当前位置:文档之家› 狂犬病病毒培养技术研究进展

狂犬病病毒培养技术研究进展

狂犬病病毒培养技术研究进展
狂犬病病毒培养技术研究进展

狂犬病病毒培养技术的研究进展

狂犬病作为一种几乎100%致死的人兽共患传染病,对人类的危害已经存在了4000多年,至今仍无有效的治疗药物,可行的控制策略只有暴露前免疫和暴露后预防。其中暴露前免疫主要是针对动物而言,因为人的狂犬病来源于动物,只要动物的狂犬病免疫预防有效,可完全控制人狂犬病的发生;而暴露后预防主要用于人,因为人一旦被带毒动物咬伤,必须及时进行全程的暴露后预防才能防止感染狂犬病病毒。

不论是暴露前免疫,还是暴露后预防,都离不开安全、有效、廉价的疫苗。人和兽用狂犬病疫苗的发展,都依赖于病毒培养技术的不断进步,尤其是微载体、发酵技术和无血清培养基的广泛应用,把狂犬病病毒的增殖滴度提高到了一个新的水平,同时降低了生产成本,从而使高质量的细胞纯化疫苗逐渐占领市场。

无论是传统的体内培养技术,还是现在的细胞培养技术,以及新型的细胞发酵和生物反应器,目前都广泛应用于狂犬病病毒的实验室研究或疫苗生产。本文主要就狂犬病病毒培养技术的发展和新技术的应用现状综述如下。

1 体内培养技术

体内培养技术利用了狂犬病病毒的嗜神经特性,具有敏感性好的优点,可以提高病毒检测的阳性率,而且易于操作,适用于不具备组织培养条件的实验室。其中,小鼠脑内接种是实验室最常用的狂犬病诊断和病毒培养技术之一,其他动物如大鼠、羊、兔等,过去主要用于狂犬病神经组织疫苗的生产。

禽胚胎培养技术主要是利用鸭胚和鸡胚进行狂犬病病毒培养,如鸡胚传代致弱的Flury-HEP、Flury-LEP和Kelev毒株。

1.1 脑内培养技术

小鼠脑内接种是最常用的狂犬病病毒脑内培养技术,最早用于狂犬病野毒株的分离培养是在1925年[5]。1955年,该技术开始用于疫苗生产,Fuenjalida和Palacios用新生鼠脑制备出人用组织疫苗(SMBV),该疫苗曾在南美洲使用了40多年,最终因使用后会引起严重的神经综合症而被迫停产[1],但是小鼠脑内接种技术却一直延用至今。目前,该技术已成为病毒分离、毒力测定及中和试验等的常用方法,所用动物一般为小鼠,乳鼠对狂犬病病毒脑内接种的敏感性高于幼鼠和成年鼠[6]。小鼠中,以瑞士白化鼠(Swiss albino)为首先品种,该品种小鼠在实验室饲养容易,对狂犬病病毒高度敏感,但迄今尚未发现任何对狂犬病病毒具有遗传抗性的小鼠品系,因此也可使用其他品种的小鼠。实验室一般不采用野生灰鼠或家鼠,因为其野性较大,人工饲养困难。狂犬病脑内接种试验周期长,通常需观察21天,且成本较高,操作技术性强,鉴于此,有的实验室已改用细胞(如小鼠成神经瘤细胞和BHK细胞等)代替小鼠进行试验。

其他脑内培养技术(大鼠、羊、兔等动物的脑内培养技术)在20世纪80年代以前曾广泛应用于人狂犬病脑组织灭活疫苗的生产,如Semple、Fermi和Hempt疫苗等。但是,随着细胞疫苗的发展和神经组织疫苗的使用安全问题,该技术已不再常用。

1.2 禽胚胎培养技术7-10

鸭胚培养技术过去主要用于人用狂犬病疫苗的生产,目前在实验室使用较少。1955年,Peck等开始研制狂犬病鸭胚疫苗,该疫苗于1957年在美国上市,到1973年已成为美国主要的狂犬病疫苗,但是进入80年代后,在疫苗生产中人二倍体细胞(HDC)培养取代了鸭胚培养技术。

在狂犬病病毒适应鸡胚培养的研究发现,连续传40~50代时,获得的低胚传代株(Flury-LEP)对小鼠、大鼠和仓鼠进行脑内或肌肉接种时仍具有致病性,豚鼠脑内接种也可感染,但肌肉接种时则无致病力;家兔脑内和肌肉注射均不发病;犬肌肉接种也不发病。但是,病毒在传代176至182代时(Flury-HEP)大部分毒力会丧失,此时将病毒脑内接种成年鼠、兔、犬时,均无致病性。因此,一般高代次的Flury-HEP推荐在牛和猫中使用,Flury-LEP仅用于犬。Kelev株鸡胚疫苗系经鸡胚传代60~70次的病毒,该病毒对仓鼠、豚鼠和兔的脑内和肌肉的接种均不产生感染症状;以高浓度的病毒对犬进行肌肉接种,也不出现感染症状。Flury和Kelev株均适于在鸡胚中生长,过去一直用于犬狂犬病疫苗的生产,其中Flury株在世界范围内广泛使用。

鸭胚和鸡胚的接种基本一致,选取培养7天的健康胚,将狂犬病病毒毒液接种到卵黄囊内,鸭胚培养10~14d,鸡胚培养9~10d。

2. 体外培养技术

1913年,Noguchi和Levaditi首次将组织培养技术用于狂犬病病毒的研究。1930年,Stoel将狂犬病病毒在移植于兔血浆凝块中的鸡胚脑和心脏内培养了5代,病毒感染力没有丧失。Atanasieu等利用小鼠食管膜瘤细胞系(一种非神经细胞)培养了狂犬病病毒街毒株和固定毒株,首次在细胞培养系统中报道了类似于Negri小体的胞浆内包涵体。

人用狂犬病细胞培养灭活疫苗的研究始于1964年,该项研究表明,人二倍体细胞株WI-38株可以作为狂犬病固定毒PM株的适应细胞,用于疫苗生产。1967年,Merieux研究所开始利用人二倍体体细胞进行疫苗研发。1974年,人二倍体细胞培养灭活疫苗在法国批准使用,1978年开始商业化生产。

2.1 原代细胞培养技术

前苏联以狂犬病病毒Vnukovo-32株感染原代地鼠肾细胞(PHKC),经紫外灭活后制备狂犬病疫苗,我国则以原代地鼠肾细胞(PHKC)培养狂犬病固定毒北京株,经甲醛灭活制备狂犬疫苗,主要用于暴露后治疗,其年需求量也相当大。

还有一些类似的疫苗是在原代胎牛肾细胞和犬肾细胞上培养并制备的。其中原代胎牛

肾细胞(FBKC)培养疫苗的适应毒株是巴斯德固定株PV-31,于1984年在法国批准用于暴露后治疗,1987年以后不再生产。有报道显示,FBKC疫苗有很好的耐受性和免疫原性,抗体反应类似于HDC疫苗。原代犬肾细胞疫苗的适应株是狂犬病固定毒PM株,PM株对人二倍体细胞也适应。

不同动物(小鼠、仓鼠、猪、犬和猴)源性的原代肾细胞培养物和禽类胚胎成纤维细胞对狂犬病病毒的易感性,证实了这些细胞具有用于狂犬病疫苗生产的潜力。如1960年Fennie 报道了第一个用原代仓鼠肾细胞制备狂犬病疫苗,经过修饰后,结合狂犬病病毒北京株,我国已经将其用于人狂犬病疫苗的生产。Vnukovo-32株也是以类似的方式在前苏联用于狂犬病疫苗生产的。此外,人用疫苗也有以牛肾细胞、犬肾细胞和鸡胚成纤维细胞生产的,后者采用的病毒株为Flury LEP C25。

人用狂犬病原代仓鼠肾细胞成品疫苗有冻干和液体2种剂形,由原代仓鼠肾细胞培养的狂犬病病毒固定毒株经甲醛灭活后制备,是我国此前主要的人用狂犬病疫苗品种。狂犬病固定毒北京株在适应原代仓鼠肾细胞(PHKC)培养后,用于疫苗生产。该毒株是1931年从中国北京1条死于狂犬病的犬脑内分离得到的。通过在兔脑内连续传代后得到固定毒株,到1980年为止主要用于Semple神经组织疫苗的生产。

狂犬病病毒Vnukovo-32株是SAD株的衍生株,该毒株源于1935年从美国阿拉巴马州的一条犬中分离出的野毒(SAD),经鼠脑和PHKC交替传代传代35代,再在37℃下经PHKC连续传10代,达到第32代,完成该毒株在原代仓鼠肾细胞(PHKC)中的适应,即称为Vnukovo-32。适应的毒株,在32℃,PHKC上培养,以第33代~178代毒建立基础种子库和工作种子库,-60℃或冻干保存。

2.2 传代细胞培养技术

人二倍体细胞(Human diploid cell, HDC)疫苗是最早商品化的细胞培养疫苗,目前已在世界范围内得到广泛应用,并成为其他狂犬病细胞培养疫苗的参照标准。法国Marcy l ′Etoile的Merieux研究所和德国Marburg的 Behring研究所研制的人二倍体细胞疫苗均以人二倍体细胞MRC-5培养,经β-丙内酯(BPL)灭活后制得。两者不同的是,Behring研究所生产的疫苗经梯度超速离心进行浓缩和纯化,而Merieux研究所系通过超滤实现疫苗的浓缩。

人用纯化鸡胚细胞疫苗(PCEC)是以原代SPF鸡胚细胞培养制备的,该疫苗为冻干品,其制备过程主要包括β-丙内酯灭活后狂犬病病毒抗原的纯化和浓缩等。

早期对组织培养的研究发现,经鸡胚细胞培养的低代狂犬病病毒Flury株(low egg passage Flury strain, Flury-LEP)更适于作为疫苗株使用。在此基础上,1973年以Flury-LEP株研制出兽用灭活疫苗。以此系统进行人用鸡胚细胞疫苗的生产,首先须将收获的狂犬病病毒经蔗糖密度梯度离心,达到浓缩、纯化的目的。改良后的抗体结合试验可以用于灭活后狂犬病病毒抗原成分的定量。20世纪80年代,建立了多种适用于纯化鸡胚细胞疫苗的实验室检

测方法,并开始了在人的临床试验。

恒河猴胎猴肺二倍体细胞(FRhMDC)疫苗是由美国的公共卫生部的密歇根州生物制品研究所在20世纪70年代开发的。1979年开始在志愿者中进行临床试验, 1988由美国食品与药物管理局(FDA)批准用于暴露前后狂犬病防治。

人用狂犬病犬肾细胞疫苗是利用犬肾细胞在微载体上培养的。疫苗的冻干品包括经?-丙内酯灭活的狂犬病病毒固定毒株和用以吸附病毒的磷酸铝佐剂。

建立了敏感的细胞系和细胞株以后,可以系统研究狂犬病病毒及病毒与宿主细胞的相互作用。迄今已有很多传代细胞系用于动物狂犬病疫苗的制备,如BHK-21、仓鼠肾成纤维细胞(Nil-2)和鸡胚相关细胞(CER)。但由于某些细胞系的异源特性和潜在致瘤性,目前只有猴肾细胞Vero用于人狂犬病疫苗的制备。

人二倍体细胞(WI-38)在1964年首次报道用于人狂犬病疫苗生产,此后,其他二倍体细胞如人胚肺细胞(HEL)、人肺细胞(MRC-5)和恒河猴二倍体细胞系也用于人狂犬病疫苗生产。

除了上面提到的细胞以外,狂犬病病毒还可在胚胎鸡肌管、鼠的巨噬细胞、大鼠感觉神经系统、大鼠垂体肿瘤细胞、黑山羊和豚鼠肾细胞、胎儿蝙蝠细胞、人滑液(McCoy)细胞、日本鹌鹑胚胎细胞和中国仓鼠卵巢细胞(CHO)中复制。病毒接种昆虫细胞也能检测到病毒特异性抗原,但其水平明显低于其他细胞。

人和小鼠源的成神经细胞瘤细胞已广泛用于狂犬病病毒研究,尤其是鼠成神经细胞瘤细胞(NA-C1300,为次黄嘌呤鸟嘌呤磷酸核糖转移酶缺陷细胞株),显微镜下观察,该细胞与人的神经元大致相同,细微结构都有神经元样形态,在微管蛋白、神经递质合成酶和可兴奋细胞膜上也有很多共同特征。

狂犬病病毒固定毒株HEP Flury和LEP Flury可以在原代鸡胚细胞中培养,经β-丙内酯(BPL)灭活后制备疫苗。20世纪60年代,Kondo等研制出了纯化的鸡胚细胞培养疫苗(PCEC),1980年批准使用。此后,很多国家引入了纯化鸡胚细胞培养疫苗用于暴露后治疗,特别是一些东南亚国家。德国Behring研究所也研制了一种类似的疫苗。一项935名受试者接种4247剂纯化鸡胚细胞疫苗的临床试验表明,与人二倍体细胞苗相比,纯化鸡胚细胞培养疫苗可诱导产生更高的抗体滴度。在欧洲,印度次大陆以及东南亚地区(泰国)均有大量此种疫苗生产并应用于暴露后治疗。

接种病毒的组织培养细胞可用常规的单层或旋转培养法培养,悬浮培养也已成功。培养液的最适pH为7.4~7.6,适宜温度范围为30~40℃,但低温培养(32℃)尤为适宜。

3. 细胞发酵和生物反应器技术

前一节介绍了狂犬病人二倍体细胞培养疫苗(HDC)的制备。尽管人用二倍体细胞疫苗安全性良好、免疫原性也高,但人二倍体细胞培养的病毒滴度相对较低,必有经过浓缩才能获

满足质量要求的疫苗,致使本疫苗的大规模生产受到了限制。脊髓灰质炎灭活疫苗是最早使用人二倍体细胞生产的疫苗,因为产毒滴度不高,WHO生物标准化专家委员会为此还对该疫苗的质量标准进行了修正。

微载体细胞培养技术(由Van Wezel发明)的出现,使细胞得以大规模培养并应用到人用疫苗的制备中。随着脊髓灰质炎病毒Vero细胞灭活疫苗的成功研制,人们开始转向以Vero 细胞培养狂犬病病毒并制备灭活疫苗。因为该疫苗要求有纯化过程,以除去残留的细胞DNA 成分,因此该疫苗称为狂犬病Vero细胞纯化疫苗(purified Vero cell rabies vaccine, PVRV)。

考虑到HDC的生产成本,开发商们开始寻找适应狂犬病病毒增殖的新的细胞系、细胞培养体系、病毒株和相关的生产技术,希望能够在保持疫苗高效力的同时,降低生产成本。最早用于狂犬病疫苗生产的传代细胞系是用微载体系统进行培养的Vero细胞,是来源于非洲绿猴的肾细胞系。

1984年11月,WHO和RF合作,采用微载体技术高密度灌流Vero细胞,工业化生产狂犬病疫苗,历时15年,取得成功。目前,Vero细胞疫苗已经在世界上许多国家取得了安全有效的使用经验。

参考文献:

[1] Meslin FX ,Kaplan MM ,Koprowski H. Laboratory techniques in rabies[M] . Fourth

edition ,WHO,Geneva ,1996. 80 - 87.

Woldehiwet Z, 2005. Clinical laboratory advances in the detection of rabies virus.Clin Chim Acta, 351(1-2): 49-63

[5] Webster LT,Dawson JR. Early diagnosis of rabies by mouse inoculation: measurement of host immunity to rabies by mouse protection test.Proc Soc ExP BioI Med. 1935, 32: 570-573.

[6] WHO Expert Committee on Rabies. VIII Report 1992; Technological Report Series 824, WHO. Geneva.

[7] Dietzschold B, Wiktor TJ, Wunner WH, et al. 1983. Virology, 124: 330-337

[8] Gluck R, Matthieu JM, Wegmann A, et al. 1986. Absence of myelin basic protein in an improved purified duck-embryo rabies vaccine. Neurochem Pathol, 4: 69-75

[9] Gluck R, Wegmann A, Germanier R, et al. 1984. A new highly immunogenic duck-embryo rabies vaccine. Lancet, 1: 844-845

[10] Koprowski H, Cox HR. 1948. Studies on chick-embryo-adapted rabies virus; culture characteristics and pathogenicity. Journal of Immunology, 60: 533-544

[11]

狂犬病防治知识培训测试题及答案

狂犬病暴露处置技术培训试题 姓名:单位:分数: 一.填空题(每空1.5分,共30分) 1. 狂犬病是由感染人体引起的一种传染病,发病后病死率达。 2. 狂犬病病毒是一种侵犯中枢神经系统,引起____ 和 ____ 狂犬病的病原体. 3. 人被犬、猫等宿主动物咬、抓伤后,凡不能确定伤人动物为健康动物的,应立即进行受 伤部位的彻底清洗和消毒处理。用或彻底冲洗伤口至少分钟。 彻底冲洗后用涂擦伤口。 4. 狂犬疫苗接种程序为:、、、、天各注射一支狂犬疫苗,成 人、儿童用量。婴幼儿可在大腿前外侧肌肉内注射。禁止注射。对于Ⅲ类暴露及免疫功能低下者Ⅱ类以上的暴露,接种疫苗的同时要在伤口周围浸润注射或。 5. 注射动物源性抗血清前必须严格进行试验。若为阳性,可逐步加量注射,用完全量或改用注射。 二.单选题(每题3分,共30分) 1. 关于狂犬病病毒不正确的描述是() A. 狂犬病毒为弹状病毒科 B. 狂犬病毒是非嗜神经性病毒 C.不会引起化脓性脑炎 D. 在中枢神经细胞胞浆内形成内基小体(Negri Bodies) E.病毒对外界抵抗力不强,56℃30分钟即可杀灭 2. Ⅲ类暴露及免疫功能低下者Ⅱ类以上的暴露,最正确的处理措施是() A.注射狂犬病毒免疫血清+抗病毒药物 B.注射大剂量丙种球蛋白+抗病毒药物 C.清创+抗生素 D.清创+注射狂犬病被动免疫制剂+接种疫苗 E.清创+注射狂犬病毒免疫血清 3. 狂犬病标本采集叙述正确的是() A.从事标本采集和运送的工作人员均要进行暴露前免疫 B.在狂犬病病人入院后,尽可能早期采集标本 C.用于病原学检测的标本,以脑组织阳性率最高 D. A+B+C E. B+C. 4. 狂犬病病毒最不可能感染的动物是() A.狗 B.猫 C.蝙蝠 D.家禽 5. 发展中国家的狂犬病主要传染源是() A.狼 B.猫 C.犬 D.患者 6. 狂犬病临床表现有:()

狂犬病疫苗研究进展

Hans Journal of Biomedicine 生物医学, 2019, 9(3), 143-147 Published Online July 2019 in Hans. https://www.doczj.com/doc/b618616930.html,/journal/hjbm https://https://www.doczj.com/doc/b618616930.html,/10.12677/hjbm.2019.93021 Research Progress on Rabies Vaccine Qianfen Wang Hualan Biological Bacterin Co. Ltd., Xinxiang Henan Received: Jul. 2nd, 2019; accepted: Jul. 17th, 2019; published: Jul. 24th, 2019 Abstract Rabies is a zoonotic infection caused by rabies virus. The rabies virus infects the central nervous system of warm-blooded animals and humans leading to acute lethal encephalomyelitis. The de-velopment of rabies vaccine has a long history. The first generation of rabies vaccine was devel-oped in the late 19th century, followed by the development of second- and third-generation vac-cines with higher efficacy and less adverse reactions. The correct application of vaccines to pre-vent the development of rabies is very effective. A large number of experimental vaccines are un-der development, including DNA vaccines, recombinant viral vaccines and recombinant protein vaccines. This article outlines the past, present and possible future of rabies vaccine. Keywords Rabies Vaccine, Rabies Virus, Research 狂犬病疫苗研究进展 王乾芬 华兰生物疫苗有限公司,河南新乡 收稿日期:2019年7月2日;录用日期:2019年7月17日;发布日期:2019年7月24日 摘要 狂犬病是由狂犬病毒引起的人畜共患传染病。狂犬病毒感染温血动物和人类的中枢神经系统后导致急性致命脑脊髓炎。狂犬病疫苗的开发有着悠久的历史,19世纪后期开发出第一代狂犬病疫苗,随后开发出更高疗效和更少不良反应的第二代和第三代疫苗,疫苗的正确应用对于防止狂犬病的发展是非常有效的。 大量的实验性疫苗正在发展中,包括DNA疫苗、重组病毒疫苗和重组蛋白疫苗。本文概述狂犬病接种疫苗的过去、现在和可能的未来。

实验三 伪狂犬病的诊断

实验三伪狂犬病的诊断 一.实验目的: ⒈熟悉伪狂犬病的临诊特点。 ⒉熟悉伪狂犬病的诊断方法。 二.实验原理: 利用分离的伪狂犬病毒注射实验兔,病毒在动物机体繁殖一段时间后,会影响实验动物的神经系统,实验兔会出现强烈的痒觉,根据这些症状来判断是否含有伪狂犬病毒。 三.内容及方法 1. 伪狂犬病的临床特点 本病发生于牛、绵羊,犬、猫、鼠及猪。野生动物亦可发生。牛、绵羊、犬及猫感染本病后症状很特殊而明显。主要表现为某部皮肤的强烈痒觉。常使劲地于墙柱上摩擦,直到皮肤撕碎,仍不断摩擦,病畜像疯狂一样,用力制止亦无效果。体温可达40℃以上。常发病后48小时内死亡。成猪一般为隐性感染,怀孕母猪可发生流产、死胎、木乃伊胎儿。仔猪,尤于新生仔猪病情极严重,常可发生大批死亡。主要侵害神经系统,表现为神经症状。 2. 实验室诊断 2.1 病料的采集与处理 分离病毒的材料于发热期最好采取中脑、桥脑及延脑,或采取病总部之水肿液、侵入部神经干及脊髓。病料用培养液制成1:10组织悬浮液。 2.2 兔体接种试验上述悬液经2000r/min离心1Omin,取上清液1~2ml经腹侧皮下或肌肉接种家兔,通常在36-48h后注射部位出现剧痒,病兔啃咬注射部位皮肤,皮肤脱毛、破皮和出血,继之四肢麻痹,体温下降,卧地不起,最后角弓反张,抽搐死亡。但这种症状只维持几小时,一般常于夜间死亡,可见死兔口内有接种部位咬下的被毛。亦可脑内接种小鼠,症状可维持12小时,但其敏感性不如兔。亦可用细胞培养来分离病毒。许多种哺乳动物细胞均能繁殖本病毒,但最常用的是猪肾传代细胞。 2.3 兔、猪及牛肾原代细胞培养。病料接种细胞后最早经18小时出现病变(病毒量大),一般经48小时,病毒量很低时要到96小时。其典型的病变是出现巨细

狂犬病病毒实验室检测方法

狂犬病病毒实验室检测方法 摘要:狂犬病(Rabies)是一种重要的人兽共患传染病,由狂犬病病毒(Rabies virus,RV)感染温血动物和人后引起,近年来又有感染上升的趋势。一种准确、灵敏、快速的实验室检测诊断方法就显得极为重要。现就酶联免疫吸附试验(ELISA)、荧光抗体方法(FAT)、快速荧光抑制灶技术(RFFIT)、反转录-聚合酶链反应(RT-PCR)、荧光定量RT-PCR,基因芯片技术和恒温扩增技术等狂犬病病毒实验室诊断方法做一综述。 关键词:狂犬病狂犬病病毒检测方法 狂犬病(Rabies)是一种重要的人兽共患传染病,由狂犬病病毒(Rabies virus,RV)感染温血动物和人后引起,以恐水、畏光、吞咽困难、狂躁、急性致死性脑脊髓炎,进行性麻痹和最终死亡为主要临床特征。RV可感染多种温血动物引起死亡,表现为高度嗜神经性。脑组织感染RV后遭到破坏,使得狂犬病感染的病死率几乎100%。 据WHO数据显示狂犬病在全世界150个国家和地区出现过狂犬病病例。尽管狂犬病可以通过疫苗免疫进行预防,全世界每年仍有超过5.5 万人死于该病,主要集中在亚、非、拉等发展中国家[1]。中国狂犬病疫情较严重,居世界第2位[2~3],近年来,狂犬病疫情呈现回升的趋势[4]。检测狂犬病抗原抗体、分析狂犬病的流行特点,并建立高效、快速、可靠的实验室检测方法可以有效控制此病的流行。下面主要针对RV的形态特征和分子结构及主要的检测技术进行概述。1、狂犬病病毒形态特征 RV属于弹状病毒科(Rhabdoviridae)狂犬病病毒属(Lyssavirus)血清/基因1 型,单股负链RNA病毒。电镜下观察病毒粒子直径为70~80nm,长160~240nm,一端钝圆,另一端平凹,整体呈子弹状[5]。病毒有双层脂质外膜,其外面镶嵌有1072-1900个8-10nm长的纤突(spike),为糖蛋白,每个糖蛋白呈同源三聚体形式,电镜还显示了糖蛋白具有“头”和“茎”结构。病毒双层脂质包膜的内侧主要是膜蛋白,亦称基质蛋白(Matrix,简称M),是狂犬病毒的最小结构

狂犬病防治手册

狂犬病防治手册 1.为何要停止生产含氢氧化铝佐剂的狂犬病疫苗? 研究发现,含氢氧化铝佐剂的狂犬病疫苗较无佐剂狂犬病疫苗免疫人体后中和抗体的产生晚7天左右。狂犬病疫苗的暴露后免疫是一种应急使用,抗体的产生越早越好。因此,氢氧化铝佐剂对狂犬病的暴露后治疗十分不利。另据报道,使用了丹麦Statens血清研究所生产的氢氧化铝吸附的百白破疫苗,导致546例注射部位出现顽固性硬结性瘙痒的严重不良反应。其中77%的不良反应病例经皮肤试验确认为对氢氧化铝过敏。狂犬病疫苗中的的氢氧化铝佐剂同样可以导致不良反应增多。因此,2004年12月的人用狂犬病疫苗质量工作会议上,国家食品药品管理局已要求各生产企业在2005年6月30日前停止氢氧化铝佐剂人用狂犬病疫苗的生产。 2.为什么人用纯化狂犬病疫苗禁止臂部肌肉注射? 因为臂部脂肪较多,疫苗注射后不易扩散,可能会影响免疫效果。因此,要求成人在上臂三角肌注射,儿童最好选择大腿前外侧区肌肉注射。 3.正在接种其它疫苗,是否可以注射狂犬病疫苗? 正在接种其它疫苗,仍可注射狂犬病疫苗,但接种部位应远离前一种疫苗的接种部位。 4.使用疫苗的同时使用抗生素,会影响疫苗的效果? 二者同时应用不会影响疫苗的效果。 5.年幼儿童注射疫苗为什么选择大腿前外侧? 因为臂部肌肉脂肪较多,疫苗注射后不易扩散。上臂三角肌不发达,会影响疫苗的吸收。大腿前内侧因有大血管和神经经过,在此接种易发生危险。所以,年幼儿童应在大腿前外侧区肌肉注射,这里肌肉丰厚,易接种。

6.狂犬病病毒从感染至发病有哪些步骤? 狂犬病病毒从感染到发病的步骤为:①病毒感染;②病毒在肌肉内复制;③病毒在神经肌肉结合处,与乙酰胆碱受体结合;④病毒通过快速轴突传递方式在周围神经的轴突内传播;⑤在脊髓的神经元与局部的周围感觉(背根)神经节内复制并快速上行到脑;⑥脑部神经元感染伴发神经功能障碍;⑦沿神经离心扩散到唾液腺、皮肤、角膜以及其他器官。 7.狂犬病病毒是如何与神经细胞相互作用的? 狂犬病病毒与神经细胞的相互作用分四个阶段:①吸附:狂犬病病毒吸附于健康的神经细胞;②侵入:病毒被细胞吸入,进入细胞内;③复制:在细胞内,病毒迅速繁殖;④出芽:新的狂犬病病毒离开宿主细胞,吸附于其他神经细胞。然后,病毒从脑通过神经扩散到身体的其他器官。 8.狂犬病病毒的特性有哪些? 狂犬病病毒是嗜神经性病毒,对神经组织有特殊亲和力。病毒不能穿透健康皮肤,主要通过损伤皮肤和粘膜入侵,少数由呼吸道吸入感染。病毒侵入后,沿传入神经到达中枢神经,侵害中枢神经细胞,然后再由中枢沿传出神经侵入各脏器组织,如唾液腺、眼、舌、皮肤、心脏等。因唾液腺最适狂犬病病毒繁殖,故唾液中含病毒最多,早在症状出现前14天即有病毒出现。因此唾液为主要传染源,既可通过舔咬感染人和畜,又可通过流涎污染环境,引起吸入性感染。 9.狂犬病的病原体是什么? 狂犬病的病原体是弹状病毒科狂犬病病毒属的狂犬病病毒。整个病毒由最外层的脂质双分子层外膜、结构蛋白外壳和负载遗传信息的RNA分子构成。 10.曾经注射过狂犬疫苗的人又被犬咬伤还用再打针吗? 全程接种符合效价标准的疫苗后1年内再次被动物致伤者,应于0和3天各接种一剂疫苗;在1-3年内再次被动物致伤,且已进行过上述处置者,应于0、3、7天各接种一剂疫苗;超过3年者应接种全程疫苗。此外,对暴露前后所用的疫苗效价无法证实者及免疫回忆应答无法确认者仍应进行全程免疫。

伪狂犬病检测方法

十一、伪狂犬病检测方法 伪狂犬病病毒分离鉴定 1 材料准备 DMEM培养基、BHK-21细胞、新生犊牛血清、青霉素、链霉素溶液、0.22ul 微孔滤膜、细胞培养瓶、CO2培养箱、倒置显微镜。溶液配制见附录A(标准的附录) 2 操作步骤 2.1病料的采集对于刚死亡或活体送检并处死的动物,无菌采取肝、脾、肺、肾及其脑组织,尤其是三叉神经节、嗅球,4℃送实验室检测。 2.2样品处理待检组织在灭菌乳钵内剪碎,加入灭菌玻璃砂研磨,用灭菌生理盐水或DME培养基制成1:5乳剂,—70℃反复冻融后,经3000rpm离心30分钟后,取上清液经0.22μm微孔滤膜过滤后,加入青链霉素溶液至最终浓度为100U/mL,—70℃保存作为接种材料。 2.3 病料接种将病料滤液接种已长成单层的BHK-21细胞,接种量为培养基量的10%,37℃恒温箱中吸附1小时后,加入含10%新生犊牛血清(经过56℃水浴灭活30分钟,过滤除菌,无支原体)的DMEM培养基,置37℃温箱中培养。 2.4观察结果接种后24—48小时,BHK-21细胞应出现典型的细胞病变效应(Cyto pathogenic effect, CPE),表现为细胞变圆,脱落。如第一次接种不出现CPE,应将细胞培养物冻融后盲传三代,如仍无CPE,则判为伪狂犬病病毒阴性。 2.5病毒的鉴定将出现CPE的细胞培养物反复冻融后,用聚合酶链式反应、荧光抗体试验等两种方法中任一方法作进一步鉴定。 伪狂犬病聚合酶链式反应 1 材料准备:待检组织、组织匀浆器、蛋白酶K,十二烷基磺酸钠(SDS),苯酚、氯仿,异戊醇(分析纯)、TEN缓冲液。溶液配制见附录C(标准的附录) 引物:扩增伪狂犬病病毒基因中434—651bp之间217bp基因片段,由上海生物工程公司合成。 序列为,上游引物P1:5’-CAGGAGGACGAGCTGGGGCT-3’, 下游引物P2:5’-GTCCACGCCC-CGCTTGAAGCT-3 仪器设备有:凝胶电泳紫外线检测仪,PCR扩增仪,电泳仪 2操作步骤: 2.1 样品的采集:对于病死或扑杀动物,取脑组织;对于待检活猪,用已灭菌的棉签,伸入猪鼻腔中,采取鼻粘液,即为鼻拭子,冷藏条件送实验室检测。2.2样品处理所采病料经组织研磨器充分研磨,按1:5用TEN缓冲液悬浮收集于离心管内,-70℃反复冻融3次,7000r/min离心5min,如样品为鼻试子,则加入2ml TEN缓冲液,充分挤压,取出棉签,7000rpm,离心5分钟,取上清液。取上清液472.5μl,加入25μl 10%SDS和2.5μl的20mg/ml 蛋白酶K,50℃水浴摇床上放置2h后加入等量的饱和酚500μl,涡旋20s。离心取上清液,加等量的酚:氯仿:异戍醇(25:24:1)抽提一次,再用氯仿:异戍醇(24:1)抽提一次,最后用乙醇沉淀,真空抽干后加入20μl双蒸水溶解,-20℃贮存备用。

狂犬病疫苗研究进展

狂犬病疫苗研究进展 马君1*,王栋2 (1.北京海淀中海动物保健科技公司,北京,100081;2.中国兽医药品监察所, 北京,100081) [摘要]接种狂犬病疫苗是目前防治狂犬病的唯一有效措施。根据狂犬病疫苗发展的不同阶段,从巴斯德首次研制的狂犬病神经组织疫苗到高度纯化的细胞疫苗,将狂犬病疫苗进行了分类,并对各类狂犬病疫苗的作用机理、生产应用以及优缺点分别予以了阐述。 [关键词]狂犬病,疫苗,进展 狂犬病是由狂犬病病毒(Rabies Virus)引起的一种人畜共患传染病。全世界每年约有6万人死于狂犬病[1]。我国每年狂犬病发病人数在印度之后,居世界第二位,近几年每年约1000~1200万人接受狂犬病暴露后接种[2]。目前本病几乎无有效的治疗办法,只能通过接种疫苗来预防。 从巴斯德首次制成狂犬病弱毒疫苗以来,各国不断完善并研制了更加安全有效的人、兽狂犬病疫苗,主要有以下几种。 1.弱毒疫苗 1885年,法国科学家巴斯德首次用兔脑脊髓制备成狂犬病弱毒疫苗,应用于人体治疗获得了成功[3]。目前弱毒疫苗仅在少数发展中国家用于人体免疫,而更多用于欧美等国野生动物及发展中国家的家养动物。弱毒疫苗所使用的毒株主要为SAD衍生株,如SAG1和ERA等[4]。其中欧洲应用SAG1株接种野生动物[5]。我国目前生产ERA株活疫苗,最近又重新修订了用Flury株生产活疫苗的制造及检验试行规程,对于已取得GMP认证的企业可申请产品的批准文号。 狂犬病弱毒疫苗在体内的增殖过程与病原感染机体的过程相似,能诱导产生细胞免疫和体液免疫,且产生的免疫反应较强,持续时间较长,在我国狂犬病防制工作中曾起到一定的积极作用。但由于我国目前对活疫苗安全监测与监管制度尚不完善,狂犬病毒流行毒株与疫苗株之间分子流行病学的亲缘性研究尚不充分,对于活疫苗的安全性尚存在争论。 周桂兰等对2种国产狂犬病活疫苗(ERA株)的免疫抗体监测结果表明,对6月龄以上、5岁以内的成年健康犬1次接种后6个月和8个月,分别有28.57%和5. 71%的犬抗体水平高于0.5IU/mL(WHO确认的抗体保护水平),半年后再进行2次接种,有81.82%的犬抗体水平达到0.5IU/mL[6]。而英国对Nobivac 狂犬病灭活疫苗的监测结果是,6个月至12.5岁的成年犬1次接种失败率为5.7%。在20 06年5月召开的我国首届人兽共患病研讨会上,弱毒疫苗的安全性再次成为争

猪伪狂犬病的预防与用药

猪伪狂犬病的预防与用药 -----本文由深圳安多福整理 最近,河南的一养殖户,使用成都天邦的疫苗,却死了3000多头母猪。是成都天邦的伪狂犬疫苗有问题,还是母猪已经感染了强毒或是母猪在注射后被蓝耳病和其他病致死的?相信不久,真相就会揭晓。 那么猪伪狂犬是怎么样的一种病,发病有哪些症状,怎么样去预防和治疗呢? (一)综述 猪伪狂犬病是由伪狂犬病毒引起家畜和野生动物的一种急性传染病。特征为成年猪呈隐性感染或有上呼吸道卡他性症状;妊娠母猪发生流产死胎;哺乳仔猪出现脑脊髓炎(神经症状)和败血症状(发热),最后死亡。没有明显的季节性,但以寒冷的冬季发病较多。 本病主要通过与病猪和带毒猪接触,经呼吸道、消化道、损伤的皮肤感染,也可通过配种、哺乳感染,妊娠母猪感染后,可感染胎儿。(二)症状 本病潜伏期3~11天。临床症状随猪年龄不同而有很大差异。妊娠母猪常发生流产,产出的弱胎通常在3~4天死亡,流产率可达50%;适龄母猪表现为不育症,返情率高,但屡配不孕。成年猪一般为隐性感染,即使有症状也是轻微的,只表现为一般性发热,精神沉郁,有的有呕吐、咳嗽、一般4~8天恢复;可引起新生仔猪大量死

亡,主要表现为刚生下的仔猪第一天无异常,常从第二天开始发病,3~5天内达到死亡高峰,表现明显的神经症状,病猪昏睡、鸣叫、呕吐、拉稀、流涎、发抖、痉挛,有时不自主地前冲、后退或转圈运动;随着病情的发展,发现四肢麻痹,倒地侧卧,头向后仰,四肢乱动或划水样运动,最后昏迷死亡;可引起断奶仔猪发病死亡,发病率在20%~40%,死亡率在40%~60%,主要症状表现为神经症状,拉稀,呕吐等。 (三)病理变化 剖检主要表现为脑膜充血,水肿、出血,脑脊液增多,淋巴结肿大,胃肠黏膜可见卡他性炎症,胃底部有明显出血区,上呼吸道黏膜及扁桃体出血,水肿,并有纤维素性坏死性伪膜覆盖。有的肾脏布满针尖样出血点,有的出现肺水肿。肝肾有特征性坏死灶,中央灰白色,外周有红色晕圈,具有诊断意义。流产胎儿的肝、脾及胎盘绒毛膜有凝固性坏死。 (四)防治 1、种猪每6个月背颈皮下注射伪狂犬病基因缺失油佐剂苗3毫升,母猪在产前1个月左右加强免疫一次;种用仔猪28~35日龄注射一次1.5毫升,4~6周重复注射一次,育肥仔猪30日龄注射1.5毫升。 2、严格执行消毒措施。猪舍地面、墙壁、设施及用具等每周定期消毒1次,粪便放发酵地或沼气池处理。发生疫情时则2~3天消毒1次,消毒液可用安多福万金水按1:500稀释。

狂犬病病毒感染免疫反应研究进展

综述 狂犬病病毒感染免疫反应研究进展* 金宏丽1,2,王化磊2,齐瑛琳1,2,赵平森2,3,赵丽丽1,2,梁萌1,2,杨松涛2**,夏咸柱2** (1.吉林大学畜牧兽医学院,吉林长春130062;2.中国人民解放军军事医学科学院军事兽医研究所,吉林长春,130122; 3.北京协和医学院医学实验动物研究所,北京100021) 摘要 狂犬病病毒感染机体后可引起严重的脑炎,病死率几乎为100%。暴露前预防免疫和及时的暴露后免疫可有 效阻止脑炎的发生,一旦出现狂犬病临床症状后,几乎所有的治疗方法均无效。病毒感染机体后,激发机体产生先天性 和获得性免疫应答,而在病毒进入中枢神经系统前,机体产生的免疫应答不足可能是免疫保护失败的原因之一。本文综 述了机体对狂犬病病毒感染与疫苗免疫产生的免疫反应。 关键词 狂犬病病毒;免疫反应;免疫抑制;综述 中图分类号 R373.9 文献标识码 A 文章编号 1673 5234(2011)08 0614 04 [J our nal of Pathogen B iology.2011A ug;6(8):614-617.] The immune response to rabies virus infection JIN H ong li1,2,WANG H ua lei2,QI Ying lin1,2,ZH AO Ping sen2,3,ZH AO Li li1,2,LIANG Meng1,2,YAN G Song tao2,XIA Xian zhu2 (1.College of A nimal Science and Veter inar y Medicine,J ilin U niv er sity,Changchun130062,China;2.I nstitute of M ilitar y Veter inar y M edicine,A cademy of M ilitar y M ed ical Sciences;3.I nstitute of L abo rator y A nimal Science,Chinese A cademy of M edical Sciences&Pek ing Union M ed ical Colleg e) Abstract Rabies vir us causes encephalit is in humans w ith a fata lity rate of almost100%.Encephalitis can be effect ive ly prev ented by pre ex po sur e vaccinatio n and pr ompt post ex po sur e vaccinatio n.H ow ever,almost all metho ds of treat ment are ineffect ive once the clinical sy mpto ms of rabies develop.Innate and adaptive immune responses are trigg ered once the body is infected with the pathog en.An inadequat e adaptive immune response trigg ered by the v irus,part icularly be fo re the virus enters the CNS,may be one of the reasons fo r failed immunopro tection in humans.T his paper rev iews the immune r esponse to r abies infectio n and vaccinat ion. Key words Rabies virus;immune r espo nse;immunosuppr essio n;rev iew 狂犬病病毒(rabies v ir us,RA BV)属于弹状病毒科狂犬病毒属,为单股负链不分节段的R NA病毒。RA BV的基因组大小为12kb,可编码5种结构蛋白[1],依次为核蛋白(N)、磷蛋白(P)、基质蛋白(M)、糖蛋白(G)和RN A依赖的RN A聚合酶(L)。RA BV具有高度嗜神经性,侵入感染部位的外周神经,逆轴突传输至背根神经节,此时此处可检测到病毒粒子。病毒传播速度较快,通过足垫接种病毒感染小鼠,立即截肢或切断坐骨神经后,可阻断病毒传播,而感染数天后再用此方法将不能阻止病毒的传播。人感染病毒后,潜伏期为数月甚至数年,其原因可能为病毒可在伤口附近的肌肉组织内持续的静止存在或以低量复制。一旦病毒由外周神经轴突转运至脊髓,即以极快的速度上行至脑,此过程一般仅需数小时。病毒侵入脑内后,即进行大量增殖并迅速扩散至全脑。目前,一旦出现狂犬病临床症状,尚无有效的治疗方法,病人会在数天或数星期后死亡[2]。 1 RABV感染的免疫反应 1.1 抗病毒作用的免疫反应 病毒侵入机体后,会诱导机体产生一系列的免疫应答过程,包括先天性免疫和获得性免疫反应。宿主的先天性免疫是抵抗病毒感染的第一道防线,包括干扰素(inter fero n,IF N)、炎症反应的产生,巨噬细胞吞噬功能的增强等;获得性免疫包括特异性体液免疫和细胞免疫。狂犬病暴露后不一定能发病,可能因为病毒没有成功引起感染,或虽引起感染但却被机体产生的免疫反应控制在早期阶段。以上两种情况可研究的病例极少。此外,免疫反应抵抗病毒感染机制中,RA BV中和抗体(vir us neutra lizing ant ibody,V NA)起重要作用,而大多数病人在出现临床症状后几天才能检测到抗体[3]或一直检测不到抗体[4]。2004年,美国一女孩在感染蝙蝠RA BV后存活[5],在其治疗过程中主要采用了诱导昏迷及抗病毒药物,此治疗方法被称为M ilwaukee法,然而仅有2例病人采用此法获得成功,大多数病例均以失败告终[6,9]。此小女孩在入院时即在其脑脊液(cerebrospinal fluid,CSF)中检测到了VN A,因此狂犬病病人CSF内的中和抗体可能是有利于病人存活的主要因素。 研究表明,R ABV实验室致弱毒株能激活机体的先天性免疫反应,尤其是IF N / 信号通路[10]。RA BV实验室致弱毒株 * ** 基金项目 国家重点基础研究发展计划(No.2011CB504706); 公益性行业(农业)科研专项(No.201103032)。 通讯作者 杨松涛,E mail:Yst610223@yah https://www.doczj.com/doc/b618616930.html, 夏咸柱,E mail:xia_xzh@https://www.doczj.com/doc/b618616930.html, 作者简介 金宏丽(1987-),女,黑龙江七台河人,硕士研究生,主要从事狂犬病病毒致病机理与新型疫苗研究。 E mail:jin8616771@https://www.doczj.com/doc/b618616930.html,

狂犬病毒的作用原理

狂犬病毒的作用原理?是对人的神经起作用还是? 狂犬病(rabies)又称恐水症(hydrophobia),为狂犬病病毒引起的一种人畜共患的中枢神经系统急性传染病。多见于狗、狼、猫等食肉动物。人多因被病兽咬伤而感染。临床表现为特有的狂躁、恐惧不安、怕风恐水、流涎和咽肌痉挛,终至发生瘫痪而危及生命。 [病原学] 狂犬病病毒属核糖核酸型弹状病毒。狂犬病毒具有两种主要抗原。一种为病毒外膜上的糖蛋白抗原,能与乙酰胆碱受体结合使病毒具有神经毒性,并使体内产生中和抗体及血凝抑制抗体。中和抗体具有保护作用。另一种为内层的核蛋白抗原,可使体内产生补体结合抗体和沉淀素,无保护作用。从患者和病兽体内所分离的病毒,称自然病毒或街毒(stree virus),其特点是毒力强,但经多次通过兔脑后成为因定毒(fixed virus),毒力降低,可制做疫苗。 狂犬病毒易被紫外线、甲醛、50~70%乙醇、升汞和季胺类化合物(新洁尔灭)等灭活。其悬液经56℃30~60分钟或100℃2分钟即失去活力,对酚有高度抵抗力。在冰冻干燥下可保存数年。 [流行病学] 狂犬病在世界很多国家均有发生。我国解放后由于采取各种预防措施,发病率明显下降。近年因养狗逐渐增多,故发病率有上升的趋势。 (一)传染源发展中国家的狂犬病主要传染源是病犬,人狂犬病由病犬传播者约占80~90%,其次为猫和狼,发达国家由于狗狂犬病被控制,野生动物如狐猩、食血蝙蝠、臭鼬和浣熊等逐渐成为重要传染源。患病动物唾液中含有多量的病毒,于发病前数日即具有传染性。隐性感染的犬、猫等兽类亦有传染性。 (二)传播途径主要通过被患病动物咬伤、抓伤,病毒自皮肤损伤处进入人体。粘膜也是病毒的重要侵入门户,如眼结合膜被病兽唾液沾污,肛门粘膜被狗触舔等,均可引起发病。此外,亦有经呼吸道及消化道感染的报道。 (三)传播途径人对狂犬病普遍易感,兽医、动物饲养者与猎手尤易遭感染。一般男性多于女性。冬季发病率低于其他季节。 [发病机理与病理变化] 狂犬病病毒对神经组织有很强的亲和力。发病原理分为三个阶段:①局部组织内小量繁殖期。病毒自咬伤部位入侵后,在伤口附近横纹细胞内缓慢繁殖,约4~6日内侵入周围神经,此时病人无任何自觉症状。②从周围神经侵入中枢神经期。病毒沿周围传入神经迅速上行到达背根神经节后,大量繁殖,然后侵入脊髓和中枢神经系统,主要侵犯脑干及小脑等处的神经元。但亦可在扩散过程中终止于某部位,形成特殊的临床表现。③向各器官扩散期。病毒自中枢神经系统再沿传出神经侵入各组织与器官,如眼、舌、唾液腺、皮肤、心脏、肾上腺髓质等。由于迷走神经核、舌咽神经核和舌下神经核受损,可以发生呼吸肌、吞咽肌痉挛。临床上出现恐水、呼吸困难、吞咽困难等症状。交感神经受刺激,使唾液分泌和出汗增多。迷走神经节、交感神经节和心脏神经节受损时,可发生心血管系统功能紊乱或猝死。

狂犬病毒PV-2061株的病毒滴度测定方法的研究

狂犬病毒PV-2061株的病毒滴度测定方法的研究 发表时间:2018-11-22T13:05:51.323Z 来源:《医药前沿》2018年27期作者:李爽1 姚宇1 李鹤1 田威2(通讯作者) [导读] 建立狂犬病毒PV-2061株病毒滴度的快速、准确的检测方法。方法:取12批狂犬病毒PV-2061株的病毒样品 李爽1 姚宇1 李鹤1 田威2(通讯作者) (1辽宁成大生物股份有限公司辽宁沈阳 110179) (2沈阳药科大学生命科学与生物制药学院辽宁沈阳 110015) 【摘要】目的:建立狂犬病毒PV-2061株病毒滴度的快速、准确的检测方法。方法:取12批狂犬病毒PV-2061株的病毒样品,分别采用蚀斑法、免疫荧光法检测病毒滴度,与小鼠脑内注射法进行比较,验证其检测结果的相关性。另取一批狂犬病毒PV-2061株的病毒样品,用蚀斑法和免疫荧光法重复检测6次,比较两种实验方法的精密性。结果:蚀斑法和免疫荧光法测得的结果与小鼠脑内注射法之间呈正相关性;重复测定同一病毒样品,免疫荧光法的变异系数更低,表明免疫荧光的重复性更好。结论:以细胞法替代小鼠法检测狂犬病毒的毒力是可行的。免疫荧光法检测病毒滴度,快速、准确、精密度好,为狂犬病毒PV-2061株的疫苗的研究奠定了基础。 【关键词】狂犬病病毒;免疫荧光法;蚀斑法 【中图分类号】R373.9 【文献标识码】A 【文章编号】2095-1752(2018)27-0251-02 Determination of virus titer of rabies virus PV-2061 strain Li Shuang 1,Yao Yu 1,Li He 1,Tian Wei 2 (Corresponding author) 1. Liaoning Cheng Da biological Limited by Share Ltd, Shenyang , Liaoning 110179 2. School of life sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110015 【Abstract】Objective To establish a fast and accurate method to detect the titer of the PV-2061 strain of rabies virus. Methods The virus samples of rabies virus PV-2061 strain of 12 batches were measured by plaque assay and immunofluorescence, and compared with the intracerebral injection in mice to verify the correlation of the test results. A sample of rabies virus PV-2061 strain was also repeated for 6 times by plaque assay and immunofluorescence. The accuracy of the two methods was compared. Results The results of plaque assay and immunofluorescence were positively correlated with the intracerebral injection in mice; Repeated determination of the same virus sample showed that the coefficient of variation of immunofluorescence method was lower, indicating that immunofluorescence was more reproducible. Conclusion It is feasible to detect the virulence of rabies virus by cell method instead of mouse method. The detection of virus titer by immunofluorescence is rapid, accurate and precise, which lays the foundation for the research of vaccine against rabies virus PV-2061 strain. 【Key words】Rabies virus; Immunofluorescent assay;Plaque assay 狂犬病,俗称恐水病,是一种由狂犬病病毒感染引起的人兽共患传染病,一旦感染发病,病死率高达100%。狂犬病至今仍无特效的治疗方法,实施疫苗免疫是预防和控制狂犬病发病最有效的措施[1]。在疫苗生产的各项检测指标中,狂犬病毒毒力的测定是至关重要的,其直接关系到疫苗成品的效价和免疫效果。《中华人民共和国药典》三部(2015版)狂犬病毒滴度检测的方法推荐采用小鼠法。但是由于实验动物之间存在个体差异,实验人员操作的熟练程度等诸多因素均会影响实验结果的准确性。细胞法作为病毒滴度测定的一种替代方法,近年来广受国内外学者的青睐,其中蚀斑法、免疫荧光法等都是比较经典的实验方法。 1.材料和方法 1.1 病毒及细胞病毒株 狂犬病毒PV-2061株第18代,由辽宁成大生物股份有限公司提供,原始毒株来源于ATCC。细胞株:幼仓鼠肾细胞(BHK-21)、非洲绿猴肾细胞(Vero)来源于中科院上海细胞库。 1.2 实验动物 昆明系SPF级小鼠,雄性,体重11~13g,来源于湖南斯莱克景达实验动物有限公司。 1.3 主要试剂 FITC标记的抗狂犬病病毒特异性荧光抗体购自美国Novus Biologicals公司,浓度0.93mg/ml;新生牛血清购自美国Hyclone公司;甲基纤维素购自美国Sigma公司。 1.4 蚀斑法 1.4.1制备单层细胞将BHK-21细胞浓度调整至1×105个/ml,接种6孔细胞培养板,长满单层备用。 1.4.2病毒滴度测定将狂犬病毒样品5倍稀释,然后进行10倍系列稀释,共6个稀释度(1×10-4、5×10-4、1×10-5、5×10-5、1×10-6、5×10-6),接种至已制备好的6孔细胞培养板中,0.4ml/孔,于5%CO2、37℃的培养箱内吸附90min,每隔15min轻摇板一次,然后加入甲基纤维素覆盖液,4ml/孔,于培养箱中培养7d后,弃去覆盖液,加入结晶紫染色液,2ml/孔,室温30min后弃去染色液,用自来水冲洗至流水无色,晾干,细胞培养板孔内蚀斑清晰可见。统计各孔蚀斑数,计算结果,病毒滴度以lgPFU/ml表示。 PFU/ml=(每孔平均蚀斑数×病毒稀释倍数)/每孔接种病毒量 1.5 免疫荧光法 1.5.1制备单层细胞将Vero细胞调整浓度至1×105个/ml,接种96孔细胞培养板中,长满单层后备用。 1.5.2病毒滴度测定用细胞培养液将待测的狂犬病毒样品以10倍系列稀释,共6个稀释度(1×103、1×104、1×105、1×106、1×107、1×108),接种至制备好的96孔细胞培养板中,100μL/孔,每个稀释度6孔,每块板上设正常细胞对照孔和病毒阳性对照孔,置5% CO2、37℃培养箱中培养2d后,用PBS洗板3次,室温干燥后加入80%冷丙酮,100μL/孔,4℃固定30min后弃丙酮,置室温干燥,然后用100×稀释的荧光抗体进行染色,50μL/孔,置湿盒内37℃温育30min,洗板3次,甘油封闭,荧光显微镜下观察,计数病毒感染细胞的荧光灶数,细胞浆内有绿色特异性荧光颗粒者为阳性。正常细胞对照无特异性荧光,病毒对照阳性者为有效,以Reed-Muench法计算感染性滴度[2]。 1.6 小鼠LD50测定法 将病毒样品进行10倍系列稀释,脑内接种11~13g的小鼠,每个稀释度注射6只,0.03ml/只。连续观察14d,3天后死亡或呈典型发病症状的小鼠均计入死亡数内,计算LD50。

狂犬病疫苗的发展现状

狂犬病疫苗的发展现状 (作者:___________单位: ___________邮编: ___________) 【关键词】狂犬病;病毒活疫苗;灭活疫苗 狂犬病(rabies),即疯狗病,又称恐水症(hydrophobia),是由狂犬病毒感染所致的损害中枢神经系统为主的急性传染病,属人兽共患的自然疫源性疾病。该病极为凶险,一旦发病,病死率100%[1~2]。全世界每年约有3.5~5万人死于狂犬病[3],其中99%的病例发生在发展中国家,亚洲约占发病总数的56%,而非洲约占44%[1]。2009年7月16日据参考消息报道,中国2007年由狂犬病引发的死亡人数上升至3300人。当前控制狂犬病是当务之急,应采取“管、免、灭”为主的综合性防治措施。目前应用狂犬病疫苗接种是预防狂犬病的有效方法。本文就狂犬病疫苗的发展、国内外主要疫苗使用情况及新型疫苗的进展作一综述。 疫苗的研制与改进创新 100多年来,全世界应用固定毒种发展了多种人用狂犬病疫苗,由最初的神经组织疫苗到现代的细胞培养疫苗。神经组织疫苗接种反应大,免疫原性低。现代疫苗接种剂量及针次少,接种反应低,

免疫效果不断提高。纵观疫苗的发展,1882年巴斯德(Pasteur)从牛脑分离到一株狂犬病病毒,将其在家兔脑内连续传90代。该病毒传代至50代时的潜伏期已由原来的15天缩短为固定的7天,并且毒力也减弱,称为固定毒[4]。将感染后7天发病的兔脊髓取出,在室温空气中干燥,后发现病毒的毒力很快降低,一般干燥15天后可完全减弱。1885年,巴斯德首次对一名被疯狗严重咬伤60小时后的9岁男孩腹部皮下注射神经组织疫苗,连续注射13针,结果该小孩获得了免疫保护。巴斯德这一成功的预防和治疗狂犬病的方法开创了人用狂犬病疫苗的新纪元,引起了医学界的极大重视。此后许多国家对狂犬病疫苗的研制方法进行了许多次改进和创新,主要有:①减毒活疫苗:1887年由匈牙利Hoegyes研制,即将固定毒以稀释法降低毒力。一般开始免疫时,病毒以1/10000稀释,最后以1/100稀释,持续免疫2~3周。这一方法曾在一些国家广泛使用,并证明效果良好。 ②灭活疫苗:1911年由在印度的英国人Semple首创,即将感染的固定毒的羊脑组织研制疫苗。该疫苗主要在非洲和亚洲使用,并一直沿用到20世纪50年代。由于用羊脑研制的疫苗接种反应严重,一般注射14~21针,到20世纪70年代末逐渐被细胞培养疫苗所替代。我国自1949年起,一直使用羊脑研制有的Semple疫苗,1980年停止使用,由原代地鼠肾细胞疫苗取代[5]。国外主要疫苗使用概况为提高疫苗的有效性,减少注射针次、剂量和简化免疫程序,降低不良反应,各国开始研究细胞培养疫苗,目前研制成功各种细胞培养疫苗,并不断改进和提高,得到广泛应用的有如下几种:①人二倍体细胞疫

【CN110042087A】一种重组狂犬病病毒rHEP△GEGFP及其应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910206785.0 (22)申请日 2019.03.19 (71)申请人 华南农业大学 地址 510642 广东省广州市天河区五山路 483号 (72)发明人 罗永文 毕水莲 梁嘉琪 曾小玲  龙家慧 潘雨晴 郭霄峰  (74)专利代理机构 广东广信君达律师事务所 44329 代理人 杨晓松 (51)Int.Cl. C12N 7/01(2006.01) C12N 15/65(2006.01) G01N 33/569(2006.01) (54)发明名称一种重组狂犬病病毒rHEP-△G-EGFP及其应用(57)摘要本发明涉及抗体检测技术领域,尤其涉及一种重组狂犬病病毒rHEP -△G -EGFP及其应用。所述重组狂犬病病毒rHEP -△G -EGFP为糖蛋白基因缺失型重组毒株,所述糖蛋白基因缺失型重组毒株具有如下特性:a)含有细胞来源的标准强毒株糖蛋白;b)能够感染细胞且在细胞中表达绿色荧光蛋白;c)无法在细胞和动物体中自我复制和扩散。利用该重组狂犬病病毒rHEP -△G -EGFP建立的狂犬病病毒中和抗体水平检测方法具备以下优点:一、该病毒不能在细胞和活体中传代繁殖,因此更安全;二、该检测方法以直接荧光显微镜下观察,更加经济便捷;三、该检测方法的测定结 果相对于利用弱毒株的方法更加可靠。 权利要求书1页 说明书8页序列表1页 附图4页CN 110042087 A 2019.07.23 C N 110042087 A

权 利 要 求 书1/1页CN 110042087 A 1.一种重组狂犬病病毒rHEP-△G-EGFP,其特征在于,所述重组狂犬病病毒rHEP-△G-EGFP为糖蛋白基因缺失型重组毒株,所述糖蛋白基因缺失型重组毒株具有如下特性: a)含有细胞来源的标准强毒株糖蛋白; b)能够感染细胞且在细胞中表达绿色荧光蛋白; c)无法在细胞和动物体中自我复制和扩散。 2.一种制备重组狂犬病病毒rHEP-△G-EGFP的方法,其特征在于,利用基因工程技术在稳定表达狂犬病病毒CVS-11毒株糖蛋白的BHK-21细胞上构建并拯救出一种将糖蛋白基因替换成绿色荧光蛋白基因的狂犬病病毒重组毒株。 3.根据权利要求2所述的方法,其特征在于,包括以下步骤: S1:筛选稳定表达CVS-11糖蛋白的BHK-21细胞系; S2:构建重组质粒pHEP-△G-EGFP; S3:拯救及筛选重组狂犬病病毒rHEP-△G-EGFP。 4.根据权利要求3所述的方法,其特征在于,所述S2包括: S21:PCR扩增EGFP和载体pHEP-△G(缺失糖蛋白基因)片段; S22:将质粒进行无缝连接,将连接产物转化至感受态细胞后进行筛选得到阳性克隆菌; S23:提取阳性克隆菌的质粒后进行鉴定。 5.根据权利要求4所述的方法,其特征在于,所述S21包括: S211:以质粒pEGFP-N1为模板,利用引物EGFP-F和引物EGFP-R进行PCR扩增,所述引物EGFP-F和引物EGFP-R的核苷酸序列分别如SEQ NO:1和SEQ NO:2所示; S212:以质粒pHEP-3.0为模板,利用引物pHEP-△G-F和引物pHEP-△G-R进行PCR扩增;所述引物pHEP-△G-F和引物pHEP-△G-R的核苷酸序列分别如SEQ NO:3和SEQ NO:4所示。 6.根据权利要求2-5所述的方法得到的重组狂犬病病毒rHEP-△G-EGFP。 7.根据权利要求1或6所述的重组狂犬病病毒rHEP-△G-EGFP在检测抗体水平中的应用。 8.一种利用权利要求1或者6所述的重组狂犬病病毒rHEP-△G-EGFP检测血清中的中和抗体水平的方法,其特征在于,包括以下步骤: S1:将待测血清进行灭活处理; S2:加入重组狂犬病病毒rHEP-△G-EGFP进行孵育中和反应; S3:加入BHK-21细胞悬液,培养24-48小时后直接在荧光显微镜下观察统计。 9.根据权利要求8所述的方法在评价疫苗免疫效果中的应用。 10.一种试剂盒,其特征在于,所述试剂盒包括权利要求1或6所述的重组狂犬病病毒rHEP-△G-EGFP。 2

相关主题
文本预览
相关文档 最新文档