当前位置:文档之家› 纳米材料及技术在催化领域的应用

纳米材料及技术在催化领域的应用

纳米材料及技术在催化领域的应用
纳米材料及技术在催化领域的应用

纳米材料及技术在催化领域的应用

催化纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。

1 纳米催化剂的制备方法

纳米催化剂的制备方法一般有化学法和物理法两类。

1. 1化学方法

1)沉淀法

通过化学反应使原料的有效成分沉淀,经过滤、洗涤、干燥、加热分解而得到纳米粒子。包括直接沉淀法、共沉淀法、均匀沉淀法、配位沉淀法等,其共同特点是操作简单方便。

2)水解法

在高温下先将金属盐的溶液水解,生成水合氧化物或氢氧化物沉淀,再加热分解得到纳米粒子。包括无机水解法、金属醇盐水解法、喷雾水解法等,其中以金属醇盐水解法最为常用,其最大特点是从物质的溶液中直接分离所需要的粒径细、粒度分布窄的超微粉末。该法具有制备工艺简单、化学组成能精确控制、粉体的性能重复性好及得率高等优点,不足之处是原料成本高。

3)溶胶—凝胶法

利用金属醇盐的水解或聚合反应制备氧化物或金属非氧化物的均匀溶胶,再浓缩成透明凝胶,使各组分分布达到分子水平,凝胶经干燥、热处理即可得到纳米粒子。该法优点是粒径小、纯度高、反应过程易控、均匀度高、烧结温度低,缺点是原料价格高、有机溶剂有毒、处理时间较长等。

4)微乳液法

利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,剂量小的溶剂被包裹在剂量大的溶剂中,形成许多微泡,微泡表面由表面活性剂组成,微泡中的成核、生长、凝结、团聚等过程局限在一个微小的球型液滴内,从而形成球型颗粒。

5)电化学沉积法

K.B. Kokoh, FHahn等报道,采用循环伏安法,以铂片为工作电极,在包含钌、锇离子的硫酸溶液中制备Pt-Ru,Pt-Os纳米电极。田娟等人通过循环伏安法电沉积使直径约为7nm的Pt纳米粒子均

匀地分散于多孔硅表面,拟用作微型质子交换膜燃料电池的催化电极。与刷涂法相比较,电沉积Pt 纳米粒子的多孔硅电极(Pt/Si)呈现出高的Pt利用率和增强的电催化活性。

1. 2 物理法制备纳米催化剂

1)惰性气体蒸发法

在低压的惰性气体中,加热金属使其蒸发后形成纳米微粒。纳米微粒的粒径分布受真空室内惰性气体的种类,气体分压及蒸发速度的影响,通过改变这些因素,可以控制微粒的粒径大小及其分布。该方法适应范围广,微粉颗粒表面洁净,块体纯度高,相对密度较高;但由于为了防止氧化,制备的整个过程是在惰性气体保护和超高真空室内进行的,设备昂贵,对制备工艺要求较高,故制备难度较大;且加上制备的固体纳米晶体材料中都不可避免地存在杂质和孔隙等缺陷,从而影响了纳米材料的性能,也影响了对纳米材料结构与性能的研究。

2)粉末冶金法

把纳米粉末经过加压成块、烧结,从而获得块体纳米晶材料。制备过程主要控制压力和烧结工艺参数。由于纳米粉体颗粒尺寸小、表面能高。高的表面能为原子运动提供驱动力,有利于块体材料内部空洞的收缩,故在较低的烧结温度下也能使块体材料致密化。但该法也存在晶粒尺寸容易长大、尺寸分布不均匀、微孔隙、致密度较低等问题。

2 纳米材料在催化领域的应用

纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2、CaCO3、TiO2、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。

2.1 石油化工催化领域

由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率提高几十倍。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和

质量。纳米稀土氧化物,如La2O3、CeO2、Sm2O3、Pr6O11等,可作为二氧化碳选择性氧化乙烷制乙烯的催化剂;纳米碳管用于合成氨催化剂有着潜在的前景,林敬东等用Ni-MgO催化甲烷法制得的纳米碳管作催化剂载体,嵌入钾催化剂,经脱氧、净化处理后,用于N2-3H2合成NH3的催化反应中,产物中合成氨的产率为5.32mL(STP)氨/h·g·cat,大大高于同条件常用催化剂的产率,而且纳米碳管表面更趋于碱性,有利于生成的氨脱附。

2.2 石油化工添加剂的应用

纳米材料在石油化工添加剂中的应用纳米材料可以作润滑油添加剂,用脂肪酸修饰的ZrO2及MoS2的纳米微粒具有非常好的润滑性及抗磨性;用分散型的氧化锑纳米微粒做成水溶胶作催化裂化金属钝化剂,挂锑效率提高20%,稳定性、磨蚀性能均得到增强。

2.3 光催化领域

纳米粒子作光催化剂有着许多优点,首先是粒径小,粒子达到表面数量多,光催化效率高;其次是纳米粒子分散在介质中具有透明性,容易运用光学手段和方法来观察界面间的电荷转移及纳米粒子光催化剂受氧化还原的影响等。利用纳米TiO2的光催化性质来处理废水和改善环境是一种行之有效的方法,TiO2光催化剂能有效地分解室内外的有机污染物,氧化去除大气中的氮氧化物、硫化物,以及各类臭气等;在TiO2上沉积5%纳米MoS2时,苯酚分解速度与非负载型TiO2相比提高了一倍;将CdS 颗粒制成纳米级,其对甲醇氧化成乙二醇的光催化活性显著提高;另外,用MoS2做光催化剂进行苯酚的光氧化时,当颗粒尺寸为4.5nm时,可利用大于450nm的光进行反应,而用直径大于8nm的MoS2就不行。

3. 我国催化技术领先的机构

国内一些知名企业,如中石化、中石油、神华集团、中国中煤能源、山东枣庄矿业、山西大同煤矿等,都在积极寻求能源合理利用所需催化剂的开发,为促进催化剂领域的发展做出了巨大的贡献。此外,国内一些知名科研机构及个人在催化剂领域页做出了卓越的贡献。

4. 展望

纳米材料制备技术的不断开发及应用范围的拓展,必将对传统的化学工业和其它产业产生重大影响,特别是在催化领域。目前对这方面的研究还处于实验室阶段,离实际应用还有很大的距离,还须解决许多实际问题。

1) 用纳米粒子做催化剂如何提高反应速率和催化效率,优化反应途径等方面的研究将是未来催化科学的研究重点。

2) 纳米粒子催化剂的稳定性问题,特别是在工业生产上要求催化剂能重复使用,因此催化剂的稳定性尤为重要。在这方面纳米金属离子催化剂目前还不能满足这方面的要求,如何避免纳米金属离子在反应过程中由于温度的升高颗粒长大还有待进一步深入研究。

纳米材料的发展及应用

课程名称:化工新材料概论姓名:邓元顺 学号:1208110201 专业:化学工程与工艺班级:化工122

浅析纳米材料的发展及应用 摘要:纳米材料是纳米级结构材料的简称。狭义是指纳米颗粒构成的固体材料, 其中米颗粒的尺寸最多不超过100nm。广义是指微观结构至少在一维方向上受纳米尺度(1-100nm)限制的各种固体超细材料。【2】纳米技术是当今世界最有前途的决定性技术。纳米材料在力学、磁学、电学、热学、光学和生命等方面的重要作用和应用前景。 Abstract:Nanometer material is the abbreviation of nano structured materials.The narrow sense refers to the solid material of nano particles, in which the size of the meter particles is not more than 100nm. Generalized refers to a variety of solid ultrafine materials which are limited by nano scale (1-100nm) in the one-dimensional direction at least in one dimension.. Nanotechnology is the most promising technology in the world today. Nano materials in mechanics, magnetism, electricity, heat, optics and life and so on the important role and the application prospect. 关键词:纳米材料纳米技术发展应用 前言:纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目。【1】美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心” 一、纳米材料的发展史 1965年诺贝尔物理学奖获得者、美国加利福尼亚工学院教授费曼(R.P.Feynman)曾在1959年预言:“如果有一天可以按照人的意志来安排一个个原子,将会产生怎样的奇迹?”

纳米材料参考答案

纳米材料与纳米结构复习题 1. 简单论述纳米材料的定义与分类。答:广义上讲:纳米材料是指在三维空间中至少有一维处于纳米尺度围,或由他们作为基本单元构成的材料。 按维数,纳米材料可分为三类:零维:指在空间三维尺度均在纳米尺度,如纳米颗粒,原子团簇等。一维:指在空间有两处处于纳米尺度,如纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如超薄膜,多层膜等。因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元又分别具有量子点,量子线和量子阱之称 2. 什么是原子团簇? 谈谈它的分类。 答:原子团簇: 指几个至几百个原子的聚集体(粒径一般等于或小于1nm) 例如:C n H m (n与m都是整数);碳簇(C60、C70和富勒烯等) 原子团簇的分类: a 一元原子团簇:即同一种原子形成的团簇,如金属团簇,非金属团簇,碳簇等。 b二元原子团簇:即有两种原子构成的团簇,例如Zn n P m, Ag n S m等。 c多元原子团簇:有多种原子构成的团簇,例如V n(C6H6)m等 d原子簇化合物:原子团簇与其它分子以配位键形成的化合物。例如(Ag) n(NH 3)m等。 3. 通过Raman 光谱中如何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 答:利用微束拉曼光谱仪能有效观察到单壁纳米管特有谱线,这是鉴定单壁纳米管非常 灵敏的方法。100-400cm -1围出现单壁纳米管特征峰,单壁纳米管特有的呼吸振动模式; 1609cm-1是定向多壁纳米管的拉曼特征峰。 单臂管的直径 d 与特征拉曼峰波数成反比,即:d=224/w 。式中的 d 单壁管的直径,nm;w 为特征拉曼峰的波数cm-1 4. 论述碳纳米管的生长机理。 答:采用化学气相沉积( CVD) 在衬底上控制生长多壁碳纳米管。原理:首先,过镀金 属(Fe,Co,Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体;随后,碳原子 从过饱和的催化剂颗粒中析出;最后,为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。 各种生长模型 1 、五元环-七元环缺陷沉积生长2、层-层相互作用生长3、层流生长 4、顶端生长 5、根部生长 6、喷塑模式生长 7、守善院士:13C同位素标记,多壁碳纳米管的所有层数同时从催化剂中生长出来的,证明了“帽”式生长(yarmulke) 的合理性 生长机理表面扩散生长机理:不是生长一单壁管,然后生长外单壁管;而是在从固熔体相处时,开始就形成多层管

异质结纳米材料光催化性能

密级★保密期限:(涉密论文须标注) Z S T U Zhejiang Sci-Tech University 硕士学位论文 Master’s Thesis 中文论文题目: p-n型Cu2O/TiO2异质结纳米材料的结构及其光催化性能研究 英文论文题目:Structure and photocatalytic performance of p-n heterojunction Cu2O/TiO2 nanomaterals 学科专业:应用化学 作者姓名:周冬妹 指导教师:王惠钢 完成日期:2015年1月

浙江理工大学学位论文独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江理工大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名: 签字日期:年月日

目录 中文摘要 ..................................................................................................................................... I Abstract .......................................................................................................................................... II 第一章前言. (1) 1.1背景 (1) 1.2文献综述 1.2.1纳米TiO2概述 (1) 1.2.2纳米Cu2O概述 (2) 1.2.3 p-n异质结用于光催化的基本原理 (2) 1.2.4p-n型Cu2O/TiO2异质结纳米材料光催化反应的研究进展 (4) 1.3本课题的选题思路及研究内容 (6) 参考文献 (7) 第二章还原法制备的Cu2O/TiO2异质结纳米颗粒及其光催化性能 (11) 2.1引言 (11) 2.2实验 (11) 2.2.1主要试剂和仪器 (11) 2.2.2实验方法和步骤 (12) 2.3实验结果与讨论 (13) 2.3.1Cu2O/TiO2颗粒的表征 (13) 2.3.1.1XRD表征 (13) 2.3.1.2XPS表征 (14) 2.3.1.3SEM与TEM表征 (15) 2.3.1.4PL表征 (17) 2.3.1.5DRS表征 (18) 2.3.2光催化性能实验 (19) 2.3.2.1光催化降解装置 (19) 2.3.2.2对亚甲基蓝的光催化降解性能 (19) 2.3.3Cu2O/TiO2复合材料中Cu2O颗粒的粒径调控 (20) 本章小结 (23)

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米材料用在哪方面

纳米技术是新世纪一项重要的技术,为多个行业带来了深远影响。纳米技术包含几个方面:纳米电子学,纳米生物学,纳米药物学,纳米动力学,以及纳米材料。其中,纳米材料主要集中在纳米功能性材料的生产,性能的检测。其独特性使它应用很广,那么,纳米材料用在哪方面呢 1、特殊性能材料的生产 材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通钨粉需在3 000℃高温时烧结,而当掺入%%的纳米镍粉后,烧结成形温度可降低到1200℃-1311℃。复合材料的烧结由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。 纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,获得烧结性能好的复合材料。纳米陶瓷材料的制备通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作用。 2、生物医学中的纳米技术应用 从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也

影响纳米材料光催化性能的因素

1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比H+/H 2 O的氧化 还原势负,才能产生H 2,价带顶必须比O 2 /H 2 O(+的氧化还原势正,才能产生O 2 ,。 因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半 导体禁带宽度Eg应至少大于。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO 2 是目前认为最 好的光催化剂之一。TiO 2 主要有两种晶型—锐钛矿和金红石,两种晶型结构均可 由相互连接的TiO 6 八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙()略大于金红石(),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在

影响纳米材料光催化性能的因素

二、影响纳米材料光催化活性的因素。 1、半导体的能带位置 半导体的带隙宽度决定了催化剂的光学吸收性能。半导体的光学吸收阈值λg与Eg有关,其关系式为:λg=1240/Eg。半导体的能带位置和被吸附物质的氧化还原电势,从本质上决定了半导体光催化反应的能力。热力学允许的光催化氧化还原反应要求受体电势比半导体导带电势低(更正);而给体电势比半导体价带电势高(更负)。导带与价带的氧化还原电位对光催化活性具有更重要的影响。通常价带顶VBT越正,空穴的氧化能力越强,导带底CBB越负,电子的还原能力越强。价带或导带的离域性越好,光生电子或空穴的迁移能力越强,越有利于发生氧化还原反应。对于用于光解水的光催化剂,导带底位置必须比 H+/H2O(-0.41eV)的氧化还原势负,才能产生H2,价带顶必须比O2/H2O(+0.82eV)的氧化还原势正,才能产生O2,。因此发生光解水必须具有合适的导带和价带位置,而且考虑到超电压的存在,半导体禁带宽度Eg应至少大于1.8eV。目前常被用作催化剂的半导体大多数具有较大的禁带宽度,这使得电子-空穴具有较强的氧化还原能力。 2、光生电子和空穴的分离和捕获 光激发产生的电子和空穴可经历多种变化途径,其中最主要的是分离和复合两个相互竞争的过程。对于光催化反应来说,光生电子和空穴的分离与给体或受体发生作用才是有效的。如果没有适当的电子或空穴的捕获剂,分离的电子和空穴可能在半导体粒子内部或表面复合并放出荧光或热量。空穴捕获剂通常是光催化剂表面吸附的OH-基团或水分子,可能生成活性物种·OH,它无论是在吸附相还是在溶液相都易引发物质的氧化还原反应,是强氧化剂。光生电子的捕获剂主要是吸附于光催化剂表面上的氧,它既能够抑制电子与空穴的复合,同时也是氧化剂,可以氧化已经羟基化的反应产物。 3、晶体结构 除了对晶胞单元的主要金属氧化物的四面体或八面体单元的偶极矩的影响,晶体结构(晶系、晶胞参数等)也影响半导体的光催化活性。TiO2是目前认为最好的光催化剂之一。TiO2主要有两种晶型—锐钛矿和金红石,两种晶型结构均可由相互连接的TiO6八面体表示,两者的差别在于八面体的畸变程度和八面体间相互连接的方式不同。结构上的差异导致了两种晶型有不同的质量密度及电子能带结构。锐钛矿的质量密度略小于金红石,且带间隙(3.2eV)略大于金红石(3.1eV),这是其光催化活性比金红石的高。 4、晶格缺陷 根据热力学第三定律,除了在绝对零度,所有的物理系统都存在不同程度的不规则分布,实际晶体都是近似的空间点阵式结构,总有一种或几种结构上的缺陷。当有微量杂质元素掺入晶体时,也可能形成杂质置换缺陷。这些缺陷的存在对光催化活性可能起着非常重要的影响。有的缺陷可能会成为电子或空穴的捕获

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

纳米科技与纳米技术

纳米技术 1510700224 韦甜甜纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,也称毫微技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 利用纳米技术将氙原子排成IBM纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 在我国,纳米技术早已融入到大众的生活了,包括很多涂料、纤维材料、燃料、高分子合成和纺织品加工处理技术等等。其实纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米技术内容 1、纳米材料 当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,像铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 2、纳米动力学 主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.

纳米材料与纳米结构21个题目完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

纳米材料的应用和发展前景概要

一、文献调研部分(获取综述的参考文献—精读全文)1.利用中文(期刊、学位论文、会议论文)数据库,检出中文切题题录(批量),选择记录文摘格式10篇(其中学位论文要求不少于2篇、期刊论文6篇); [1]叶灵. 纳米材料的应用与发展前景[J]. 科技资讯. 2011(20) 摘要: 很多人都听说过"纳米"这个词,但什么是纳米,什么是纳米技术,可能很多人并不一定清楚。着名的诺贝尔奖获得者Feyneman在20世纪60年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 [2]赵雪石. 纳米技术及其应用前景[J]. 适用技术市场. 2000(12) 摘要: 纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的前景,使得纳米技术成为目前科学研究的热点之一,被认为是21世纪的又一次产业革命。 [3]何燕,高月,封文江. 纳米科技的发展与应用[J]. 沈阳师范大学学报(自然科学版). 2010(02) 摘要:纳米科技是21世纪的主导产业,世界各国把纳米科技的研究和应用作为战略重点。在第五次科学技术革命中,新材料家族被推上新一轮科技革命的顶峰。在新材料和新技术中,纳米材料和纳米技术无疑将成为核心材料和核心技术。纳米技术的最终目标是直接操纵单个原子和分子,制造新功能器件,从而开拓人类崭新的生活模式。文章概述了纳米科技的发展过程及纳米材料的性质与制备,介绍了纳米技术在部分领域的应用,并简述了纳米技术对未来社会的巨大影响及潜在的、令人鼓舞的发展前景。 [4]何彦达. 纳米材料的应用及展望[J]. 科技风. 2010(01) 摘要:纳米材料(尺寸在1-100纳米范围内)又称超细微粒、超细粉末,是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 [5]樊东黎. 纳米技术和纳米材料的发展和应用[J]. 金属热处理. 2011(02) 摘要:<正>2005年12月在克利夫兰召开了由美国金属学会和克利夫兰纳摩网主办的美国纳米技术应用峰会。许多实体企业,如波音、福特、通用、洛克希德、蒂姆肯等公司高管出席会议和发言。会议的特点是着重于纳米。 [6]张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16) 摘要:由于独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,以下概述了纳米材料的应用与发展前景。 [7]杨萍. 多功能复合纳米材料的制备及其光分析应用研究[D]. 中国科学技术大学 2012 摘要:纳米材料具有独特的化学、物理和生物性能,引起了人们的极大关注。多功能复合结构纳米材料能够将不同功能的纳米材料整合到一个纳米器件中,从而为现代工业、生物医学

纳米材料在光催化中的应用

纳米材料在光催化中的应用 姓名:杨明学号:5400209157 班级:工管093班 摘要: 纳米技术是当今世界最有前途的决定性技术。以半导体材料为催化剂光催化氧化水中有机污染物在近年来受到广泛关注,许多研究工作者在有机物光催化氧化方面进行了大量研究工作,发现卤代芳香烃、卤代脂肪烃、有机酸类、染料、硝基芳烃、取代苯胺、多环芳烃、杂环化合物、烃类、酚类、表面活性剂、农药等都能有效地进行光催化反应,除毒、脱色、生成无机小分子物质,最终消除对环境的污染。纳米材料是晶粒尺寸小于100 nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等(1)。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。 引言: 此法能处理多种污染物,适用范围广,特别是对难降解有机物具有很好的氧化分解作用;还具有反应条件温和,设备简单,二次污染小,易于操作控制,对低浓度污染物及气相污染物也有很好的去除效果;催化材料易得,运行成本低;可望用太阳光为反应光源等优点,是一种非常有前途的污染治理技术。 关键字:纳米纳米材料纳米材料光催化纳米TiO2 水热合成法 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000—8000nm,人体红细胞的直径一般为3000—5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃(2)。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1—100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米TiO2在光催化领域已经显示出广阔的应用前景.但是,由于TiO2仅仅能吸收5%紫外区附近的太阳光而限制了它的广泛应用,许多研究试图通过表面改性与掺杂来扩大它的光谱响应范围和提高它的催化活性。有选择性的进行掺杂已被证明是一种提高半导体氧化物光催化活性的极其有效的方法,掺入一定的金属阳离子能极大的提高TiO2的光催化效率,最近有大量的关于通过掺杂来提高TiO2的光催化性能的报道,掺杂的半导体光催化材料由于其物理和光学性质的改变,通过扩展光响应范围和提高光生电荷的分,从而提高了光催化性能(2)。 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景(3)。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

浅谈纳米材料光催化技术研究现状

龙源期刊网 https://www.doczj.com/doc/b69626292.html, 浅谈纳米材料光催化技术研究现状 作者:林雪牛文成 来源:《神州》2012年第29期 摘要:近年来,人们对半导体纳米光学材料的研究越来越广泛。从1972年Fujishima和Honda利用TiO2电极实验发现光解水现象开始,人们逐步开始对半导体材料进行研究。本文就纳米材料光催化技术研究现状和发展前景进行了简要介绍。 关键词:纳米材料,光催化 一、纳米材料的分类 人类对材料科学的探索与研究已有上千年的历史了,但是纳米材料作为新型材料的一种,其从发展到现在也不过二三十年的时间。1984年,德国著名学者通过现代技术将一个6nm的铁晶体压制成纳米块,并详细的分析了其内部结构的改变而引起的性能差异。发现从强度和硬度上都较普通钢铁强很多倍,并且在低温下失去传导能力,随着自身晶粒尺寸的减小,材料的熔点也会随之降低。1990年,纳米科技大会在美国第一次胜利举办,《纳米技术杂志》的正 式创刊标志着纳米科技从此正式开山立派。而我国的纳米领域的研究基本与国际发展同步,目前已具备开展纳米科技的研究条件,国家重点研究机构对相关高科技的研究步伐不断加快,部分领域已经与国际先进水平持平,这些都为实现跨越式发展提供了可能。近年来,我国通过结合国家战略需求,对纳米技术在能源、环境、资源和污水处理等领域开展深入研究,纳米材料净化机、助燃剂、固硫剂和降解剂等新型产品相继研究成功。 人们对于一门新学科——纳米材料学的研究已经有一定的进展。通常纳米材料以三种方式分类:按结构分类、按化学组分分类和按应用分类: 1、按结构分,我们通常将其分为四类:第一类是具有原子簇与原子束结构的零维纳米材料;第二类是具有纤维结构的一维纳米材料;第三类是具有层状结构的二维纳米材料;第四类是晶粒尺寸至少在一个方向上在纳米量级的单位纳米材料。 2、按化学组分,通常又有两种分类方式,一种是按材料的化学性质分类,另一种是按材料的物理性质分类。按材料化学性质,我们通常将其分为纳米金属材料,纳米晶体材料,纳米陶瓷,纳米玻璃,纳米高分子和纳米复合材料;按材料物理性质,我们可将纳米材料分为纳米半导体材料,纳米磁性材料,纳米非线性光学材料,纳米铁电体材料,纳米超导材料和纳米热电材料等等。 3、按应用,我们可将其分为纳米电子材料、纳米光催化材料、纳米生物医学材料、纳米光敏材料、纳米储能材料等等。 二、纳米光催化技术的研究现状

纳米材料的研究内容及进展

纳米材料的研究内容及进展 摘要 纳米科技是在80年代末,90年代初逐步发展起来的前沿、交叉性新兴科技领域,也是21世纪最 前沿,最富有活力的学科领域之一,是继信息技术和生物技术之后,又一深刻影响人类和社会经济发 展的重大技术,它的迅猛发展将在新世纪影响到几乎所有的工业领域,有些甚至产生革命性的变化。 关键词:纳米材料研究内容进展 在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速必然对材料 提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越 小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此 基础上诱发的新技术。新产品的创新是未来10年对发展、振兴、国力增强最有力的战略领域,纳米 材料将是起重要作用的关键材料之一。纳米科技研究的深入发展和产业化的迅速推进对高水平研发人 员和高级技术人才提出了越来越迫切的需求,世界发达国家已经在全面部署纳米科技的教育,以期为 形成现实生产力做准备。 一纳米材料的研究内容 纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米中最为活跃、最接近的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方某时400G的磁性纳米棒阵列的量子磁盘、成本低廉、发光频段可调的高效纳米阵列激光器、价格低廉高能量转化的纳米结构太阳能电池和热电转化元件、用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新,提出新概念,建立新,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的的意愿合成具有特殊性能的新材料。利用新物性、新原理、新设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。 进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物 FqsAJZCr室成果的转化,到为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。 二纳米材料的研究进展 根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(NSF)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国DARPA(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近匕年来制定了各种计划用于纳米科技的研究,例如 Ogala计划、ERATO

纳米材料与纳米催化

纳米材料与纳米催化 1.什么是纳米材料? 基本构成单元内容? 判断的标准什么? 答:纳米材料(nanometer material)是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。纳米材料是在三维空间中至少有一维处于纳米尺度范围。 纳米材料的基本结构单元分为四类: 零维:三维均为纳米尺度,如纳米颗粒、原子团簇等。 一维:空间两维在纳米尺度,如纳米管、纳米棒等。 二维:空间一维在纳米尺度,如超薄膜、多层膜等。 三维:宏观固体,但由纳米基本单元构成,如纳米固体等。 纳米材料的判断标准: 微粒尺寸和晶粒尺寸是否小于100nm; 是否具有不同于常规材料(bulk)的性能。 2.纳米微粒的基本理论的内容是什么(7条)? 并简要说明量子尺寸 效应、小尺寸效应、表面效应? 答:纳米微粒的基本理论的内容包括久保理论(电子能级的不连续性)、量子尺寸效应、小尺寸效应、表面效应、宏观量子隧道

效应、库仑堵塞与量子隧穿效应、介电限域效应。 量子尺寸效应: 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级和纳米半导体微粒能隙变宽现象均称为量子尺寸效应。 小尺寸效应: 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;同时超细微粒的颗粒表面层附近原子密度减小,导致声、光、电、磁、热、力学等特性呈现新的小尺寸效应。 表面效应: 表面效应又称界面效应,是指纳米微粒的表面原子数与总原子数之比随粒径减小而急剧增大后所引起的性质上的变化。随着纳米微粒的粒径逐渐减小达到纳米尺寸,除了造成表面积迅速增加之外,表面能量也会大幅递增。 3.简要说明纳米微粒的化学特征有哪些?防止团聚的方法。 答:纳米微粒的化学特征有吸附、分散和团聚。 吸附是相接触的不同相之间产生的结合现象。吸附可以分成两类,一是物理吸附,吸附剂与吸附相之间是以范德瓦耳斯力之类较弱的物理力结合;二是化学吸附,吸附剂与吸附相之间是以

相关主题
文本预览
相关文档 最新文档