当前位置:文档之家› 自适应奇异值分解(ASVD)局放信号去噪

自适应奇异值分解(ASVD)局放信号去噪

自适应奇异值分解(ASVD)局放信号去噪
自适应奇异值分解(ASVD)局放信号去噪

%自适应奇异值分解(Adaptive Singular Value Decomposition)去噪%参考文献:Ashtiani M B, Shahrtash S M. Partial discharge de-noising employing adaptive singular value decomposition[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(2):775-782.

function y_denoised=ASVDdenoising(noisydata,k)

if size(noisydata,1)>size(noisydata,2)

noisydata=noisydata';

end

N=length(noisydata);

y_denoised=zeros(N,1);

L=ceil(N/3);

% Y=[];

%

% for j=1:N-L

% Y=[Y;noisydata(j:j+L)]; %HANKEL矩阵,大矩阵时这种构建方式(未事先确定矩阵尺寸)将会严重影响计算速度

% end

Y=HankelMatrixCons(noisydata,L);

[U,S,V]=svd(Y); %奇异值分解

g=diag(S);

g1=sort(g(1:100),'ascend');

g1=g1/g(1)*100;

n=length(g1);

std_g=zeros(n,1);

for j=1:n

if floor(std(g1(1:j)))>0

M=j;

break;

end

end

for j=1:n

std_g(j)=floor(std(g1(1:j)));

end

% subplot(2,1,1)

plot(std_g,'-ro')

if nargin==1

k=input('Input M\n');

% k=M;

end

Y1=U(:,1:(n+1-k))*S(1:(n+1-k),1:(n+1-k))*V(:,1:(n+1-k))';

order=n+1-k;

y_denoised=Subfun1STSVD(U,S,V,order);

% 构建(L*K,K=N-L+1)Hankelj矩阵

function X=HankelMatrixCons(data,L)

N=length(data);

if size(data,2)==N

data=data';

end

X=zeros(L,N-L+1); %创建Hankel矩阵

for j=1:L

X(j,:)=data(j:N-L+j)';

end

% 利用有效阶数提取信号(SVD处理)-对角线平均方式function y=Subfun1STSVD(S,V,D,M)

Num_row=size(S,1); Num_column=size(D,1);

N=Num_row+Num_column-1;

y=zeros(1,N); %数据

Num=zeros(1,N); %每个数据对应的数据个数,最后用于求均值Y3=zeros(Num_row,Num_column);

Y1=S(:,1:M)*V(1:M,1:M)*(D(:,1:M))';

for j=1:Num_row

Y3(j,:)=fliplr(Y1(j,:));

end

k=1;

for j=Num_column-1:-1:-(Num_row-1)

a=diag(Y3,j);

y(k)=sum(a);

Num(k)=length(a);

k=k+1;

end

y=y./Num;

奇异值分解和图像主分量复原_20180129

奇异值分解(SVD)和图像矩阵的分解测试 · SVD简单介绍 在很多情况下,数据的绝大部分信息往往集中在很小一部分数据上,我们知道线性代数中有很多矩阵的分解技术可以将矩阵表示成易于处理或是表达简化的形式。最常见的一就种是SVD(Singular Value Decomposition)算法。 SVD将数据分解成三个矩阵U,S,VT,这里得到的S是一个对角阵,其中对角元素为奇异值,它代表着矩阵的重要特征,从左上角到右下角重要程度递减。因为奇异值往往对应着矩阵中隐含的重要信息,而且奇异值大小与重要性正相关。 优点:简化数据,优化数据的表达形式。 缺点:难于计算。 关于奇异值分解的定义和相关推导,推荐参考这篇文章,介绍的非常清晰易懂:机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 故公式什么的这里就不列出了,理解了理论后,我们来小小测试一下,以体会其强大之处。 · matlab测试图像SVD 这里使用的是matlab函数svd():[U,S,V]=svd(A);

输出结果:图像大小为256x256,奇异值有256个,结果可见前50个特征就基本涵盖了原图所有信息。 理解PCA和SVD 发表于 2015-12-04 | 分类于数学杂谈| | 阅读次数 4136 By Z.H. Fu 切问录https://www.doczj.com/doc/b61988159.html, 摘要 本文主要从分解形式上讲述了PCA(Principal Component Analysis,主成分分析)和SVD(Singular Value Decomposition奇异值分解)的目的和方法,对于两种方法都给出了一种直观的理解。简单起见,本文不给出具体的应用实例。 ## PCA 主成分分析(PCA)常用于提取一系列多维样本的共同特征。那么,怎么理解特征?我们假设每个样本是由一系列的特征线性组合而成的,PCA的目的就是去找到这些特征,然后将每一个样本表示为这些特征的组合,实际上PCA找到了样本空间中的一组基,将每一个样本表示为这组基的线性组合,因此,每一个基就是一个特征。那么,特征需要满足哪些性质呢?其实就一点,特征之间的关系应该越少越好。用基来描述就是

特征值分解与奇异值分解

特征值:一矩阵A作用与一向量a,结果只相当与该向量乘以一常数λ。即A*a=λa,则a 为该矩阵A的特征向量,λ为该矩阵A的特征值。 奇异值:设A为m*n阶矩阵,A H A的n个特征值的非负平方根叫作A的奇异值。记 (A) 为σ i 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做 SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。国内的网页中的话语权也被这些没有太多营养的帖子所占据。真心希望国内的气氛能够更浓一点,搞游戏的人真正是喜欢制作游戏,搞Data Mining的人是真正喜欢挖数据的,都不是仅仅为了混口饭吃,这样谈超越别人才有意义,中文文章中,能踏踏实实谈谈技术的太少了,改变这个状况,从我自己做起吧。 前面说了这么多,本文主要关注奇异值的一些特性,另外还会稍稍提及奇异值的计算,不过本文不准备在如何计算奇异值上展开太多。另外,本文里面有部分不算太深的线性代数的知识,如果完全忘记了线性代数,看本文可能会有些困难。 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:

基于奇异值分解的人脸识别

人机交互大作业 ——人脸识别

“人脸识别”系统设计文档 人脸识别的意义及应用 人脸识别是指对视频或图像中的人脸进行发现,追踪,进而识别出是特定个体的一种生物特征技术,也是生物特征识别中最主要的研究方向之一。人脸识别在日常生活中有着非常广泛的应用市场。下面列举了一些人脸识别的主要应用:1.监控系统 监控系统在日常生活中非常常用,是防盗系统的主要组成部分之一。人工智能的监控系统的一大优势就是可以将人类从每天对着监视器的枯燥工作中解脱出来。将监视的工作交给计算机来做,有几个优势。一是可以365天,24小时不间断的工作。二是可以不知疲倦,不会因为时间长而分散注意力。但是人工智能的监控系统仍面临着很多问题,比如漏识别,识别误差等等。2.身份验证 身份验证系统可以应用的范围也很广。比如现有的银行存取款系统,当人的银行卡和密码同时丢失时,卡中的钱就可能被转走。但是如果在取款机上安装一个人脸识别系统,在提供银行卡和密码时,同时需要进行面部认证,这样就会大大降低个人财产损失的风险。 3.考勤系统 考勤系统通常用在公司里。传统的考勤系统需要给每个员工分配一张考勤卡,每天上下班需要去打卡。这样会给员工带来一定的不便。如果员工忘记带卡,或者卡有损坏,就会耽误打卡。而且专门设立打卡地点,不仅上下班打卡不方便,而且还会出现替打卡的情况。使用人脸识别系统,可以在不被觉察的情况下,自然地实现员工的考勤。减少了很多不必要的麻烦。 4.视频、图像检索 随着人们对图像,视频等需求的不断扩展,网络上的图像和视频信息量也在以极快的速度增长。在如此庞大的信息库中快速查找到用户需要的信息成了现在研究的一个重要方向。而现在最主流的方式是在视频和图像上附带描述信息。这种描述信息可以被发布人随意更改,很多时候会对用户产生误导,浪费了时间。而用人脸识别进行图像和视频的检索,在检索某些特定人相关的资源时,会大大提高搜索结果的质量。再配合上描述关键词,能使人更快速寻找到所需信息。 人脸识别的优势和困难 人脸识别相对于传统的身份验证技术,和现有的虹膜识别,指纹识别等技术有一个显著的优势,就是可以自然地获取识别对象的身份信息,而不需要识别对象刻意的配合。虹膜识别和指纹识别都需要识别对象的配合。在这种情况下,识别对象可以有意识的进行伪装和欺骗。而人脸识别是在人们不经意的时候对人们图像的采集和识别,不会引起识别对象的注意。因此从某种意义上更容易获得真实的信息。 虽然人脸识别有着不可比拟的优势,但是在实现方面还有着很大的困难。

基于奇异值分解的图像压缩及实现

基于奇异值分解的图像压缩及实现 本文利用奇异值分解方法,来对图片进行压缩,过程中我们 利用Matlab 编程来达到这个目的。 一:实验方法及原理 奇异值:矩阵A 的奇异值定义如下:设n *m r C A ?(r>0),且A A T 的特征值分别为 0n 1r r 21==??=≥≥??≥+λλλλλ (1) 则称i i λσ= (i=1,2,…,n )为A 的奇异值。 奇异值分解定理:设Σ=diag(r 21...σσσ,, ,),由式(1)可知,i σ(i=1,2,…,r )为A 的非零奇异值。U 为m 阶酉矩阵(n 阶复 方阵U 的n 个列向量是U 空间的一个标准正交基,则U 是酉矩阵),V 为n 阶酉矩阵,若满足矩阵等式 (2) 则称式(2)为A 的奇异值分解。若U 写成U =[m 21u ......u u ,, ,]的形式,V 写成V=[n 21v ......v v ,, ,]的形式,则式(2)可写成如下形式: (3) 由于大的奇异值对图像的贡献大,小的奇异值对图像的贡献小,所以可以从r 个奇异值生成矩阵中选取前k 个(k

(4) 近似表示图像A。 存储图像A需要mn个数值,存储图像k A需(m+n+1)k个数值,若取 (5) 则可达到压缩图像的目的,比率 (6) 称为压缩率 二:实验过程 1.实验数据来源: 本实验所需要的实验原图片是lena.bmp,处理后的图片设置为lena2.bmp。并获取图片的描述矩阵,为512*512阶8位的方阵。 设为A,同时也是原始矩阵,本实验主要是对A进行奇异值分解,用一个更小阶的矩阵来描述A,从而达到实验目的。 2.实验过程: 提取图像lena.bmp数据,将图片读入Matlab中,存储的是数据矩阵并且设置为512*512的矩阵A,将矩阵A中的数据转换为double型,以适应svd函数的要求,运用函数[U,S,V]=svd(A)进行图像的奇异值分解,分别得到对角奇异值矩阵S为512*1阶,以

基于四元数奇异值分解的图像质量评价方法

基于四元数奇异值分解的图像质量评价方法 摘要: 关键词:四元数奇异值分解图像质量评价 图像质量评价是图像处理的重要研究内容之一,作为算法性能评判及参数优化的重要指标,图像质量评价对于图像采集、压缩、编码、去噪、增强、水印、认证、存储、合成、复制等相关领域具有重要意义一。图像质量评价用来表征畸变图像相对于作为标准图像的原始图像的差异程度,其中的畸变图像主要指对原始图像进行如下变换:噪声(高斯、椒盐)、模糊(失焦、大气湍流、运动模糊)、有损压缩(JPEG、JPEG2000、SVD、小波)等。图像质量评价主要有主观和客观两种方式。考虑到传统的主观质量评价不仅对实验条件要求有着苛刻的要求,而且实施步骤复杂,不能满足实时性的要求,客观质量评价吸引了更多关注。 根据参考图像的存在与否,客观图像质量评价方法又可分为全参考、半参考和无参考三种算法。其中,对于全参考算法的研究最为深入,并将其分为:①基于物理信号差异的方法,包括常见的均方误差(MSE),信噪比(SNR)和峰值信噪比(PSNR)等指标;②基于人言视觉系统(HVS)建模的方法。例如,视觉信噪比(VSNR)利用HVS的临界阈值和超阈值视觉感知特点改进SNR,以便更好的吻合人眼视觉感知结果;③基于结构相似性的方法。假设结构信息丢失是造成图像质量下降的唯一原因,此类方法包括了结构相似度(SSIM)和它的多分辨版本(MSSSIM);④基于自然场景统计(NSS)的方法,包括信息置信度标准(IFC)和视觉信息置信度(VIF)。 1.四元数基础 1.1 四元数及四元数矩阵的定义 1983年,英国数学家哈密顿(Hamilton W R)创造了四元数[1],一个四元数q是四维空间中的一个数,它包含一个实部a和三个虚部b、c、d,其基本形

雅克比法求矩阵特征值特征向量

C语言课程设计报告 课程名称:计算机综合课程设计 学院:土木工程学院 设计题目:矩阵特征值分解 级别: B 学生姓名: 学号: 同组学生:无 学号:无 指导教师: 2012年 9 月 5 日 C语言课程设计任务书 (以下要求需写入设计报告书) 学生选题说明: 以所发课程设计要求为准,请同学们仔细阅读; 本任务书提供的设计案例仅供选题参考;也可自选,但难易程度需难度相当; 鼓励结合本专业(土木工程、力学)知识进行选题,编制程序解决专业实际问题。

限2人选的题目可由1-2人完成(A级);限1人选的题目只能由1人单独完成(B级);设计总体要求: 采用模块化程序设计; 鼓励可视化编程; 源程序中应有足够的注释; 学生可自行增加新功能模块(视情况可另外加分); 必须上机调试通过; 注重算法运用,优化存储效率与运算效率; 需提交源程序(含有注释)及相关文件(数据或数据库文件); (cpp文件、txt或dat文件等) 提交设计报告书,具体要求见以下说明。 设计报告格式: 目录 1.课程设计任务书(功能简介、课程设计要求); 2.系统设计(包括总体结构、模块、功能等,辅以程序设计组成框图、流程图解释); 3.模块设计(主要模块功能、源代码、注释(如函数功能、入口及出口参数说明,函数调用关系描述等); 4.调试及测试:(调试方法,测试结果的分析与讨论,截屏、正确性分析); 5.设计总结:(编程中遇到的问题及解决方法); 6.心得体会及致谢; 参考文献

1.课程设计任务书 功能简介: a)输入一个对称正方矩阵A,从文本文件读入; b)对矩阵A进行特征值分解,将分解结果:即U矩阵、S矩阵输出至文本文件; c)将最小特征值及对应的特征向量输出至文本文件; d)验证其分解结果是否正确。 提示:A=USU T,具体算法可参考相关文献。 功能说明: 矩阵特征值分解被广泛运用于土木工程问题的数值计算中,如可用于计算结构自振频率与自振周期、结构特征屈曲问题等。 注:以三阶对称矩阵为例 2.系统设计 3.模块设计 #include #include #include int main() { FILE *fp; int tezheng(double *a,int n,double *s,double *u,double eps,int itmax); //函数调用声明 int i,j,p,itmax=1000; //itmax为最大循环次数 double eps=1e-7,s[3][3],u[3][3]; //eps为元素精度,s为对角矩阵S,u为矩阵U double a[9];//a为待分解矩阵A i=tezheng(a,3,s,u,eps,1000);

基于奇异值分解的MVDR谱估计

现代信号处理 学号: 小组组长: 小组成员及分工: 任课教师: 教师所在学院:信息工程学院

2015年11月 论文题目 基于奇异值分解的MVDR方法及其在信号频率估计领域的 应用 摘要:本文主要是介绍和验证MVDR的算法,此算法应用于信号频率估计的领域中。我们通过使用经典的MVDR算法验证算法的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了改进,在验证这种改进思想的方法可行性时,我们发现基于这种奇异值分解的MVDR方法在信号频率估计上具有提高检测精度的特性,这也说明了这种思想在应用信号频率估计时是可行的。 关键词:MVDR算法奇异值分解信号频率估计

论文题目(English) MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words: MVDR method Singular value decomposition Signal frequency estimation

自适应奇异值分解(ASVD)局放信号去噪

%自适应奇异值分解(Adaptive Singular Value Decomposition)去噪%参考文献:Ashtiani M B, Shahrtash S M. Partial discharge de-noising employing adaptive singular value decomposition[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(2):775-782. function y_denoised=ASVDdenoising(noisydata,k) if size(noisydata,1)>size(noisydata,2) noisydata=noisydata'; end N=length(noisydata); y_denoised=zeros(N,1); L=ceil(N/3); % Y=[]; % % for j=1:N-L % Y=[Y;noisydata(j:j+L)]; %HANKEL矩阵,大矩阵时这种构建方式(未事先确定矩阵尺寸)将会严重影响计算速度 % end Y=HankelMatrixCons(noisydata,L); [U,S,V]=svd(Y); %奇异值分解 g=diag(S); g1=sort(g(1:100),'ascend');

g1=g1/g(1)*100; n=length(g1); std_g=zeros(n,1); for j=1:n if floor(std(g1(1:j)))>0 M=j; break; end end for j=1:n std_g(j)=floor(std(g1(1:j))); end % subplot(2,1,1) plot(std_g,'-ro') if nargin==1 k=input('Input M\n'); % k=M; end Y1=U(:,1:(n+1-k))*S(1:(n+1-k),1:(n+1-k))*V(:,1:(n+1-k))';

K-SVD算法的图像去噪的实验

K-SVD 算法的图像去噪的实验 一:引言 现实中的图像在数字化和传输过程中由于常受到成像设备与外部环境噪声干扰等影响,从而降低了图像的质量,对图像的理解和解译造成了不小的困难,因此,在图像处理中,图像噪声抑制成为关键,也是后续图像的特征提取、分割、识别等工作的基础。噪声抑制技术的主要目标就是:在有效的去除噪声的同时保持纹理、边缘等细节信息。 传统的图像噪声抑制的方法有空间滤波技术和变换域滤波技术。其中空间滤波技术主要包括均值滤波、中值滤波、Lee 滤波等,这些方法虽然比较简单,且易于实现,但是会造成图像边缘和线性目标的模糊。变化域滤波技术主要包括小波变换、平稳小波、Bandelet 变换、Curvelet 变换和非下采样Contourlet 变换等。这些变换域滤波相比经典空间滤波方法来说,图像的边缘及线性目标的保持能力有了很大的提高。但大都需要对变换域的系数做某种统计假设,而这些假设是经验性的,无理论依据。且噪声和图像边缘具有相似的频率特性,即都是高频信号。因此噪声抑制后的图像在均匀区域和边缘附近常有伪吉布斯效应。 目前,一种新兴的“字典训练法”在图像处理中得到了广泛的研究和应用,其核心是字典的训练过程,称为K--SVD 方法。此算法首先是由 Aharon 、Elad 等人提出的。研究表明:K--SVD 方法不仅可以有效的抑制加性高斯白噪声,而且可以较好的保留边缘和纹理等重要信息,尤其是对纹理图像的结果更好。最重要的是此方法具有很好的适应性。 本文首先诠释下K--SVD 算法的基本思想,然后通过几个实验对比下该算法与之前的算法的去噪效果。 二:K--SVD 算法的基本思想 1:K-均值 因为K-SVD 算法是由K-均值扩展而来,先简单介绍K-均值算法。K-均值算法要解决的问题是:求解一个包括K 个代码的码本,求在此码本上,根据最近邻分配法则,对包括N 个信号的信号集1{y }N i i Y ==,N>>K 进行分类,使得最佳分类的问题。此时,Y 中各向量被归类于与之距离最小的代码所代表的类中,用此代码压缩或描述类中的向量误差最小。 矢量量化(VQ )中,码本的训练可以用典型的K-均值算法实现。令12[c ,c ,...,c ]K C =为码本,C 中的列c i 为码本中的代码。当码本C 给定时,每个信号用最近(2 l 范数意义下)的一个代码表示。也就是说,i i y Cx ≈,其中i j x e =是自然基中的一个向量(除第j 个值为1外,其他的值都是0)。j 满足: 22 22 ,i j i k k j y Ce y Ce ?≠-≤- (1) 这相当于稀疏编码的一个特例:只用一个原子来表示信号i y ,同时强制系数等于1,这

基于奇异值分解的MVDR谱估计

现代信号处理学号: 小组组长: 小组成员及分工: 任课教师: 教师所在学院:信息工程学院2015年11月

论文题目 基于奇异值分解的MVDR方法及其在信号频率估计领域的 应用 摘要:本文主要是介绍和验证MVDR的算法,此算法应用于信号频率估计的领域中。我们通过使用经典的MVDR算法验证算法的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了改进,在验证这种改进思想的方法可行性时,我们发现基于这种奇异值分解的MVDR方法在信号频率估计上具有提高检测精度的特性,这也说明了这种思想在应用信号频率估计时是可行的。 关键词:MVDR算法奇异值分解信号频率估计

论文题目(English) MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words: MVDR method Singular value decomposition Signal frequency estimation

基于奇异值分解的MVDR谱估计

现代佶号处理学号: 小组组长: 小组成员及分工: 任课教师: 教师所疫学院:信息工程学院

2015年11月

基于奇畀值分鮮的MVDR方法及其在信号频率估计领城的 应用 摘要:本丈主要是介绍和验证MVDR的算出,此算岀应用于信号频率估计的领城中。我们通过使用经典的MVDR算去验证算比的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了孜进,准.脸证这种改进思想的方法可行性肘,我们发现基于这种奇异值分鮮的MVDR 方岀在信号频率估计上具有提壽检测赫度的特性,这色说朗了这种思想>4应用信号频率估计肘是可行的。

论丈题tl (English丿 MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words:MVDR method Singular value decomposition Signal frequency estimatio n

基于奇异值分解的图像压缩处理

矩阵奇异值分解在图像压缩中的应用 电子科技大学 微固学院 贾旺旺 [摘要]本文首先介绍了矩阵的奇异值分解(SVD)定理,然后讨论了基于矩阵奇异值分解的图像压缩编码原理,最后文中给出了实例,并用matlab 编程实现了图像的压缩和重构,发现随着图像压缩比的减小,图像传输时间增大,但重构后得到的图像失真度减小了。 [关键词]奇异值分解 图像压缩 压缩比 一.引言 随着网络的快速发展,数据量的增长也十分迅速,这使人们必须想办法如何能以最少的存储空间,最大的传输效率来进行数据的存储和传输。如在宇航中,拍摄得到的图像文件一般都比较大且数量也很多,它的存储,传输和处理会受到一定的限制,因此图像压缩就显得格外重要。图像压缩技术就是要减少图像数据中的冗余信息从而以更加高效的格式存储和传输数据。 图像压缩的基本方法包括无损压缩的行程长度编码,熵编码法;有损压缩的色度抽样法,变换编码,分形压缩等。近几年,基于矩阵奇异值分解的图像压缩方法也得到了很多学者的关注[1] 。因为图像的像素点具有矩阵的结构,我们可以利用奇异值分解来对任意阶数的矩阵操作。本文就是利用了矩阵的奇异值分解,达到了图像压缩的目的。 二. 矩阵奇异值分解原理[2] 引理 1 的非零特征值相同 的特征值均为非负实数,则有 设H H H H H H n m r AA A A AA A A AA rank A A rank A rank C A ,)3(,)2()()()()1(==∈? ) ()()()(00)(0 0)()1(:1111111A A rank A rank A A rank A rank Ax Ax Ax Ax A x Ax A x X k n Ax A k A A rank H H H H H H H H H =?≤?=?==?=?-=?=维,记为的解空间为设证明0 ),(),(),(),(0)2(≥?===≤?=λααλλααααααλααA A A A A A H H

我所理解的奇异值分解

我所理解的奇异值分解SVD 1、 奇异值与奇异值分解定理 奇异值定理: 设m n A C ?∈,r=rank(A),则一定存在m 阶酉矩阵U 和n 阶酉矩阵V 和对角矩阵1212(,, ,)(1,2,,)r r i diag i r σσσσσσσ∑=≥≥≥=,且,而 ,使得H A U V =∑,称为A 的奇异值分解。 复数域内的奇异值: 设(0)m n H r A C r A A ?∈>,的特征值为1210r r n λλλλλ+≥≥ ≥>=== 则称1,2, ,)i i n σ==为A 的正奇异值;当A 为零矩阵时,它的奇异值都是零。易见,矩阵A 的奇异值的个数等于A 的列数,A 的非零奇异值的个数等于rank(A)。 2、 奇异值分解的理解 奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r 大的奇异值来近似描述矩阵。 r r r T r r r T v u v u v u V U V U A σσσ+++=∑=∑= 222111即A 可表示为r 个秩为一的举证的和,这是A 得奇异值分解的紧凑格式。 3、 奇异值分解特征 奇异值分解的第一个特征是可以降维。A 表示 n 个 m 维向量 ,通过奇异值分解可表示成 m + n 个 r 维向量 ,若A 的秩 r 远远小于 m 和 n ,则通过奇异值分解可以大大降低 A 的维数。可以计算出 ,当 r

第八章矩阵的特征值与特征向量的数值解法

第八章 矩阵的特征值与特征向量的数值解法 某些工程计算涉及到矩阵的特征值与特征向量的求解。如果从原始矩阵出发,先求出特征多项式,再求特征多项式的根,在理论上是无可非议的。但一般不用这种方法,因为了这种算法往往不稳定.常用的方法是迭代法或变换法。本章介绍求解特征值与特征向量的一些方法。 §1 乘幂法 乘幂法是通过求矩阵的特征向量来求特征值的一种迭代法,它适用于求矩阵的按模最大的特征值及对应的特征向量。 定理8·1 设矩阵An ×n 有n 个线性无关的特征向量X i(i=1,2,…,n),其对应的特征值λi (i =1,2,…,n)满足 |λ1|>|λ2|≧…≧|λn | 则对任何n维非零初始向量Z 0,构造Zk = AZ k-1 11()lim ()k j k k j Z Z λ→∞ -= (8·1) 其中(Zk )j表示向量Z k 的第j个分量。 证明 : 只就λi是实数的情况证明如下。 因为A 有n 个线性无关的特征向量X i ,(i = 1,2,…,n)用X i(i = 1,2,…,n)线性表示,即Z 0=α1X 1 + α2X2 +用A 构造向量序列{Z k }其中 ? 21021010, ,k k k Z AZ Z AZ A Z Z AZ A Z -=====, (8.2) 由矩阵特征值定义知AXi =λi X i (i=1,2, …,n),故 ? 0112211122211121k k k k k n n k k k n n n k n k i i i i Z A Z A X A X A X X X X X X ααααλαλαλλλααλ===++ +=+++???? ??=+ ?????? ? ∑ (8.3) 同理有 1 1 11 1121k n k i k i i i Z X X λλααλ---=? ? ????=+ ????? ? ? ∑ (8.4) 将(8.3)与(8.4)所得Zk 及Z k-1的第j 个分量相除,设α1≠0,并且注意到 |λi |<|λ1|(i=1,2,…,n )得

特征值分解及奇异值分解在数字图像中的应用

特征值分解及奇异值分解在数字图像中的应用 摘要:目前,随着科学技术的高速发展,现实生活中有大量的信息用数字进行存储、处理和传送。而传输带宽、速度和存储器容量等往往有限制,因此数据压缩就显得十分必要。数据压缩技术已经是多媒体发展的关键和核心技术。图像文件的容量一般都比较大,所以它的存储、处理和传送会受到较大限制,图像压缩就显得极其重要。当前对图像压缩的算法有很多,特点各异,类似JPEG 等许多标准都已经得到了广泛的应用。本文在简单阐述了矩阵特征值的数值求解理论之后,介绍了几种常用的求解矩阵特征值的方法,并最终将特征值计算应用到图像压缩中。以及奇异值分解(Singular Value Decomposition ,SVD) 。奇异值分解是一种基于特征向量的矩阵变换方法,在信号处理、模式识别、数字水印技术等方面都得到了应用。由于图像具有矩阵结构,有文献提出将奇异值分解应用于图像压缩[2],并取得了成功,被视为一种有效的图像压缩方法。本文在奇异值分解的基础上进行图像压缩。 关键词:特征值数值算法;奇异值分解;矩阵压缩;图像处理 引言 矩阵的特征值计算虽然有比较可靠的理论方法,但是,理论方法只适合于矩阵规模很小或者只是在理论证明中起作用,而实际问题的数据规模都比较大,不太可能采用常规的理论解法。计算机擅长处理大量的数值计算,所以通过适当的数值计算理论,写成程序,让计算机处理,是一种处理大规模矩阵的方法,而且是一种好的方法。常用的特征值数值方法包括幂法、反幂法、雅克比方法、QR 分解法等。其中,幂法适用于求解矩阵绝对值最大的特征值,反幂法适合求解矩阵的逆矩阵的特征值,雅克比方法适合求解对称矩阵的特征值,QR分解法主要使用于求中小型矩阵以及对称矩阵的全部特征值。矩阵乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,变换的效果当然与方阵的构造有密切关系。图像压缩处理就是通过矩阵理论减少表示数字图像时需要的数据量,从而达到有效压缩。数字图像的质量很大程度上取决于取样和量化的取样数和灰度级。取样和量化的结果是一个实际的矩阵。图像压缩是数据压缩技术在数字图像上的应用,它的目的是减少图像数据中的冗余信息从而用更加高效的格式存储和传输数据。图像数据之所以能被压缩,就是因为数据中存在着冗余。图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空冗余;图像序列中不同帧之间存在相关性引起的时间冗

中心对称矩阵在矩阵特征分解中的应用

中心对称矩阵在矩阵特征分解中的应用 摘要 本文针对偶数阶中心对称矩阵,引入偶数阶置换矩阵,探索了矩阵特征分解的新方法。该方法是通过对矩阵的分块,将复杂大型矩阵特征值问题,转化为几个小矩阵特征值求解,使得问题计算的复杂度大大缩减。 关键词:中心对称矩阵 置换矩阵 特征分解 定义1:如果n m ?矩阵P=(ij p )满足 1,1+-+-=j n i m ij p p 其中n j m i ≤≤≤≤1,1 则P 是中心对称矩阵[1] 形如???? ??a b b a ,???? ? ??a b c d e d c b a 都是中心对称矩阵。 定义2:如果?????? ? ??==?111)( n n ij n J J ,则n J 为n 阶置换矩阵 设n J 为n 阶置换矩阵,则用n J 左乘(或右乘)矩阵P ,可以将其行(或列)按反序重新排列。 定理1:n m ?矩阵P 是中心对称矩阵当且仅当 n m PJ P J = 证明:若n m PJ P J =,因为E J n =2,则n m PJ J P =,且 [][]1,1,1+-+-+-===j n i m j i m n ij n m ij p PJ PJ J p 其中n j m i ≤≤≤≤1,1 因此P 是中心对称矩阵。 反之,若P 是中心对称矩阵,则显然有n m PJ P J =. 定理2:设P 和Q 都是n 阶中心对称矩阵,则P+Q ,PQ 和cP (c 为任意实数)仍是中心对称矩阵

证明:设P 和Q 都是n 阶中心对称矩阵,则由定理1, Q P QJ J PJ J J Q P J n n n n n n +=+=+)(, PQ QJ J PJ J J PQ J n n n n n n ==))(()(, cP PJ J c J cP J n n n n ==)()(. 因此,P+Q ,PQ 和cP 仍是中心对称矩阵。 引理1:对于偶数阶(n=2s )置换矩阵J ,存在变换矩阵Q ,使得Q T J n Q 为E s 0-E s ?è ????÷÷ 证明:设T u )0,,0,1(1 =,则T n u J )1,,0,0(1 =,T n u J )0,,0,1(12 =,故0112=-u u J n 即0))(()(112=-+=-u E J E J u E J n n n ,所以 T n u E J )1,,0,1()(1 =+,T n u E J )1,,0,1()(1 -=-分别是n J 的属于特征值1,-1的 特征向量。同样,设T u )0,,1,0(2 =,有0222=-u u J n ,所以T )0,1,0,,0,1,0( 和 T )0,1,0,,0,1,0( -分别是属于特征值1,-1的特征向量。当P 为偶数阶(n=2s )时,继续做下去,可得n=2s 个相互正交的特征向量,将它们排列为变换矩阵Q 的列向量,得 ??? ? ??-=????????????? ??---=s s s s E J J E Q 2111111111111121 ,

相关主题
文本预览
相关文档 最新文档