联晶体管必须对应pMOS网络中的串联晶体管。满足这种关系时,对于任何输入组合,必有一个网络导通,而另一个网络截止。这种CMOS逻辑门在输入稳定时,不会有从VDD到GND的电流,因此,其静态功耗很低,这是CMOS电路的主要优点。静态CMOS逻辑门的另一个重要优点是,在任何输入组合下,输出端或者通过pMOS网络上拉到VDD,或者通过nMOS网络下拉到GND,输出逻辑状态比较稳定,有较强的抗干扰能力。 3.1.1互补静态逻辑基本CMOS逻辑门

图3-2是一些基本的CMOS 逻辑门,可以看出,这些基本CMOS 门都符合互补关系。 互补静态CMOS 逻辑门的pMOS 网络和nMOS 网络的导通逻辑恰好相反,如果用F N 表示nMOS 网络的导通逻辑,F P 表示pMOS 网络的导通逻辑,则必须有 P N F F = (3-1) 例如,在与非门中, AB F N = AB B A F P =+= 整个门的逻辑关系与pMOS 网络的导通逻辑相同,但观察nMOS 网络的导通条件更容易些。这种关系也可以推广到更复杂的电路。 CMOS 逻辑门总是含有反相关系,nMOS 下拉网络总是在部分或全部输入为“1”时导通,从而使输出为“0”。对于任何互补CMOS 逻辑门,判断逻辑关系的方法是:根据nMOS 网络的导通逻辑,再加上“非”逻辑,就可以得到整个门的逻辑关系。 在互补静态CMOS 逻辑门中,只有反相器、与非门和或非门是最基本的逻辑门,而与门和或门要利用上述基本逻辑门实现,也就是说,一个与门的晶体管数相当于相同输入的与非门的晶体管数加2。

常用芯片引脚图[1]

您的数字ID 是:463099 您的密码是:1.8667 附录三 常用芯片引脚图 一、单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时的地址/数据复用口。P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为通用I/O 接口,第二功能作为为单片机的控制信号。 ALE/PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :内部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 XTAL1、XTAL2:内部振荡器反相器输 P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS

常用单片机及其它芯片引脚图

一、 单片机类 1、MCS‐51 芯片介绍:MCS‐51系列单片机是美国Intel公司开发的8位单片机,又可以分为多个子系列。 MCS‐51系列单片机共有40条引脚,包括32 条I/O接口引脚、4条控制引脚、2条电源引脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为 通用I/O接口,第二功能作为存储器扩展时的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O接口无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为通用I/O接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为通用I/O接口,第二功能作为为单片机的控制信号。 ALE/ PROG:地址锁存允许/编程脉冲输入信号线(输出信号) PSEN:片外程序存储器开发信号引脚(输出信号) EA/Vpp:片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD:复位/备用电源引脚 2、MCS‐96 芯片介绍:MCS‐96系列单片机是美国Intel公司继MCS‐51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件资源,适用于要求较高的实时控制场合。它分为48引脚和68引脚两种,以48引脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc:主电源引脚(+5V) Vss:数字电路地引脚(0V) Vpd:内部RAM备用电源引脚(+5V) VREF:A/D转换器基准电源引脚(+5V) AGND:A/D转换器参考地引脚

常用数字集成电路集锦

门电路 四2输入或非门 4001/7402 复合门电路 4007 四2输入与非门 4011 /7408 双4输入与非门4012/7420 三3入与非门4023/7410 四异或门4030/4070/4077/7486 4输入可扩展多功能门4048 八输入与非门/与门4068 六反相器4069/4049 六反相器7404/7405/7406 8输入或非门/或门 4078 四2输入与门4081/7408 双4输入与门4082/7421 其它 4085/4086/4530等 触发器 双主-从D型触发器4013/7474 双J-K触发器4027/74111~74114 四锁存D型触发器4042 4三态R-S锁存触发器4043 四2输入施密特触发器4093/40106 3输入端J-K触发器4095/4096 8位可寻址锁存器4099/4599

六锁存D型触发器40174/40175 双4位锁存D型触发器 4508 六锁存D型触发器74174/74175 8D锁存器74273/74373 时基延时分频电路 通用定时电路555 无稳态/单稳态多谐振荡器4047 “N”分频计数器4059 二进制比例乘法器 4089 24级分频器4521 BCD比例乘法器4527 单稳态多谐振荡器74121~74123 单稳态多谐振荡器74221 其它 MM5369/MN6041/MC14451 计数器 脉冲分配器/计数器 4017、4022 二进制串行计数器 4020、4024、4040、4060;74161、74162、74163; 可预置4位二进制/BCD加减计数器 4029 可预置4位BCD/二进制计数器40161、40162、40163; 可预置4位可逆计数器40192、40193;74190-74193 可预置4位可逆计数器4510、4516 双4 位BCD/二进制同步加计数器4518、4520 可预置同步1/N计数器 4522、4526

常用芯片引脚图

附录三 常用芯片引脚图 一、 单片机类 1、MCS-51 芯片介绍:MCS-51系列单片机是美国Intel 公司开发的8位单片机,又可以分为多个子系列。 MCS-51系列单片机共有40条引脚,包括32 条I/O 接口引脚、4条控制引脚、2条电源引 脚、2条时钟引脚。 引脚说明: P0.0~P0.7:P0口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时 的地址/数据复用口。 P1.0~P1.7:P1口8位口线,通用I/O 接口无第二功能。 P2.0~P2.7:P2口8位口线,第一功能作为通用I/O 接口,第二功能作为存储器扩展时传送高8位地址。 P3.0~P3.7:P3口8位口线,第一功能作为 通用I/O 接口,第二功能作为为单片机的控 制信号。 ALE/ PROG :地址锁存允许/编程脉冲输入信号线(输出信号) PSEN :片外程序存储器开发信号引脚(输出信号) EA/Vpp :片外程序存储器使用信号引脚/编程电源输入引脚 RST/VPD :复位/备用电源引脚 2、MCS-96 芯片介绍:MCS-96系列单片机是美国Intel 公司继MCS-51系列单片机之后推出的16位单 片机系列。它含有比较丰富的软、硬件 资源,适用于要求较高的实时控制场合。 它分为48引脚和68引脚两种,以48引 脚居多。 引脚说明: RXD/P2.1 TXD/P2.0:串行数据传出分发 送和接受引脚,同时也作为P2口的两条 口线 HS1.0~HS1.3:高速输入器的输入端 HS0.0~HS0.5:高速输出器的输出端(有 两个和HS1共用) Vcc :主电源引脚(+5V ) Vss :数字电路地引脚(0V ) Vpd :内部RAM 备用电源引脚(+5V ) V REF :A/D 转换器基准电源引脚(+5V ) AGND :A/D 转换器参考地引脚 12345678910111213141516171819204039383736353433323130292827262524232221P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7RST RXD/P3.0TXD/P3.1INT0/P3.2INT1/P3.3T0/P3.4T1/P3.5WR/P3.6RD/P3.7XTAL2XTAL1V SS V CC P0.0/AD 0P0.1/AD 1 P0.2/AD 2P0.3/AD 3P0.4/AD 4P0.5/AD 5P0.6/AD 6P0.7/AD 7 EA/V PP ALE/PROG PSEN P2.7/A 15P2.6/A 14P2.5/A 13 P2.4/A 12P2.3/A 11P2.2/A 10P2.1/A 9P2.0/A 8803180518751

常用数字芯片大全

产品 型号规格性能说明型号规格性能说明 名称 74LS SN74LSOO四2输入与非门SN74LSO1四2输入与非门 SN74LSO2四2输入与非门SN74LS03四2输入与非门 SN74LS04六反相器SN74LS05六反相器 SN74LS06六反相缓冲器/驱动器SN74LS07六缓冲器/驱动器 SN74LS08四2输入与非门SN74LS09四2输入与非门 SN74LS10三3输入与非门SN74LS11三3输入与非门 SN74LS12三3输入与非门SN74LS13三3输入与非门 SN74LS14六反相器.斯密特触发SN74LS15三3输入与非门 SN74LS16六反相缓冲器/驱动器SN74LS17六反相缓冲器/驱动器 SN74LS20双4输入与门SN74LS21双4输入与门 SN74LS22双4输入与门SN74LS25双4输入与门 SN74LS26四2输入与非门SN74LS27三3输入与非门 SN74LS28四输入端或非缓冲器SN74LS30八输入端与非门 SN74LS32四2输入或门SN74LS33四2输入或门 SN74LS37四输入端与非缓冲器SN74LS38双2输入与非缓冲器 SN74LS40四输入端与非缓冲器SN74LS42BCD-十进制译码器 SN74LS47BCD-七段译码驱动器SN74LS48BCD-七段译码驱动器SN74LS49BCD-七段译码驱动器SN74LS51三3输入双与或非门 SN74LS54四输入与或非门SN74LS55四4输入与或非门 SN74LS63六电流读出接口门SN74LS73双J-K触发器 SN74LS74双D触发器SN74LS754位双稳锁存器 SN74LS76双J-K触发器SN74LS78双J-K触发器 SN74LS83双J-K触发器SN74LS854位幅度比较器 SN74LS86四2输入异或门SN74LS884位全加器 SN74LS904位十进制波动计数器SN74LS918位移位寄存器 SN74LS9212分频计数器SN74LS93二进制计数器 SN74LS965位移位寄存器SN74LS954位并入并出寄存器 SN74LS109正沿触发双J-K触发器SN74LS107双J-K触发器 SN74LS113双J-K负沿触发器SN74LS112双J-K负沿触发器 SN74LS121单稳态多谐振荡器SN74LS114双J-K负沿触发器 SN74LS123双稳态多谐振荡器SN74LS122单稳态多谐振荡器 SN74LS125三态缓冲器SN74LS124双压控振荡器 SN74LS1313-8线译码器SN74LS126四3态总线缓冲器 SN74LS13313输入与非门SN74LS132二输入与非触发器 SN74LS137地址锁存3-8线译码器SN74LS136四异或门 SN74LS139双2-4线译码-转换器SN74LS1383-8线译码/转换器 SN74LS14710-4线优先编码器SN74LS145BCD十进制译码/驱动器SN74LS153双4选1数据选择器SN74LS1488-3线优先编码器 SN74LS155双2-4线多路分配器SN74LS1518选1数据选择器 SN74LS157四2选1数据选择器SN74LS1544-16线多路分配器 SN74LS160同步BDC十进制计数器SN74LS156双2-4线多路分配器

电源设计的常用芯片

常用电源及稳压芯片LM2930T-5.0 5.0V低压差稳压器LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A) LM337T 三端可调-1.2V to -37V稳压器(1.5A) LM337LZ 三端可调-1.2V to -37V稳压器(0.1A)

LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) LM350T 三端可调1.2V to 32V稳压器(3A) LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器 SG3524 脉宽调制开关电源控制器 TL431 精密可调2.5V to 36V基准稳压源 TL494 脉宽调制开关电源控制器 TL497 频率调制开关电源控制器 TL7705 电池供电/欠压控制器

相关主题
文本预览
相关文档 最新文档