当前位置:文档之家› 小水线面三体船结构概念设计及有限元分析

小水线面三体船结构概念设计及有限元分析

小水线面三体船结构概念设计及有限元分析
小水线面三体船结构概念设计及有限元分析

小水线面三体船初探

小水线面三体船初探 班级20080112 学号2008011229 姓名陶伯政

摘要 进入21世纪以来,各种高性能船舶的研究越来越多,在小水线面三体船方面,主要集中在细长型小水线面三体船(高速小水线面三体船)及小水线面小水线面三体船上。随着人们对船舶的稳性、耐波性等性能的要求越来越高,小水线面三体船作为一种高性能新船型,正在引起人们极大的关注。由于其独特的船型、优良的性能及在主要技术性能方面的诸多优势,小水线面三体船必将在军用、民用市场有广阔的应用前景。 关键词:高速三体船小水线面三体船 一、发展概况 当代小水线面三体船的研究己有30多年的历程,直到上世纪90年代中期以后高速小水线面三体船(细长型)的研究才取得了较大发展.这期间国内外高速小水线面三体船(细长型)的研究主要集中在水动力理论、模型试验、船型优化以及概念设计等方面,也有少量关于结构强度方面的文献。小水线面三体船其水下部分是由一个主船体和两个小侧体组成的,两个侧体一般对称地摆放在主船体的两侧,三个船体均为细长船体,通过连接桥将主体和两个侧体连接成一体。 图1.1 小水线面三体船中横剖面 图1.2 小水线面三体船局部模型

国内的小水线面三体船研究起步较晚,始于上世纪90年代末期。国内在小水线面小水线面三体船方面的研究还较少,上海交通大学进行了一些初步的阻力研究和试验。一批与哈尔滨工程大学为首的高校和科研院所主要通过模拟或是模型探索性研究小水线面三体船的耐波阻力,操纵性。而在抗沉性、材料,前沿技术方面限于各种原因而研究较少。下图1.3为我校设计制作的细长型高速小水线面三体船模型。 图1.3 高速小水线面三体船模型试验 如图1.5 为瑞典QinetiQ公司和OTG公司设计的Tri/SWA TH模型图。 图1.4 Tri/SWA TH模型图 到目前为止,世界范围内己经出现了多艘小水线面三体船型的实船。2000年5月6日,英国海军一艘名为“海神”号(RVTriton)的三体试验舰建成并顺利下水,三体舰船第一次从纸上浮到海上。该舰长97米,宽22.5米,排水量1100吨,最高航速20节,续航力3000海里。图1.6英国海军“海神”号三体试验舰

小型双体船的总体设计

第一章绪论 近年来,越来越多的双体船占据了民用和军用船舶市场。它们新颖的外观、独特的综合性能受到世界各国的瞩目。据外电报道,美国海军新近欲按计划接收一艘高速双体船:“海上斗士”号,此消息再一次引起了人们对双体船的关注。 1.1双体船的概况与发展趋势 1.1.1双体船的概况 人类最早使用双体船是由于发现将两艘船横向连接在一起,可以从内河到海上航行而不容易翻船,早期曾将这种方法用在帆船上,建造了双体帆船,这种帆船在海上可以承受较大的风浪。在此基础上,人们又发现双体船与同样吨位的单体船相比,具有更大的甲板面积和舱容,因此而被用于货船。20世纪60年代后,随着海上高速客运的迅速发展,高速双体船由于有宽大的甲板面积、空间和便于豪华装饰而被普遍看好,成为近几十年来高性能船中发展最快、应用最广、建造数量最多的一种。 典型的高速双体船由两个瘦长的单体船(称为片体)组成,上部用甲板桥连接,体内设置动力装置、电站等设备,甲板桥上部安置上层建筑,内设客舱、生活设施等。高速双体船由于把单一船体分成两个片体,使每个片体更瘦长,从而减小了兴波阻力,使其具有较高的航速,目前其航速已普遍达到35-40节;由于双体船的宽度比单体船大得多,其稳定性明显优于单体船,且具有承受较大风浪的能力;双体船不仅具有良好的操纵性,而且还具有阻力峰不明显、装载量大等特点,因而被世界各国广泛应用于军用和民用船舶( 。

1.1.2双体船的航海性能 图1-1双体船的航海性能 1.1.3双体船的发展趋势 为进一步改善高速双体船的综合性能,人们在高速双体船的基础上派生了若干新型的双体船型。 (1)小水线面双体船和穿浪双体船的派生 所谓小水线面双体船,是由潜没于水中的鱼雷状下体、高于水面的平台(上体)和穿越水面联接上下体的支柱三部分组成,其优点在于水线面面积较小,受波浪干扰力较小,在波浪中具有优越的耐波性。另外,还具有宽阔的甲板面和充裕的使用空间。但也存在船体结构复杂,对重量分布较为敏感等问题。 穿浪双体船是在高速双体船的基础上发展起来的,是将小水线面和深V 型船在波浪中的优良航行性能、双体船的结构形式及水翼船弧形支柱等优点复合在一起的产物,具有良好的适航性,而且继承了双体船宽甲板的特点。 (2)双体船向大型化发展 为了改善快速性和耐波性尝试向复合船型发展,其中,小水线面船型将从双体演化成单体或三体、四体、五体等多体。为提高双体船在高海况下的航行能力,各国的研究方向大都集中在开发超细长体双体船的系统技术、优化线形设计和采用大功率喷水推进系统等方面。 双体船的航海性能 主要 性能 其他 性能 快 速 性 浮 性 稳 性 耐 波 性 操 纵 性 不 沉 性 隐 身 性

高速三体船研究综述

第17卷第2期2005年4月 海军工程大学学报 JOURNAL0FNAVALUNIVERSITYoFENGINEERING V01.17No.2 Apr.2005 文章编号:l009—3486(2005)02—0043一06 高速三体船研究综述 卢晓平,郦云,董祖舜 (海军工程大学船舶与动力学院,湖北武汉430033) 摘要:从水动力理论、模型试验和船型优化等方面对高速三体船的研究进展进行了综述,阐述了高速三体船的应用前景,归纳评述了有关的研究成果和尚存在的问题,并提出了关于这种新船型的若干研究方向. 关键词:船舶水动力;三体船;模型试验;船型优化 中图分类号:U674.951文献标识码:A AresearChsummaryonhighspeedtrimaran LUXiao—ping,LIYun,DONGZu—shun (CollegeofNavalArchitectureandPower,NavalUniv.ofEngineering,Wuhan430033,China) Abstract:Asummaryontheresearchprogressofthehighspeedtrimaranismade,whichcontains3partssuchasthehydrodynamicresearch,modeltestandshipformoptimization,andsomeresearchsubjectsaboutthisnewshipformareputforward. Keywords:shiphydrodynamics;trimaran;shipmodeltest;shipformoptimization 近年来,特种排水型高性能船型的研究趋于活跃,如深V型船、小水线面双体船以及穿浪双体船等都是研究和实用较多的船型,还有一种新船型高速三体船引起了人们很大的关注.高速三体船水下部分由中体(主船体)和两个小侧体(辅船体)组成,3个船体均为细长片体,中体比普通单体船更加瘦长(L/B大约在12到18之间),侧体排水量不超过中体排水量的10%,连接桥将侧体与中体连接成一体.这种船型构造使高速三体船的兴波阻力小,2个侧

概念结构设计和逻辑结构设计

概念结构设计和逻辑结构设计 一.系统概述 本系统通过调查从事医药产品的零售,批发等工作的企业,根据其具体情况设计医药销售管理系统。医药管理系统的设计和制作需要建立在调查的数据基础上,系统完成后预期希望实现药品基本信息的处理,辅助个部门工作人员工作并记录一些信息,一便于药品的销售和管理。通过此系统的功能,从事药品零售和批发等部门可以实现一些功能,如:基础信息管理,进货管理,库房管理,销售管理,财务统计,系统维护等。 二.概念结构设计 1.员工属性 2.药品属性 3.客户属性 4.供应商属性 5.医药销售管理系统E--R 图 三.逻辑结构设计 该设计概念以概念结构设计中的E--R 图为主要依据,设计出相关的整体逻辑结构,具体关系模型如下:(加下划线的表示为主码) 药品信息(药品编号,药品名称,药品类别,规格,售价,进价,有效期,生产日期,产地,备注) 供应商信息(供应商编号,供应商名称,负责人,) 员工 姓名 家庭地址 E-maill 电话 员工 编号 年龄 帐号

四.系统各功能模块如何现(数据流实图);1.基本信息管理子系统 基本信息管理子系统 药品信息员工信息客户信息供应商信息2.库存管理子系统 库存管理子系 统 库存查询库存信息出入库登记库存报表3.销售管理子系统 销售管理 销售登记销售退货销售查询 4.信息预警子系统 信息预警 报废预警库存预警 5.财务统计子系统 财务统计 统计销售额打印报表 6.系统管理子系统

系统管理 权限管理修改密码系统帮助 五.数据库设计(E-R图,数据库表结构) 1.药品基本信息表 列名字段数据类型可否为空说明药品编号 药品名称 药品类别 规格 进价 有效期 生产日期 售价 产地 备注 2.员工基本信息表 列名字段数据类型可否为空说明员工编号 性别 身份证号 员工年龄

结构概念设计三

结构概念设计(三) 3.抗震结构体系的优化配置 (1)多道抗震防线 一次巨大的地震产生的地面运动,能造成建筑物破坏的强震持续时间少则几秒,多则几十秒,有时甚至更长(汶川地震强震持续时间80秒以上),一个接一个强脉 冲对房屋往复式冲击,造成积累式的破坏。如果建筑物采用仅有一道防线的结构体 系,一旦该防线破坏后,在后续地面运动的作用下,就会倒塌;特别是当建筑物自 振周期与地震动卓越周期相近时,建筑物会发生类共振,更加速倒塌过程。如果采 用多重抗侧力体系,第一道防线破坏后,第二道、第三道防线抗侧力立即发挥作用, 接替挡抗住后续的冲击,避免倒塌。在遇到建筑的基本周期与地震动卓越周期相近 时,多道防线就显出良好性能,当第一道防线因共振破坏后,第二道防线接替工作, 自振周期大幅变化错开了地震动卓越周期,避开出现持续的类共振,从而减轻地震 的破坏作用,因此设置合理的多道防线是提高抗震能力、减轻破坏的必要手段。 例如,在框架-剪力墙结构中,延性的抗震墙是第一道防线,令其承担全部地震力,延性框架是第二道防线,要其承担墙体开裂后转移到框架的部分地震剪力。 对于单层厂房,柱间支撑是第一道防线,承担了厂房纵向的大部分地震力,未设支撑的开间柱则承担因支撑损坏而转移的地震力。 (2)足够的侧向刚度 但“刚一些好”还是“柔一些好”应结合结构的具体高度、体系和场地条件进行综合判断。 根据结构反应谱分析理论,结构越柔周期越长,结构在地震作用下的加速度反应越小,即地震影响系数越小,结构所受到的地震作用就越小。但是,是否就可以 设计得柔一些减小结构的地震作用呢? 国内外地震表明一般性高层建筑还是刚比柔好。采用刚性结构方案的高层建筑不仅主体结构破坏轻,而且由于地震对结构变形小,隔墙、围护墙等非结构构件受 到保护,破坏也轻。 正是基于上述原因,目前世界各国的抗震规范对结构的抗侧刚度提出明确要求。 我国《抗规》规定了各类结构多遇地震和罕遇地震下的变形限值要求(见《抗规》 表5.5.1及表5.5.5)。 此外,结构振动和变形的大小不仅与结构刚度有关,还与场地土有关。当结构自振周期与场地土的卓越周期接近时,建筑物地震反应会加大,变形和地震力都会 加大。因此,还应根据场地条件来设计结构,硬土地基上的结构可柔一些,软土地 基上的结构可刚一些,通过改变结构刚度调整结构自振周期,使其偏离场地的卓越 周期。较理想的结构是自振周期比场地卓越周期更长,如果不可能,则应使其比卓 越周期短得较多,因为在结 构出现少量裂缝后,周期会 加长,要考虑结构进入弹塑 性状态时结构自振周期加长 后与场地卓越周期的关系, 如果有可能发生类共振,则 应采取有效的措施,因此在 进行较高的高层建筑设计前, 应取得场地土动力特性的勘

什么是三体船,三体船优缺点

什么是三体船、三体船优缺点 三体船由来 三体船是以军事应用为目的而发展的一种新船型,起步迄今不过20年。 与单体船相比,三体设计具有更快的航速、更低的燃料消耗、更好的适航稳定性和更出色的操纵性,战场生存能力更为出色。 三体船的平稳性比小水线面双体船型还要好得多,其宽大的甲板面积,更有利于舰载机的起降。中间的主船体内可放置重要设备和弹药,两侧的副船体可以起到对主船体的保护作用,在遭到敌方水下武器攻击时可使中间的主船体免受损伤,大大提高了舰船的生存能力。船体设计采用内倾斜边和雷达吸波材料,具有较小的雷达反射面积,船的外侧船体也有助于减弱推进器在水下发出的较大声响。 三体船详细介绍 三体船主要由三个船体组成,其中间为主船体,尺度约占排水体积的90%,两侧并肩各有一个大小相同的辅助船体,其主要特点是中高速阻力性能优于单体船和双体船,适航性优于单体船,甲板面积宽敞,便于舱室布置;由于主船体和两侧辅体的屏蔽,全船具有隐身性和较高的生存能力。其缺点是结构复杂,重量较大,设计难度大,操纵性稍差,建造、下水、锚泊和进坞比较困难。也正是由于三体船具有很大的制造难度,目前各国一般在建造大中型舰艇时才考虑这一舰型。除美国和英国外,目前日本也在考虑建造未来型三体战斗舰艇,在2007年日本防卫省军事研发机构公开展示的资料中,就出现了一种4000吨级的舰船设计。

资料显示它能够以高速或者低速航行,同时能利用雷达和材料增强其隐身能力。其设计与LCS2十分相似。 三体船有三个瘦长的船体共享一个主甲板及上层结构,使用涡轮喷嘴发动机,通过向后喷水获取反作用力向前推进,比普通螺旋桨推动更快速,而在高速时,三体瘦长的船身能降低阻力。而且船体稳度高,不易翻船(但若风浪过大,翻过90度后,因为没有单体船的静稳度扶正力矩,反而有灭顶之虞) 尽管三体舰的“噱头”让濒海战斗舰成为世界海军界近年来最大的热点,但军事专家也指出,濒海战斗舰还存在一些深层次的问题:濒海战斗舰更多地只能担负相对单一的行动,很难一次性地完成近海海域的所有或多种作战任务。虽然从理论上讲,它能装设可迅速互换的多种模块(反舰、反潜或反水雷),但针对每次具体的海上作战任务,在出海行动前只能更换和使用其中一种模块;一旦海上行动临时发生变化或遇到特殊情况时,已装设的模块便因无法及时更换而将难以适应新任务的需要。因此在可预见的未来,濒海战斗舰还无法取代两栖攻击舰(因不具备装载大型武器能力)、驱逐舰(因不具备较强的防空能力)、扫雷舰(因不具备高效的扫猎雷能力)等水面舰艇,而成为未来近海海域唯一、可靠的海上作战平台。 三体船的优缺点 优点 三体船型战舰之所以备受各国的青睐,主要在于它与生俱来的优点:[2]

高性能船舶船型介绍

高性能船舶船型介绍 发布: 2010-3-11 18:07 | 作者: lowellzhu | 来源: 龙de船人 [i=s] 本帖最后由lowellzhu 于2010-3-11 18:27 编辑 接触高性能船舶时一直不太理解什么是高性能船以及高性能船舶船型的分类,经过翻阅各类书籍及论文,总结一下,供船人参考,并希望专业人士斧正! 当前,高性能船舶的研发与推广应用备受国内外造船界的青睐,其船型更是国际著名学者机构研究的热点。这类船舶种类繁多,新船型层出不穷,日新月异,在各类船舶中是新思想最丰富、最有创新、也最有活力的领域;其高航性、优良的耐波性、低物理场辐射特征、舒适安全性、良好的经济性等性能受到军事和民用领域的极大关注,拥有良好的发展前景 依据支持船重的方式和作用原理的差异对高性能船舶船型进行分类,并分别介绍各类船型。 1 高性能船舶的分类 高性能船舶按其特性可分为气垫船,水翼船,小水线面双体船,多体船,地效翼船,高速单体船等各式各样的显著不同于常规船舶的船型。而按照支承船重的方式和作用原理差异,把高性能船舶分为:浮力支承型、静态气垫升力支承型、动态升力支承型、复合型。本文将按照后者分类方式分别对各种高性能船舶的船型进行介绍。 2 船型介绍 2.1

浮力支承型 1)高速深V型船 船首部横剖面呈深V形,并突出到船体基线的下方,其V形断面比U形断面的船体可以更好的满足适航性的要求。深V船型具有两种基本的舯剖面形式,即单折角线或双折角线(见下图)。当要求设计艇有较大内部容积和较低的相对航行速度(低傅氏数)时采用双折线型,而单折角线型的艇则更适合于要求较低的排水量和较高的相对航行速度(较高傅氏数)的情况。然而,对船舯剖面形式的选择不存在确定性的规则,因为其它的参数也起重要作用。所以双折角线型也可以应用于快艇,反之亦然。 1.jpg 2) 小水线面双体船 小水线面双体船基本上由三大部分组成,即水下体(提供浮力)、桥体结构(生活与工作平台)、支柱(星双凸流线形截面,作为前二者之联结体)。 小水线面双体水下体(如图)有两个深置水下承受大部分浮力的鱼雷状下潜体,它的宽敞的船体高出水面,船体和鱼雷状下潜体之间由狭长的流线型支柱连接。 小水线面双体船有几种形式:下图所示的为“单体单支型”,还有“单体双支柱型”(即一个潜体用前后两个支柱连接),或者“双体双支柱型”(每一侧有前后两个潜体,每个潜体各有一个支柱)。下潜体后端安装有两个螺旋桨,内侧装有前后各两个稳定鳍,前小后大[5]。

先进船型与船体结构设计技术综述

先进船型与船体结构设计技术 1 概述 1.1船型与船体结构设计技术的概念与内涵 船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。 船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。 1.2 重要性 在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较难在耐波性、快速性方面作大幅度改进。应用新技术研究开发新船型,成为军事大国提高国防工业和海军作战水平的重要途径之一。 新的船型开发离不开先进的船体结构设计技术。船型研发周期长、成本高、舰船使用期长、环境和载荷恶劣,在其使用期内可能遭遇到多种随机事故或战斗伤害,损害一旦发生,将对结构产生不利影响,导致整个船体结构失去工作或战斗能力,也造成很大的经济损失。因此,要求船体结构设计技术不断进步、领先,船体线型最优化、构件尺寸合理,工况和承载能力计算和校核精确,以支撑先进可靠的船型开发。 2 国外研究现状 船型与船体结构设计技术在国防工业领域的研究和发展突出体现在海军舰艇的需求不断升级,促使一些先进船型的开发、试验和发展,对船舶设计技术的要求也不断提高。 多体船型主要有双体船、三体船、四体船和五体船等,同单体船相比,多体船具有更加优越的浮性和稳性、耐波性、机动性和隐身性,能够大量装载,抗打击能力强,在民用和军用领域得到了广泛的应用,其各船型也是各军事大国研究的热点。小水线面双体船(SWATH)、穿浪双体船是高性能船舶中发展较快、趋于成熟的船型。美国多年来一直大力开发小水线面双体船,在小水线面双体船的线型、流体、结构、耐波性、操纵性等基础理论与研究试验方面取得了一系列成果,并拥有相当的技术储备。自1973年到21世纪初,美国开发了“卡玛利诺”号、“海影”号、“胜利”号、“搜索”号、“海刀锋”号和“无瑕”号等6型小水线面双体船型的水声监听船、试验船等。2005年,法国研制出一种SWATH型近海巡逻舰,该舰排水量2000吨,采用全电力推进系统,航速12节时续航力达5000海里,并可在6级海况下正常作业。澳大利亚INCAT公司租借给美海军的Incat 050型“联合探险”号、Incat 060型“矛头”号,以及Incat 061型等穿浪双体高速船舶用于进行系列试验、评估及操作使用。英国海军2000年

小水线面双体船的发展与前景

小水线面双体船的发展与前景 大连海洋大学 12-1班 摘要:小水线面双体船的优良性能在近些年里得到验证和发展,在特殊作业和高舒适性上已经得到认可。据不完全统计,截止2000年末,全球已建成的小水线面双体船 为57艘,小水线面双体船的发展有足够的市场和潜力。 引言 近年来,随着海上运输方式的多样化以及人类对海洋资源的积极开发,对船舶性能的要求也逐渐发生变化。就海上运输来说,由过去只注重载荷性能和静水中快速性能而一味追求大型化和高速化的倾向,转为注重提高船舶在波浪中的性能。在客渡轮方面,为实现定期航行、高效运输以及舒适乘坐,提高船舶的耐波性和节能被摆在重要位置;在海洋开发方面,为了能在高海情下的广阔海域进行海洋调查、观测、作业以及海洋平台输送人员等,迫切需要在波浪中具有较高安全性、稳定性和舒适性的多用途船舶;在军舰方面,为了使舰艇在宽阔的海域和恶劣的海情下执行任务,也迫切需要有波浪中能达到高性能要求的舰船。小水线面双体船(small water-plane-area twin hull ,SWATH)正是这样一种耐波性能极其优良,中、高速下阻力小,甲板面积相当宽阔,可以完成多种使命,满足各种航海要求的新船型。 小水面双体船又称为半潜式双体船(semi-submerged catamaran ,SSC),其设计概念1905年由美国人Nelson提出,1932年Faust提出了SWATH船的初步设想、,1946年加拿大人Creed、1967年美国人Leopold进一步予以完善并申请专利。这些设计在低速和中速时性能是较好的,但是都没有解决纵向运动稳定性这个航行安全至关重要的问题。1971年兰Lang提出了一个接近于现有小水线面双体船的设计方案,他用一根翼型剖面的横梁将两个片体连接起来,并借此保证船的纵向运动稳定性。1973年,世界上第一艘小水线面双体船“卡玛林诺”号与此方案十分相似。一些近海的半潜式钻井平台的设计也应用了小水线面双体船的概念 “卡玛林诺”号和“海鸥”号(标题) 1969年开始,美国海军船舶研究与发展中心DTNSRDC和美国海军船舶工程中心NAVSEC进行一系列小水线面双体船的性能研究和方案设计工作。与此同时,美国的一些大学和私营公司做了不少小水线面双体船的研究工作,在这些研究成果的基础上,美国海军水下中心NUC于1970年开始了第一艘小水线面双体船的设计并于1972年在马里兰州柯蒂斯海湾的海岸警卫队船厂开工建造。这艘双体船总长26.80米,甲板长23.43米,宽19.27

7.3 概念结构设计(S)

7.3 概念结构设计 将需求分析得到的用户需求抽象为信息结构即概念模型的过程就是概念结构设计。它是整个数据库设计的关键。(概念结构是对用户需求的客观反映,不涉及到软硬件环境,也不能直接在数据库管理系统DBMS上实现,是现实世界与机器世界的中介。这一阶段所产生的工作结果一般表现为E-R图的形式,它不仅能够充分反映客观世界,而且易于非计算机人员理解,易于向关系、网状、层次等各种数据模型转换。) 7.3.1 概念结构 在需求分析阶段所得到的应用需求应该首先抽象为信息世界的结构,才能更好地、更准确地用某一DBMS实现这些需求。 概念结构的主要特点是: (1) 能真实、充分地反映现实世界,包括事物和事物之间的联系,能满足用户对数据的处理要求。是对现实世界的一个真实模型。 (2) 易于理解,从而可以用它和不熟悉计算机的用户交换意见,用户的积极参与是数据库的设计成功的关键。 (3) 易于更改,当应用环境和应用要求改变时,容易对概念模型修改和扩充。 (4) 易于向关系、网状、层次等各种数据模型转换。 概念结构是各种数据模型的共同基础,它比数据模型更独立于机器、更抽象,从而更加稳定。 描述概念模型的有力工具是E-R模型。有关E-R模型的基本概念已在第一章介绍。下面将用E-R模型来描述概念结构。 7.3.2 概念结构设计的方法与步骤 设计概念结构通常有四类方法: ·自顶向下。即首先定义全局概念结构的框架,然后逐步细化,如图7.7(a)所示。 ·自底向上。即首先定义各局部应用的概念结构,然后将它们集成起来,得到全局概念结构,如图7.7(b)所示。 ·逐步扩张。首先定义最重要的核心概念结构,然后向外扩充,以滚雪球的方式逐步生成其他概念结构,直至总体概念结构,如图7.7(c)所示。 ·混合策略。即将自顶向下和自底向上相结合,用自顶向下策略设计一个全局概念结构的框架,以它为骨架集成由自底向上策略中设计的各局部概念结构。 其中最经常采用的策略是自底向上方法。即自顶向下地进行需求分析,然后再自底向上地设计概念结构。如图7.8所示。这里只介绍自底向上设计概念结构的方法。它通常分为两步:第1步是抽象数据并设计局部视图,第2步是集成局部视图,得到全局的概念结构,如图7.9所示。

基于系统设计的小水线面双体游艇造型研究(陈捷-)

基于系统设计的小水线面双体游艇造型研究 ——以96英尺小水线面双体/三体动力游艇为例 设计艺术学1103班捷 小水线面双体船在民用船和游艇方面有了日渐广泛的用途,然而这种新型船体的造型设计在我国甚至国际围都仍属于新课题,从一定程度上限制了此类船体在游艇行业的市场。本文通过系统设计的方法,对小水线面双体船的结构和船体布置、运行原理进行了分析和研究,归纳出此类船体造型设计中的特点和制约因素;同时结合当代汽车造型设计的趋势,总结出小水线面双体游艇的造型设计方法,提高此类船体的造型设计工作的效率,为我国小水线面双体游艇的发展提供助力。 关键词:系统设计小水线面双体游艇造型设计 正文: 小水线面双体船(small waterplane area twin hull; SWATH)是为改善耐波性,减少兴波阻力,将双体船的片体在水线处缩小宽度造成狭长流线型面的高速船舶。小水线面双体船的概念是从美国产生的。早在1905年美国的Nelson提出用两个下体构成小水线面双体船的原始概念。目前世界各国正致力于开发中速小水线面双体船,在阻力性能、支架型式、线型优化、运动控制等方面已有了很大的突破。1989年日本制造了新一代的载客410名的“海欧2”号小水线面客船,其航速已突破30节,设有鳍控系统,在5级浪中的旅客晕船率为2.8%,而在6级浪中仅为6.5%。英国的FBN 公司为减少湿表面积、提高中速性能、提高纵摇稳定性、减小装载敏感性,采用了中水线面设计技术,这样可取消复杂的自控系统,已建造了400客FDC型艇。该艇在3m浪高下可达到31.7kn航速,创下了小水线面船目前最高航速的记录。

1932年Faust提出小水线面双体船的初步设想。 1946年加拿大的Creed、1967年美国的Leopold进一 步予以完善并申请专利。1969年美国海军船舶研究与 发展中心(DTNSRDC)和美国海军船舶工程中心(NAVSEC) 开始进行并完成了一系列小水线面双体船的基础性能 研究和方案设计工作。1970年美国海军水下中心(NVC) 作为最终用户,对拟建造的靶场试验保障船开始论证并提出设计要求。1971年美国的Thomes G Lang 博士在美国加州创办Semi-Submerged Ship Co.(以下简称SSS Co.)申请的小水线面双体船专利,已提出在下体上用单或双支柱形式,及加装后稳定鳍、前鸭式翼鳍与控制系统技术。他也因而受美国海军委托,采用小水线面双体船型,组织设计建造"卡玛利诺"号靶场试验保障船。在充分利用美国海军大量研究试验储备支持下,1972年在马里柯第斯海湾的海岸警备队船厂开工。“卡玛利诺”号于1973年建成,交给美海军水下中心(后改名为美海军海洋系统中心)夏威夷试验站。1974-1975年进行了一系列海上扩大试验,包括4级海情下直升机起降试验。该船成为世界上第一艘实用型小水线面双体船。它在服役中,又经历多次大风浪考验,在4.6米浪高条件下作业,未出现甲板上水现象;在7.6-9.2米浪高条件下航行,无结构损伤。1985年海洋考察部门的10位科学家随该船在夏威夷附近太平洋海域工作达2周之后,全都极力推荐今后海洋考察、水文测量等海上作业都应采用小水线面双体船型。 小水线面双体船具有以下特点:1.出色的耐波性;2.良好的操纵性;3航向稳定性好;4宽甲板,易布置;5排水量变化敏感;6航态变化独特。在以上几个特点当中,我们总结出SWATH在游艇应用中应当能够成为空间大、速度快、操控出色的一类游艇。然而,由于SWATH船型有排水量变化敏感的特点,我们对本次研究设计的主体稍作更改,使之成为小水线面双体/三体船型杂交,并拥有一定储备浮力的新船型造型研究。 在国外双体/三体游艇应用方面,由于小水线面双 体船目前为止仍是一种新型船体,因此国外各大厂商 对此种新型船体的应用基本仍在探索阶段。以下是我 们在资料搜集的过程中所获得的一些此类船体在游艇 设计中应用的实例,其中有部分实例仍在概念创作的 阶段。

双体船简介

双体船简介 双体船是船舶的一种,就是把两个船体横向以甲板固定在一起。有时也会把三个船体一起串联,称为三体船。双体船的英文叫Catamaran,此词源自泰米尔文。双体船设计虽然是一种相对较新的设计,常见于竞技及娱乐用的船只设计;但其实在太平洋上的波利尼西亚,双体船的使用己经历了数个世纪。 人类最早使用双体船是由于发现将两艘船横向连接在一起,可以从内河到海上航行而不容易翻船,早期曾将这种方法用在帆船上,建造了双体帆船,这种帆船在海上可以承受较大的风浪。在此基础上,人们又发现双体船与同样吨位的单体船相比,具有更大的甲板面积和舱容,因此而被用于货船。20世纪60年代后,随着海上高速客运的迅速发展,高速双体船由于有宽大的甲板面积、空间和便于豪华装饰而被普遍看好,成为近几十年来高性能船中发展最快、应用最广、建造数量最多的一种。 典型的高速双体船由两个瘦长的单体船(称为片体)组成,上部用甲板桥连接,体内设置动力装置、电站等设备,甲板桥上部安置上层建筑,内设客舱、生活设施等。高速双体船由于把单一船体分成两个片体,使每个片体更瘦长,从而减小了兴波阻力,使其具有较高的航速,目前其航速已普遍达到35-40节;由于双体船的宽度比单体船大得多,其稳定性明显优于单体船,且具有承受较大风浪的能力;双体船不仅具有良好的操纵性,而且还具有阻力峰不明显、装载量大等特点,因而被世界各国广泛应用于军用和民用船舶。与同吨位的单体船相比,双体船的总宽度较大,因而往往有更大的甲板面积和舱室容积,尤其适合于装载那些体积很大而重量不大的低密度货物,可以具有较高的运输效率。将单一船体分成两个,可以使每个船体更瘦长,从而有可能减小船的兴波阻力,尤其在高速时,兴波阻力有较大幅度的降低。 以前的双体船多为双体风帆,现在多为动力双体船。 双体风帆和单体风帆相比,双体风帆的速度较高。基本上,多体船比单体的速度较高,原因是:双体船每个船身的横切面比单体薄,水阻较少;双体船的龙骨无需配重,因此较轻;双体船的整体舰寛较阔,因此较为稳定,亦可张更https://www.doczj.com/doc/b62436957.html,多的帆;因为双体船较为稳定,故此大风时较大机会保持垂直。 为进一步改善高速双体船的综合性能,人们在高速双体船的基础上派生了若干新型的双体船型,主要著名的有小水线面双体船和穿浪双体船等。 动力双体船使用两个瘦长的船体,多数配合涡轮喷气发动机的推动,以喷射水流的方式,把水快速推向船后,根据牛顿第三定律,可获得巨大的向前推进力(反作用力),比采用普通的螺旋桨推动更快速,而在高速时,瘦长船身的阻力更会大幅的降低。 美国军方的大型高速双体船和双体风帆一样,拥有较为稳定,水阻少,较轻,不易翻船等优点。是近年发展较快的一种,经常被应用在渡轮及军事运输上。 由于双体船的船体较长,在高速行驶时兴波阻力比单体小,而且舰宽较阔亦较为稳定。用以运载低密度的货物(例如作渡轮、观光船)十分合适。自60年代后开始出现不同的双体船设计。现代高性能的双体船有如下四类:一、小水线面双体船;二、穿浪双体船;三、高速双体船;四、复合型双体船。 小水线面双体船(SmallWaterPlaneAreaTwinHull,SWATH):浮力由两个样子好像是水雷,全浸在水中的船身提供。水线正好在连接全浸船身跟水上船体的支架部分。换一种说法,潜没于水中的鱼雷状下体、高于水面的平台(上体)和穿越水面联接上下体的支柱三部分组成,其优点在于水线面面积较小,受波浪干扰力较小,在波浪中具有优越的耐波性。另外,还具有宽阔的甲板面和充裕的使用空间。但也存在船体结构复杂,对重量分布较为敏感等问题。

高速双体船的总体性能

高速双体船的总体性能 摘要:顾名思义,我们一般把由两个单船体横向固联在一起而构成的船称为双体船。高速双体船由于把单一船体分成两个片体,使每个片体更瘦长,从而减小了兴波阻力,使其具有较高的航速,目前其航速已普遍达到35-40节;由于双体船的宽度比单体船大得多,其稳定性明显优于单体船,且具有承受较大风浪的能力;双体船不仅具有良好的操纵性,而且还具有阻力峰不明显、装载量大等特点,因而被世界各国广泛应用于军用和民用船舶。以船舶结构力学、静力学、流体力学为基础,运用计算方法,简单分析高速双体船的结构性能,从而证明双体船在未来的实用性。 关键字:高速双体船;结构力学;结构性能;结构材料 随着科学技术的发展和生活水平的提高,以及军事应用方面的要求,高性能船在世界上获得了蓬勃的发展。在50至60年代,水翼船优先得到了发展;在60年代中后期,气垫船进入使用领域,占领了部分水上高速客运市场;在70年代后期,高速双体船迅速崛起,并在北欧地区首先得到发展,澳大利亚后来居上。据并不完全统计,目前全世界已有40多个国家和地区的200多家公司经营水上高速客运业务。双体船作为高性能船舶的重要成员之一,其发展尤其令人瞩目。 高速双体船是一种集优良的耐波性、快速性、稳性和回转等各种航海性能于一身的高性能船型。它既保留了小水线面双体船的低阻,高耐波性及常规双体甲板面积宽敞的优点,同时融会变通了深V船型的特点,克服了小水线面双体的片体无储备浮力、空间狭小和要求复杂的航态控制系统和传动系统等缺点克服了常规双体船的片体干舷高储备浮力过大,对波浪响应敏感,船体纵摇和摇周期接近,易出现“螺旋状”摇摆而引起乘客不适等缺点。 1.高速双体船的性能特点[1] 双体船,即由两条船型一样,尺度相同的船体又名片体,中间采用连结桥将它们连结起来的一种船型。这类船舶的一大特点是甲板宽敞、平坦。在每个片体尾部各装一台主机和推进器石直线航行时,左右两只螺旋桨可同时运转发出推力。双体船与相同排水量的其他类型单体船相比,它的甲板面积及舱容较大,约比单体船增大左右。用于载客时,它宽大的甲板面积便于布置较多生活条件较舒适的客舱,与同类单体船相比载客能力增加一倍以上,所以双体船的经济效益显然较高。双体船左右两个片体的船型瘦长,有利于船舶的航向稳定性‘此外两个螺旋桨与舵分别位于两个片体的尾部,并且横向间距较大,故在一定的操舵角和正车、倒车的情况下可提供大的回转力矩与回转角速度,使船的操纵性与回转性都特别好。双体船由于宽大,有利于船舶的横稳性,并且横摇角也小,这样就增加了船舶航行时的安全感,而且航行时较平稳。双体船两个片体之间距离如果选择恰当,还可以减少船舶航行时的阻力,提高航速。 双体船用作客船,它的单位客位造价较低,所以双体船适合于沿海、内河及湖泊中的客船。除此之外,双体船也适用于汽车渡船、工程船、渔船、海洋调查船和钻探船等。正是由于上述其它船型不可比的优点,使得双体船能够迅速兴起,并广泛占领高性能船舶市场。据不完全统计,目前高速双体船在高性能船舶市场占有率达40%以上,高居高性能船的首位。 1.1 甲板面积大 高速双体船单位排水量甲板面积比单体船大50%,如果考虑到双体船可以有效地增加上层建筑层次,上述比例可达100%,而不用担心稳性不够。对需要足够甲板面积和追求多层次上层建筑的客船、游览船、渡船来讲,双体船具有独特的优越性。高速双体船连接桥增加了大量甲板面积,但亦带来了钢料重量明显增加,因此,双体船不宜于要求载货能力大的货船和冷藏船。

建筑概念设计和结构概念设计

建筑概念设计和结构概念设计 摘要:从城市建设和管理的角度看,建筑物向高空延伸,可以缩小城市的平面规模,为人们提供更多的生活工作空间,缩短城市道路和各种公共管线长度,从而节省城市建设与管理的投资,高层建筑设计成为城市建筑的发展趋势,随着经济和社会的发展,新的建筑形式层出不穷,给设计师提出了更高的要求。关键词:高层建筑结构设计浅析在高层设计中,建筑和结构是关系最密切的专业。建筑师往往根据建筑的使用功能和美学要求处理建筑体型,包括平面和立面;而结构师则根据受力的合理性进行结构设计,其中结构形式和结构体系的选择,结构总体布置等对结构的受力性能优劣性起决定性作用。结构的总体布置与结构体型密切相关,简单的体型易于得到规则和受力合理的结构总体布置,可使结构具有良好的抗震性能;反之,过于复杂的建筑平面和立面体型,将增加结构设计的困难,造成结构布置的不规则性。因此优秀的设计是建筑和结构的完美结合,需建筑师和结构师密切合作。在方案设计阶段,就应根据建筑物的高度、抗震设防烈度等具体条件合理选用结构形式和结构体系。 1 结构设计的任务 结构设计应根据建筑物的重要性等级、建筑使用功能或

生产需要所确定的荷载、抗震要求、设防标准等,对结构基本构件和整体进行设计,以保证基本构件的强度、变形、裂缝满足设计要求,同时保证结构体系的整体安全性、稳定性、变形性能,保证在突发事件发生时,结构保持一定的整体性,使人们的生命安全得以保证;保证合理用材,方便施工,同时尽可能降低建筑造价。总之,结构设计的核心是解决两个问题:一是满足建筑结构功能要求;二是经济问题。 2 概念设计 概念设计是根据理论与实验研究结果及工程经验等形成的基本设计原则和设计思想,进行结构的总体布置,并正确确定细部构造的过程,需要遵循相应规范条文进行合理的平面设计、竖向设计、基础设计等。 概念设计包括两个方面。建筑概念设计是对满足建筑使用功能、造型优美、技术先进的总建筑方案的确定;结构概念设计是在特定的建筑空间中用整体的概念来完成结构总体方案的设计。结构概念设计旨在有意识地处理构件与结构、结构与结构的关系,满足结构的功能要求和建筑功能的需要,以及技术经济可能的设计原则,确定最优的结构体系,选择适用的建筑材料和合理的关键部位构造、结合适宜的施工及合理的效益达到房屋设计的统一。 3 高层建筑抗震概念设计若干原则 建筑抗震性能是概念设计的决定因素,概念设计应遵循

结构设计中的概念设计与结构措施一

1.概念设计的重要性 概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随他的年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。遗憾的是,随着社会分工的细化,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计,缺乏创新,更不愿(不敢)创新,有的甚至拒绝对新技术、新工艺的采纳(害怕承担创新的责任)。大部分工程师在一体化计算机结构程序设计全面应用的今天,对计算机结果明显不合理、甚至错误而不能及时发现。随着年龄的增长,导致他们在大学学的那些孤立的概念都被逐渐忘却,更谈不上设计成果的不断创新。 强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性,比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的极限状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点,往往给结构设计人员带来对结构工作性能的误解,结构工程师只有加强结构概念的培养,才能比较客观、真实地理解结构的工作性能。 概念设计之所以重要,还在于在方案设计阶段,初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念,选择效果最好、造价最低的结构方案,为此,需要工程师不断地丰富自己的结构概念,深入、深刻了解各类结构的性能,并能有意识地、灵活地运用它们。 2.协同工作与结构体系 协同工作的概念广泛存在于工业产品的设计和制造中,对于任一个工业产品,我们均不希望其在远未达到其设计寿命(负荷、功能)时,它的某些部件(或零件)即出现破坏。对于建筑结构,协同工作的概念即是要求结构内部的各个构件相互配合,共同工作。这不仅要求结构构件在承载能力极限状态能共同受力,协同工作,同时达到极限状态,还要求他们能有共同的耐久寿命。结构的协同工作表现在基础与上部结构的关系上,必须视基础与上部结构为一个有机的整体,不能把两者割裂开来处理。举例而言,对砖混结构,必须依靠圈梁和构造柱将上部结构与基础连接成一个整体,而不能单纯依靠基础自身的刚度来抵御不均匀沉降,所有圈梁和构造柱的设置,都必须围绕这个中心。 对协同工作的理解,还在于当结构受力时,结构中的各个构件能同时达到较高的应力水平。在多高层结构设计时,应尽可能避免短柱,其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的加大,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短柱,为了避免这种现象的出现,对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱,从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力;而对于梁的跨高比的限制,一般还没有充分认识到。实际上与长短柱混杂的效果一样,长、短梁在同一榀框架中并存,也是极为不利的,短跨梁在水平力的作用下,剪力很

浅谈对结构概念设计的认识

浅谈对结构概念设计优化的认识 产品中心 设计一部杨英瑜 0 前言 建业网校登载的“结构成本控制的管理思路和技术方法”,仔细阅读,觉得对成本控制,确实很有帮助,但文章只给出思路及若干值得关注的工程结构问题,然而没有答案;对这些问题,如果进行结构优化设计,是可以较为完满解决的,但房地产行业的实际情况,往往是立项后,建筑方案一确定,希望施工图立等可取,这样,要想进行优化设计,设计周期及工期,都有困难,因为商机不等人,故想从结构概念设计优化的角度,先从一些影响较大的局部问题,进行概念设计优化分析,对控制结构成本,比孤立地对单个问题的分析[1],也许会更有好处;本文将结合以往的工程实践,对某些项目的基础工程案例,进行分析,以求对开发新项目时,能起点借鉴作用。 一、结构设计优化的前景 2006年6月份,我国召开“首届全国建筑结构技术交流会”,工程院江 欢成院士在他的报告中指出[2] : “我国优化设计工作方兴未艾,大有可为。…它符合可持续发展和科教兴国伟大战略,是科学发展观在建筑行业中的落实”。然而在比较讲究经济效益的房地产行业,并没有得到广泛推广,可能有技术层面的原因,文献[3]指出:建筑结构构件的断面尺寸是离散量,规范中的一些要求、实际设计时的约束和约定,很难用显式表达,一个稍大的工程结构,设计变量及约束条件都很多,……凡此种种,都要求要有很实用和方便的软件工具,这可能是妨碍结构设计优化普遍推广的原因;目前从事这方面工作的单位也不少,文献[2][3]的单位就在这方面做了不少工作,有很多经验值得借鉴;文献[2]介绍,经他们优化过的工程,在实物工程量上,可节约5%~10%,甚至更大,而在建筑空间和平面使用方面,带来的效益更大;作为有十五年开发经历的建业集团,年开发量200万㎡(见建业网集团简介),要想结构成本,有较大幅度的降低,开展结构设计优化,应该是提到日程上来的时侯了。 二、目前结构设计优化的一些具体做法 1)、复核性的优化 文献[2]介绍的案例中,很多是在既有施工图的基础上进行优化,笔者把这种做法称为复核性的优化,因为甲方认为建筑、结构不尽合理或配筋过多不经济,委托在原有基础上进行优化,以求克服某些缺陷或降低成本,这种做法,不是全面、全过程的优化,往往带有原设计的弱点,但经过优化后,建筑、结构的使用功能得到相当大的改善,优化设计的周期较短,直接经济效益,也很可观,故甲方很容易接受这种做法。 这种做法也有实际问题,如修改设计的费用、责任问题,文献[2]的作者江院士还坦言:“好朋友劝我不要搞,因为得罪人,特别是得罪同行,得罪老朋友”。虽如此,江院士还是以高度的社会责任感,继续从事这方面的工作;但毕竟是要面对的实际问题。 2)、全面优化 工程建设是一个系统工程,应该说从立项、建筑结构方案、施工图设计、施工阶段、交付使用,每一个环节都有定位及需要优化的问题,目前房地产行业,全过程、全

相关主题
文本预览
相关文档 最新文档