当前位置:文档之家› 带补料等径直交三通管料计算

带补料等径直交三通管料计算

带补料等径直交三通管料计算
带补料等径直交三通管料计算

带补料等径直交三通管料计算

同径斜交三通管的展开图画法

https://www.doczj.com/doc/b615573212.html,/view/c93090c4bb4cf7ec4afed006.html 第一讲基本立体的投影 1.1.知识要点 (1)(1)圆柱体的投影 (2)(2)圆锥体的投影 (3)(3)球体的投影 (4)(4)圆柱截交线 2.2.教学设计 本章的内容较多,表面上容易,实际上同学掌握起来比较难,所以教学上要注意直观教学和空间想象能力培养的关系,明确教学目的。 通过对圆柱体、圆锥体和球体在三面投影体系中投影的研究,进一步巩固三视图的投影规律,通过研究曲面上点、线的投影,暗示线面分析法的思想方法。 在介绍基本曲面立体的投影时,要紧紧抓住转向轮廓线的概念和投影,这对于接下来的截交线和相贯线的学习也是非常重要的,在讲圆柱截交线时,利用动画、模型、虚拟现实等多媒体技术介绍基本概念和作图方法。 3.3.课前准备 准备教具、熟悉教学内容和要使用的教学课件,课前最好将要布置的作业试做一遍,对学生作业中的问题作到心中有数,4.4.教学内容 (1)(1)圆柱体的投影 若圆柱体的轴线垂直于H面,则俯视图的可见轮廓为圆,这个圆反映了圆柱体上、下底面的实形,也表示圆柱侧面的俯视图;主视图的可见轮廓为矩形,矩形的上下两边为圆柱体的上下两底的投影,左右两边为圆柱面最左最右的两条素线的投影,这两条素线将柱面分为前半个柱面和后半个柱面,前半个柱面可见,后半个柱面不可见,我们把这两条素线叫作柱面对V面的转向轮廓线。左视图的图形虽然和主视图相同,但其左右两条边的含义和主视图不同,这两条线表示柱面上最前最后两条素线的投影,即柱面对W面的转向轮廓线(图4-1)。

图4-1 圆柱体的投影 提问:柱面对V面转向轮廓线的俯、左视图是什么?柱面对W面转向轮廓线的主、俯视图是什么? (2)(2)锥体的投影 圆锥体的投影和圆柱体的投影类似,俯视图为圆,这个圆表示圆锥体底面的投影,主视图和左视图为等腰三角形,主视图的两腰为锥面对V面的转向轮廓线的投影,左视图的两腰,为锥面对W面的转向轮廓线的投影。如图4-2所示。 提问: 1)1)锥面对V面和W面的转向轮廓线对投影面的位置关系上什么? 2)2)柱面对V面转向轮廓线的俯、左视图是什么? 3)3)已知锥面上一点M的V面投影m',如何求出M的水平投影和侧面投影?

管件展开图

在管道安装工程中,经常遇到转弯、分支和变径所需的管配件,这些管配件中的相当一部分要在安装过程中根据实际情况现场制作,而制作这类管件必须先进行展开放样,因此,展开放样是管道工必须掌握的技能之一。 一、弯头的放样 弯头又称马蹄弯,根据角度的不同,可以分为直角马蹄弯和任意角度马蹄弯两类,它们均可以采用投影法进行展开放样。 图3-1直角马蹄弯图3-2 任意角度马蹄弯 1.任意角度马蹄弯的展开方法与步骤(己知尺寸a、b、D和角度)。 (1)按已知尺寸画出立面图,如图3-3所示。 (2)以D/2为半径画圆,然后将断面图中的半圆6等分,等分点的顺序设为1、2、3、4、5、6、7。 (3)由各等分点作侧管中心线的平行线,与投影接合线相交,得交点为1'、2'、3'、4'、5'、6'、7'。 (4)作一水平线段,长为πD,并将其12等分,得各等分点1、2、3、4、5、6、7、6、5、4、3、2、1。 (5)过各等分点,作水平线段的垂直引上线,使其与投影接合线上的各点1'、2'、3'、4'、5'、6'、7'引来的水平线相交。 (6)用圆滑的曲线将相交所得点连结起来,即得任意角度马蹄弯展开图。

图3-3 任意角度马蹄弯的展开放样图 2、直角马蹄弯的展开放样(己知直径D) 由于直角马蹄弯的侧管与立管垂直,因此,可以不画立面图和断面图,以D/2为半径画圆,然后将半圆6等分,其余与任意角度马蹄弯的展开放样方法相似。 图3-4 直角弯展开图 二、虾壳弯的展开放样 虾壳弯由若干个带斜截面的直管段组成,有两个端节及若干个中节组成,端节为中节的一半,根据中节数的多少,虾壳弯分为单节、两节、三节等;节数越多,弯头的外观越圆滑,对介质的阻力越小,但制作越困难。 1、90°单节虾壳弯展开方法、步骤: (1)作∠AOB=90°,以O为圆心,以半径R为弯曲半径,画出虾壳弯的中心线。 (2)将∠AOB平分成两个45°,即图中∠AOC、∠COB,再将∠AOC、∠COB各平分成两个22.5°的角,即∠AOK、∠KOC、∠COD与∠DOE。

直三通设计说明书

塑件分析 三通头塑件结构如图1-1所示。 图1-1 注塑零件图 该零件尺寸中等大小,平均厚度1.8mm,最大厚度2mm,最小厚度1mm。 根据各材料的注塑性能及加工使用性能,选择材料为PVC。 塑件的成型工艺分析 成型工艺分析 精度等级:采用一般精度5级。 脱模斜度:该注塑零件壁厚约为1.8mm,其脱模斜度查表有塑件内表面35′~1°,塑件外表面40′~1°20′。由于该塑件没有特殊狭窄细小部位,所用塑料为PVC,流动性较好,而且,主要部分有较好的弧度,可顺势脱模,所以塑件外表面没有放脱模斜度。同时,侧面采用滑块机构,脱模时,滑块抽去,两壁处脱模没有困难,所有也不放脱模斜度。 1

分型面位置的确定 分型面的选择原则 (1)有利于保证塑件的外观质量; (2)分型面应选择在塑件的最大截面处; (3)尽可能使塑件留在动模一侧; (4)有利于保证塑件的尺寸精度; (5)尽可能满足塑件的使用要求; (6)尽量减少塑件在合模方向上的投影面积; (7)长型芯应置于开模方向; (8)有利于排气; (9)有利于简化模具结构。 确定型腔数量及排列方式 当分型面确定之后,就需要考虑是采用单型腔模还是多型腔模。 一般来说,大中型塑件和精度要求高的小型塑件优先采用一模2腔的结构,但对于精度要求不高的小型塑件(没有配合精度要求),形状简单,又是大批量生产时,若采用多型腔模具可提供独特的优越条件,使生产效率大为提高。故由此初步拟定采用一模2腔。 注射机型号的确定 注射机规格的确定主要是根据塑件的大小及型腔的数目和排列方式,在确定模具结构形式及初步估算外形尺寸的前提下,设计人员应该对模具所需的注射量、锁模力、注射压力、拉杆间距、最大和最小模厚、推出形式、推出位置、推出行程、开模距离等进行计算。根据这些参数,选择一台和模具匹配的注射机,对其进行校核。 2

三通管的展开

三、三通管的展开 1、等径直角三通管展开图作图步骤如下: 1)按已知尺寸画出主视图和断面图,由于两管直径相等,其结合线为两管边线交点与轴线交点的连线,可直接画出。 2)6等分管I断面半圆周,等分点为l、 2、 3、 4、 3、2、l。由等分点引下垂线,得与结合线1′-4'—l′的交点。 3)画管I展开图。在CD延长线上取l-l等于管I断面圆周长度,并12等分。由各等分点向下引垂线,与由结合线各点向右所引的水平线相交,将各对应交点连成曲线,即得所求管I展开图。 4)画管Ⅱ展开图。在主视图正下方画一长方形,使其长度等于管断面周长,宽等于主视图AB。在B′B〃线上取4-4等于断面1/2圆周。 6等分4-4,等分点为4、 3、2、 l、 2、 3、4,由各等分点向左引水平线,与由主视图结合线各点向下所引的垂线相交,将各对应交点连成曲线,即为管Ⅱ开孔实形。A′B 'B″A″即为所求管Ⅱ展开图。 图3-7 等径直角三通管展开图 2、异径直交三通管展开作图方法和步骤: 1)依据所给尺寸画出异径直交三通管的侧视图(主管可画成半圆),按支管的外径画半圆。

2)将支管上半圆弧6等分,标注号为4、3、2、1、2、3、4。然后从各等分点向上向下引垂直的平行线,与主管圆弧相交,得出相应的交点4'、3'、2'、1'、2'、3'、4'。 3)将支管图上直线4--4向右延长得AB直线,在AB上量取支管外径的周长(πD),并12等分之,自左向右等分点的顺序标号是1、2、3、4、3、2、1、2、3、4、3、2、1。 4)由直线AB上的各等分点引垂直线,然后由主管圆弧上各交点向右引水平线与之相交,将对应点连成光滑曲线,即得到支管展开图(俗称雄头样板)。 5)延长支管圆中心的垂直线,在此直线上以点1°为中心,上下对称量取主管圆弧上的弧长,得交点1°、2°、3°、4°、3°、2°、1°。 6)通过这些交点作垂直于该线的平行线,同时,将支管半圆上的6根等分垂直线延长,并与这些平行直线相交,用光滑曲线连接各交点,此即为主管上开孔的展开图样。 图3-8 异径直交三通展开图 3、同径斜交三通管的展开作图方法和步骤如下(已知主管与支管交角为α) (1)根据主管直径及相交角α画出同径斜三通的正面投影图(主视图)。 (2)在支管的顶端画半圆并6等分,得各等分点1、2、3、4、5、6、7,过各等分点作斜支管轴心线的平行线交支管与主管相交线于1'、2'、3'、4'、5'、6'、7'。

弯头三通有效计算

(外径-壁厚)*壁厚*0.02466(此为材料密度)=每米材料的重量。结果再*三通的下料长度就是三通的重量,弯头也是一样的算法。 0.02466*(S+1.5)(D-S-1.5)(3C-D/2)/1000 C为主管长度D为外径S为壁厚 或者90°弯头计算公式;0.0387*S(D-S)R/1000 式中S=壁厚mm D=外径mm R=弯曲半径mm 弯头现在国际通用的标准是美国的国家标准ANSIB16.9和16.28。该标准的外径尺寸范围是1/2”~ 80”,一般24”以内的都是用无缝钢管为原材料,26”到80”的都是用钢板冲压以后再焊接。壁厚最大可达60mm,最小到1.24mm。钢种用的最多的是碳素钢(20#)、合金钢和不锈钢,共24个钢种。锅炉上用的CrM°钢像15Cr,用量比较大。三通,外径范围在2.5”-60”,从26”-60”为焊接三通。壁厚28-60mm。大小头规格范围,常规上先说大头规格,再说小头规格,大头最小0.75”,小头最小0.5”,大头最大60”,小头最大48”,20-60”为焊接的,壁厚2.8-4.5mm。 弯头的分类方法,按它的曲率半径来分,可分为长半径弯头和短半径弯头。长半径弯头指它的曲率半径等于1.5倍的管子外径,即R=1.5D。短半径弯头指它的曲率半径等于管子外径,即R=D。式中的D为弯头直径,R为曲率半径。若按压力等级来分,大约有十七种,和美国的管子标准是相同的,有:Sch5s、Sch10s、Sch10、Sch20、Sch30、Sch40s、STD、Sch40、Sch60、Sch80s、XS;Sch80、Sch100、Sch120、Sch140、Sch160、XXS,其中最常用的是STD和XS两种。按弯头的角度分,有45°弯头,有90°弯头和180°弯头。这样一来弯头的种类是很多的,定货时定单常采取如下表示方法:如"LR STD90°8",表示长半径,压力等级为STD,90°的8"弯头;又如,"SR XS45°4"表示短半径,压力等级为XS,45°的4"弯头。以上为弯头的大概分类情况。 三通,一般有两种。三个口直径相等的为等直径三通,两端直径相同,但汇流端直径与其它两个直径不同称为异径三通。表示方法如下:对于等径三通,比如"T3"三通则表示外径是3英寸的等径三通。对于异径三通,比如"T4×4×3.5"表示同径为四英寸异径为3.5英寸的异径三通。压力等级和弯头的压力等级都是一样的,其规格范围也是一样的。 大小头,也是这个分法。大小头的表示方法是大头直径乘以小头直径,例如8"×6"表示大头直径是8英寸,小头直径是6英寸的大小头。 二,弯头重量计算公式 圆环体积=2*3.14*3.14(r2)R r--圆环圆半径 R--圆环回转半径 中空管圆环体积=2*3.14*3.14((r2)-(r’2))R r’--圆环内圆半径 90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质量)。

展开图画法

展开图画法 在管道安装工程中,经常遇到转弯、分支和变径所需的管配件,这些管配件中的相当一部分要在安装过程中根据 实际情况现场制作,而制作这类管件必须先进行展开放样,因此,展开放样是管道工必须掌握的技能之一。 一、弯头的放样 弯头又称马蹄弯,根据角度的不同,可以分为直角马蹄弯和任意角度马蹄弯两类,它们均可以采用投影法进 行展开放样。 图3-1直角马蹄弯图3-2 任意角度马蹄弯 1.任意角度马蹄弯的展开方法与步骤(己知尺寸a、b、D和角度)。 (1)按已知尺寸画出立面图,如图3-3所示。 (2)以D/2为半径画圆,然后将断面图中的半圆6等分,等分点的顺序设为1、2、3、4、5、6、7。 (3)由各等分点作侧管中心线的平行线,与投影接合线相交,得交点为1'、2'、3'、4'、5'、6'、7'。 (4)作一水平线段,长为πD,并将其12等分,得各等分点1、2、3、4、5、6、7、6、5、4、3、2、1。 (5)过各等分点,作水平线段的垂直引上线,使其与投影接合线上的各点1'、2'、3'、4'、5'、6'、7'引来的水平线相交。 (6)用圆滑的曲线将相交所得点连结起来,即得任意角度马蹄弯展开图。 图3-3 任意角度马蹄弯的展开放样图 2、直角马蹄弯的展开放样(己知直径D) 由于直角马蹄弯的侧管与立管垂直,因此,可以不画立面图和断面图,以D/2为半径画圆,然后将半圆6 等分,其余与任意角度马蹄弯的展开放样方法相似。

图3-4 直角弯展开图 二、虾壳弯的展开放样 虾壳弯由若干个带斜截面的直管段组成,有两个端节及若干个中节组成,端节为中节的一半,根据中节数的 多少,虾壳弯分为单节、两节、三节等;节数越多,弯头的外观越圆滑,对介质的阻力越小,但制作越困难。 1、90°单节虾壳弯展开方法、步骤: (1)作∠AOB=90°,以O为圆心,以半径R为弯曲半径,画出虾壳弯的中心线。 (2)将∠AOB平分成两个45°,即图中∠AOC、∠COB,再将∠AOC、∠COB各平分成两个22.5°的角, 即∠AOK、∠KOC、∠COD与∠DOE。 (3)以弯管中心线与OB的交点4为圆心,以D/2为半径画半圆,并将其6等分。 (4)通过半圆上的各等分点作OB的垂线,与OB相交于1、2、3、4、5、6、7,与OD相交于1'、2'、3'、4'5'、6'、7',直角梯形11'77'就是需要展开的弯头端节。 (5)在OB的延长线的方向上,画线段EF,使EF=πD,并将EF 12等分,得各等分点l、2、3、4、5、6、7、6、5、4、3、2、1,通过各等分点作垂线。 (6)以EF上的各等分点为基点,分别截取11'、22′、33′、44′、55'、66′、77'线段长,画在EF 相应的垂直线上,得到各交点1′、2′、3'、4′、5'、6'、7'、6′、5'、4′、3'、2′、1′,将各交点用 圆滑的曲线依次连接起来,所得几何图形即为端节展开图。用同样方法对称地截取11'、22′、33′、44′、5 5'、66′、77'后,用圆滑的曲线连接起来,即得到中节展开图,如图3-5所示。 图3-5 90°单节虾壳弯展开图 2、90°两节虾壳弯展开图 从展开图可以看出,其展开画法与单节虾壳弯的展开法相似,只是将∠AOB=90°等分成6等份,即∠COB =15°,其余请大家参考单节虾壳弯的展开画法。

弯头三通的重量计算方法

弯头三通的重量计算方法 (外径-壁厚)*壁厚*0.02466(此为材料密度)=每米材料的重量。结果再*三通的下料长度就是三通的重量,弯头也是一样的算法。 或者这样算也可以 0.02466*(S+1.5)(D-S-1.5)(3C-D/2)/1000 C为主管长度D为外径S为壁厚 或者90°弯头计算公式; 0.0387*S(D-S)R/1000 式中 S=壁厚mm D=外径mm R=弯曲半径mm 弯头现在国际通用的标准是美国的国家标准ANSIB16.9和16.28。该标准的外径尺寸范围是1/2”~ 80”,一般24”以内的都是用无缝钢管为原材料,26”到80”的都是用钢板冲压以后再焊接。壁厚最大可达60mm,最小到1.24mm。钢种用的最多的是碳素钢(20#)、合金钢和不锈钢,共24个钢种。锅炉上用的CrM°钢像15Cr,用量比较大。三通,外径范围在2.5”-60”,从26”-60”为焊接三通。

壁厚28-60mm。大小头规格范围,常规上先说大头规格,再说小头规格,大头最小0.75”,小头最小0.5”,大头最大60”,小头最大48”,20-60”为焊接的,壁厚2.8-4.5mm。 下面我来讲一下弯头的分类方法,按它的曲率半径来分,可分为长半径弯头和短半径弯头。长半径弯头指它的曲率半径等于1.5倍的管子外径,即R=1.5D。短半径弯头指它的曲率半径等于管子外径,即R=D。式中的D为弯头直径,R为曲率半径。若按压力等级来分,大约有十七种,和美国的管子标准是相同的,有:Sch5s、Sch10s、Sch10、Sch20、Sch30、Sch40s、STD、 Sch40、Sch60、Sch80s、XS;Sch80、Sch100、Sch120、Sch140、Sch160、XXS,其中最常用的是STD和 XS两种。按弯头的角度分,有45°弯头,有90°弯头和180°弯头。这样一来弯头的种类是很多的,定货时定单常采取如下表示方法:如"LR STD 90°8",表示长半径,压力等级为STD,90°的8"弯头;又如,"SR XS 45°4"表示短半径,压力等级为XS,45°的4"弯头。以上为弯头的大概分类情况。 三通,一般有两种。三个口直径相等的为等直径三通,两端直径相同,但汇流端直径与其它两个直径不同称为异径三通。表示方法如下:对于等径三通,比如"T3"三通则表示外径是3英寸的等径三通。对于异径三通,比如"T4×4×3.5"表示同径为四英寸异径为3.5英寸的异径

三通管放样加工制作

三通管放样加工制作 三通管是用于管道分支、分流处的管件,按主管与分支管的同异分为同径三通和异径三通,按分支管轴线与主管轴线的夹角(α)分为正交三通(α=90°)和斜交三通(α<90°)。图1-1为三通管的投影图。 图1-1 三通管的立体图和投影图 1.同径正交三通管的展开及制作 1.1 同径正交三通管的展开 同径正交三通管展开图的步骤、方法如下。 ①以O为圆心,以D/2为半径作半圆并6等分,得等分点4′、3′、2′、1′、2′、3′、4′。 ②沿半圆直径4′4′方向,作一线段AB,AB=πD,并将其12等分,得等分点1、2、 3、4、3、2、1、2、3、4、3、2、1。 ③在直线AB上过各等分点作垂线,同时由半圆上各等分点1′、2′、3′、4′向右引水平线与各垂直线相交,将所得的交点连成圆滑的曲线,即得三通支管展开图(又称雄头样板)。 ④以直线AB为对称线,将44范围内的垂直线对称地向上截取,并用圆滑的曲线连起来,即得三通主管展开图(又称雌头样板),如图1—2所示。 图1—2 同径正交三通管展开图 1. 2 同径正交三通管的制作 划线之前,应在主管和支管上划出定位十字架,并用样冲轻轻冲之,再分别把雌、雄样板中心对准管道中心线,划出切割线,便可进行切割.切割时,应根据坡口的要求进行,支管上要全部坡口,坡口的角度在角焊处为45°,对焊处为30°从角焊处向对焊处(即尖角处)逐渐缩小坡口角度,且要过渡均匀。 同径三通组对时,要求主管上开孔的大小与支管径相配,焊缝处的内缝相平,组对时用

宽座角尺校正支管与主管间的角度为90°,然后点焊固定,最后进行焊接。 2.异径正交三通管的展开及制作 异径正交三通管也称异径正三通,简称异径三通,图1—3为异径三通的立体图和投影图。 2.1 异径正交三通管的展开 异径正交三通管的展开步骤、方法如下(见图1—4)。 图1—3 异径正交三通管的立体图与投影图 图1—4 异径正交三通管的展开 ①根据主管(管Ⅱ)及支管(管Ⅰ)的外径在一根垂直轴线上画出大小不同的两圆(将主管画成半圆,因支管与主管连接仅在上半圆)。

管道的水力计算及强度计算.

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流 流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm /s。 图3—3管流中流速、流量、过流断面关系示意图

流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。当管径减小时,流速增大;而当管径增大时,流速即减小。然而,当流速一定时,流量的变化随管径成几何倍数变化,而不是按算术倍数变化。因为在管流中,管道的过流断面面积与管径的平方成正比。也就是说,管径扩大到原来的2倍、3倍、4倍时,面积增加到原来的4倍、9倍、16倍。如DN50mm的管子过流断面面积是DN25mm的管子的4倍,那么在流速相等的条件下,DN50mm管子中所通过的流量即是DN25mm管子的4倍;同理,DNlOOmm的管道内所通过的流量应是DN25mm管子的16倍。在日常施工中,常有人认为在流速一定时,管径之比就是所输送的流量之比,这无疑是错误的。 以上提到的以m3/h和cm3/s等为单位的流量又称为体积流量。如果指的是在单位时间内通过过流断面的流体质量时,该流量则称为质量流量,以符号qm表示,常采用的单位为kg/h或kg/s。质量流量与体积流量之间的关系为 qm=ρq v 而由式(3—1)知 q v=vA 则 q m=ρvA (3—2) 式中q m——质量流量(kg/s); ρ——流体的密度,即单位体积流体的质量(ks/m3); V——流体通过过流断面的平均流速(m/s); A——过流断面面积(m2)。 例管径为DNlOOmm的管子,输送介质的流速为lm/s时,其小时流量为多少? 解DNlOOmm管子的过流断面面积为 A=πD3/4=3.14×0.12/4=0.00785m2 则q v=1×0.00785×3600=28.3m3/h 答:该管道的小时流量为28.3m3/h。 第二节管道的阻力损失 流体在管渠中流动时,过流断面上各点的流速并不是相同的。例如在河沟中,靠近岸边的水,流动较慢;而河沟中心的水,流速就较大。管道内流动的流体也是如此,靠近管内壁面的流体流速较小,处在管中心的流体流速最大。产生这一现象的原因在于,流体流动时与管内壁面发生摩擦产生阻力,同时管内流体各流层之间由于流速的变化而引起相对运动所产生的内摩擦阻力,也阻挠流体的运动。流体在流动中,为了克服阻力就要消耗自身所具有的机械能,我们称这部分被消耗掉的能量为阻力损失。流体的性质不同,流动状态相同,流动时所产生的阻力损失大小也不同。流动是产生阻力损失的外部条件,流速越高,流体与管壁及流体自身之间的摩擦就越剧烈,阻力也就越大。相反,流速越小,摩擦减弱,阻力也就越

异径偏心斜交三通CAD展开放样新方法

现代制造工程2008年第5期CAD/CAE/CAPP/CAM异径偏心斜交三通CAD展开放样新方法刘 萍华(北方民族大学,银川750021)摘要:介绍一种利用三维CADs01idworl婚系统软件进行钣金展开放样的技术手段。该手段主要是利用三维CAD软件l:l快速生成三通管件的立体图,然后由计算机快速测量出展开放样所需的各母线实长,最后进行平面展开图的绘制。该方法突破了传统的“作图法”、“计算法”放样模式,提高了钣金放样的质量和效率,具有实际使用价值。关键词:2D草图;3D草图;实体造型;智能标注;三通中图分类号:THl6;TP391.7文献标识码:B文章编号:167l_3133(2008)05—0046—03三通管件的展开放样是工程实际中一项经常开展的工作,在各种管道施工中,三通管件的制作量很大,特别是对于压力管道施工中的三通展开放样,为了保证焊接质量,其放样下料精度要求很高,因此,三通的展开放样在实际工程中占有很重要的位置。三通管件是指由圆形管子相交形成的三个端口均为圆的构件,根据三端口的尺寸及相对位置,有等径(异径)同心直交三通、等径(异径)同心斜交三通、异径偏心斜交三通等,其中,异径偏心斜交三通相对前两种管件,其展开放样过程相对较复杂,因此,以此为例可较全面说明其展开放样过程。传统三通放样方法有“作图

法”、“计算法”。“作图法”就是通过绘制管件的投影视图,求出管件展开所需的各母线实长,依据母线实长绘制其平面展开图。“计算法”则是通过计算公式,求出管件展开所需的各母线实长,依据母线长度绘制其平面展开图。上述两种方法,是多年来人们一贯使用的传统放样方法,随着三维CAD技术的不断发展,尤其是近几年来,CAD系统软件在工程设计领域等到了广泛应用,日益显示其优越性。三维CAD应用于钣金展开放样领域,目前还没有相关资料介绍,作者结合CAD/cAM教学实际以及工程设计经验,在该方面进行了积极探索和探讨,实践证明利用三维CAD进行钣金件的展开放样,步骤简单、清晰,所求得的钣金展开数据准确可靠,是优于传统放样模式的一种新的、高效的钣金展开放样方法。尤其适宜较为复杂的或使用传统方法放样存在一定困难的钣金件的展开放样。本文以异径偏心斜交三通为例,采用三维CAD软件solidWorks阐述了其展开放样过程。461问题的提出图1所示为一异径偏心斜交三通的立体图和投影视图。从图1b主视图中可以看出主管直径筇00,长度500,支管直径担20,支管端面中心点B距主管轴线高450,支管轴线和主管对称线相交于点A,支管轴线相对主管轴线倾斜60。,从左视图中可以看出主管轴线和支管轴线偏心125。要求求出西220支管的母线长,绘制支管

符合API Spec 6A要求的20000psi三通壁厚强度计算书

高压三通、四通设计计算: 1.三通、四通主要技术参数: 额定工作压力:140MPa 静水压试验压力:210MPa 公称内径:φ76.2mm 三通、四通最薄壁处外径:φ137mm 螺纹型号:1164216ACME G -- 材料:40CrNiMoA 工作环境温度:-18°~82° 调质处理:HBW280-320 执行标准:SY/T5211-2009 2.机械性能:材料:40CrNiMoA 符合GB/T22513-2008表4中选用75K 的最小抗拉强度655≥b σMpa,屈服强度5172.0≥σMPa ,50mm 最小延伸率18%,最小断面收缩率35% 3.计算方法:根据GB/T22513-2008标准 4.3.3.2 ASME 方法:可用于承压装置的设计计算,设计许用压力按照下列公式(1)和公式(2)分别进行限定: 6 5Y T S S = (1) 3 2Y m S S = (2) 其中T S —静压试验压力下的最大许用的总体一次薄膜应力强度。 Y S —材料最低的规定屈服强度; m S —额定工作压力下的设计应力强度; 通过计算得到: 430.83MPa =517*0.83=65Y T S S = 32Y m S S ==23 *517=344.7 MPa

4.计算范围:三通、四通最薄弱处壁厚计算,三通、四通螺纹强度计算两部分: 4.1三通、四通最薄弱处壁厚计算: 4.1.1.高压三通、四通受力分析 凸头外圆直径1D =137mm ,内孔直径2D =76.2mm 中腔外圆直径3D =170mm ,内孔直径4D =76.2mm 高压三通、四通由凸头和凹头可看做圆筒形壳体,对这两部分进行比较分析 凸头段壁厚 1213776.230.422 D D mm --== 中腔壁厚3417076.246.922D D mm --== 凸头端圆筒壁厚比中腔壁厚薄,在承受同样压力的情况下只需对凸头端圆筒壁厚进行强度核算即可 选用ASME 《锅炉和压力容器规范》第Ⅷ卷第2分册附录4第4-222(a )条款:由内压引起的,沿圆筒形壳体厚度上的总体一次薄膜应力强度按下式计算: 2 pR p S t =+ 变形得:0.5pR t S p =- 公式详见ASME 锅炉和压力容器规范第Ⅷ卷第二册(P271) 其中 t ——最小厚度; P ——设计内压; R ——中段内半径; S ——材料的许用应力,

各种管道水头损失的简便计算公式

各种管道水头损失的简便计算公式 (879) 摘要:从计算水头损失的最根本公式出发,将各种管道的计算公式加以推导,得出了计算水头损失的简便公式,使得管道工程设计人员从繁琐的计算中解脱出来,提高了工作效率。 关键词:水头损失塑料管钢管铸铁管混凝土管钢筋混凝土管 在给水工程应用中经常要用到水头损失的计算公式,一般情况下计算水头损失都是从水力摩阻系数λ等基本参数出发,一步一步的代入计算。其实各个公式之间是有一定的联系的,有的参数在计算当中可以抵消。如果公式中只剩下流速、流量、管径这些基本参数,那么就会给计算者省去不少的麻烦。在此我们充分利用了各参数之间以及水头损失与水温的关系,将公式整理简化,供大家参考。 1、PVC-U、PE的水头损失计算 根据《埋地硬聚氯乙烯给水管道工程技术规程》规定,塑料管道沿程水头损失hf应按下式计算: (式1-1) 式中λ—水力摩阻系数; L—管段长度(m); di—管道内径(m);

v—平均流速(m/s); g—重力加速度,9.81m/s2。 因考虑到在通常的流速条件下,常用热塑性塑料给水管PVC-U、PE管一般处于水力光滑区,管壁绝对当量粗糙度对结果的影响非常小或没有影响,故水力摩阻系数λ可按下式计算: (式1-2) 式中Re—雷诺数。 雷诺数Re应按下式计算: (式1-3) 式中γ—水的运动粘滞度(m3/s),在不同温度时可按表1采用。 表1水在不同温度时的γ值(×10-6) 05101520253040 水温℃ 1.78 1.52 1.31 1.14 1.000.890.80 0.66

γ(m3/s) 从前面的计算可知,若要计算水头损失,需将表1中的数据代入,并逐步计算,最少需要3个公式,计算较为繁琐。为将公式和计算简化,以减少工作量,特推导如下: 因具体工程水温的变化较大,水力计算中通常按照基准温度计算,然后根据具体情况,决定是否进行校正。冷水管的基准温度多选择10℃。 当水温为10℃时的γ=1.31×10-6 m3/s,代入式1-3 得(式1-4) 将式1-4代入式1-2 (式1-5) 再将式1-5代入式1-1 得(式1-6) 取L为单位长度时,hf即等同于单位长度的水头损失i,所以 (式1-7) 又因为(式1-8)

弯头三通的重量计算方法

弯头三通得重量计算方法(外径-壁厚)*壁厚*0、02466(此为材料密度)=每米材料得重量。结果再*三通得下料长度就就是三通得重量,弯头也就是一样得算法。 或者这样算也可以 0、02466*(S+1、5)(D-S-1、5)(3C-D/2)/1000 C为主管长度D为外径S为壁厚 或者90°弯头计算公式; 0、0387*S(D-S)R/1000 式中S=壁厚mm D=外径mm R=弯曲半径mm 弯头现在国际通用得标准就是美国得国家标准ANSIB16、9与16、28。该标准得外径尺寸范围就是1/2”~80”,一般24”以内得都就是用无缝钢管为原材料,26”到80”得都就是用钢板冲压以后再焊接。壁厚最大可达60mm,最小到1、24mm。钢种用得最多得就是碳素钢(20#)、合金钢与不锈钢,共24个钢种。锅炉上用得CrM°钢像15Cr,用量比较大。三通,外径范围在2、5”-60”,从26”-

60”为焊接三通。壁厚28-60mm。大小头规格范围,常规上先说大头规格,再说小头规格,大头最小0、75”,小头最小0、5”,大头最大60”,小头最大48”,20-60”为焊接得,壁厚2、8-4、5mm。 下面我来讲一下弯头得分类方法,按它得曲率半径来分,可分为长半径弯头与短半径弯头。长半径弯头指它得曲率半径等于1、5倍得管子外径,即R=1、5D。短半径弯头指它得曲率半径等于管子外径,即R=D。式中得D为弯头直径,R为曲率半径。若按压力等级来分,大约有十七种,与美国得管子标准就是相同得,有:Sch5s、Sch10s、Sch10、Sch20、Sch30、Sch40s、STD、Sch40、Sch60、Sch80s、XS;Sch80、Sch100、Sch120、Sch140、Sch160、XXS,其中最常用得就是STD与XS两种。按弯头得角度分,有45°弯头,有90°弯头与180°弯头。这样一来弯头得种类就是很多得,定货时定单常采取如下表示方法:如"LR STD 90°8",表示长半径,压力等级为STD,90°得8"弯头;又如,"SR XS 45°4"表示短半径,压力等级为XS,45°得4"弯头。以上为弯头得大概分类情况。 三通,一般有两种。三个口直径相等得为等直径三通,两端直径相同,但汇流端直径与其它两个直径不同称为异径三通。表示方法如下:对于等径三通,比如"T3"三通则表示外径就是3英寸得等径三通。对于异径三通,比如"T4×4×3、5"表示同径为四英寸异径为3、5英寸得

管件断节下料展开图(实用自学版)

一、弯头的放样 弯头又称马蹄弯,根据角度的不同,可以分为直角马蹄弯和任意角度马蹄弯两类,它们均可以采用投影法进行展开放样。 图3-1直角马蹄弯图3-2 任意角度马蹄弯 1.任意角度马蹄弯的展开方法与步骤(己知尺寸a、b、D和角度)。 (1)按已知尺寸画出立面图,如图3-3所示。 (2)以D/2为半径画圆,然后将断面图中的半圆6等分,等分点的顺序设为1、2、3、4、5、6、7。 (3)由各等分点作侧管中心线的平行线,与投影接合线相交,得交点为1'、2'、3'、4'、5'、6'、7'。 (4)作一水平线段,长为πD,并将其12等分,得各等分点1、2、3、4、5、6、7、6、5、4、3、2、1。 (5)过各等分点,作水平线段的垂直引上线,使其与投影接合线上的各点1'、2'、3'、4'、5'、6'、7'引来的水平线相交。 (6)用圆滑的曲线将相交所得点连结起来,即得任意角度马蹄弯展开图。 图3-3 任意角度马蹄弯的展开放样图

2、直角马蹄弯的展开放样(己知直径D) 由于直角马蹄弯的侧管与立管垂直,因此,可以不画立面图和断面图,以D/2为半径画圆,然后将半圆6等分,其余与任意角度马蹄弯的展开放样方法相似。 图3-4 直角弯展开图 二、虾壳弯的展开放样 虾壳弯由若干个带斜截面的直管段组成,有两个端节及若干个中节组成,端节为中节的一半,根据中节数的多少,虾壳弯分为单节、两节、三节等;节数越多,弯头的外观越圆滑,对介质的阻力越小,但制作越困难。 1、90°单节虾壳弯展开方法、步骤: (1)作∠AOB=90°,以O为圆心,以半径R为弯曲半径,画出虾壳弯的中心线。 (2)将∠AOB平分成两个45°,即图中∠AOC、∠COB,再将∠AOC、∠COB各平分成两个22.5°的角,即∠AOK、∠KOC、∠COD与∠DOE。 (3)以弯管中心线与OB的交点4为圆心,以D/2为半径画半圆,并将其6等分。 (4)通过半圆上的各等分点作OB的垂线,与OB相交于1、2、3、4、5、6、7,与OD相交于1'、2'、3'、4'5'、6'、7',直角梯形11'77'就是需要展开的弯头端节。 (5)在OB的延长线的方向上,画线段EF,使EF=πD,并将EF 12等分,得各等分点l、2、3、4、5、6、7、6、5、4、3、2、1,通过各等分点作垂线。 (6)以EF上的各等分点为基点,分别截取11'、22′、33′、44′、55'、66′、77'线段长,画在EF相应的垂直线上,得到各交点1′、2′、3'、4′、5'、6'、7'、6′、5'、4′、3'、2′、1′,将各交点用圆滑的曲线依次连接起来,所得几何图形即为端节展开图。用同样方法对称地截取11'、22′、33′、44′、55'、66′、77'后,用圆滑的曲线连接起来,即得到中节展开图,如图3-5所示。

倒虹吸管设计计算

倒虹吸管设计计算 一、倒虹吸管总体布置(根据地形和当地需水量情况确定) 1.布置原则;13P 2.布置型式;{地面式(露天或浅埋式)、架空式} 3.管路布置;(斜管式和竖井式) 4.进口段布置;{渐变段、拦污栅、节制闸、连接段﹙进水口、通汽孔﹚、沉沙、冲沙及泄水设施} 5.出口段布置;(设消力池) 二、倒虹吸管的构造 1.管身构造;(钢筋混泥土管、钢管、铸铁管) 2.支承结构;(管座、镇墩、支墩) 三、倒虹吸管的水力计算 1.管道断面尺寸的确定; ①灌溉面积的确定:(根据土地利用参加够调整表查出整理后土地的灌溉面积。) ②补水量的计算: 项目区水田和旱地需水量除去项目区降雨量即为需补给水量。项目区分为水田和旱地,主要农作物为水稻、玉米、油菜,各种农作物所在区需水量不同。根据贵州省《灌溉用水定额》编制分区图:项目区属Ⅰ区,灌溉定额根据贵州省灌溉用水定额编制Ⅰ区水稻净定额为2703m/亩,毛灌溉定额为6443m/亩。

需水量公式 W M A n =??毛需 W 需—— 农业生产总需水量,3 m ; M 毛—— 综合毛灌溉定额,3 m ; A —— 灌溉面积,亩; n —— 农作物复种指数,采用综合灌溉定额时,已经考虑了复种指数,可不再计入。 M M η = 净 毛 M 净—— 作物净灌溉定额,3m /亩; η—— 灌溉水利用系数。Ⅰ区渠系水利系数为 0.465; 田间水利用系数为0.95,故灌溉水利用系数为0.465×0.95 得0.44。 ③.流量计算 根据当地全年水田需水量表、旱地需水量表和全年降雨量表查出全年需水量和降雨量的最大值和最小值,计算出最大补水量和最小补水量,以推出其流量。 ④.确定尺寸; o D (圆管) o D —— 管道内径,m;

异径带补料正交三通放样下料说明

异径带补料正交三通放样下料说明 1、本构件为异径圆管垂直相交所形成的三通,外加两半圆、两三角板补料。该构件通风阻力比无补料的要小一些。 2、图中d1为主管内直径,d2为支管内直径,L1为主管长度,L2为主管边到两管中线交点长度,h为主管中线到支管口高度,Lp为补料水平距离,hp为补料垂直高度, b1为主管板材厚度,b2为支管板材厚度,以上数据由操作者根据图纸或已知条件确定后输入。要求d2、b1、b2>0;Lp、hp>0;L2>d2/2+b2+Lp;L1-L2> d2/2+b2+Lp; h >= d1/2+b1+Lp;d1>d2。如数值不符合要求,请按提示重新输入数据。 3、圆管周长需n等分来计算各素线实长,n的数值必须是4的整倍数,由操作者根据直径及精度要求确定,n的数值越大,展开图的精度越高,但画展开图的工作量相应增加。一般取n=16~36已可相当准确下料。 4、展开图采用平行线法放样下料,即把整个圆管分成若干条平行线进行计算放样。所输出数据按不铲坡口形式作板厚处理,操作者可根据展开图及相关数据直接在板材上画线下料(如要在成品管上下料,需另加板厚尺寸), 具体可参照展开示意图按如下方法放样下料: (一)、支管下料方法: (1)、画一直线段,长度等于S2,将线段分成n等份,每份长度等于m2; (2)、过各等分点向下画线段的垂直线,以线段两端及中点为起点分别在各等分垂直线上按图依次量取ha(1)~ha(n/4+1)高度。 (3)、按图以n/4+1线为转折点分别用光滑曲线连接量取的各点,即为支管的展开图。 (二)、补料的下料方法: (1)、画一直线段,长度等于S2/2,将线段分成n/2等份,每份长度等于m2; (2)、按图过各等分点向线段的两边画垂直线,从线段中点分别向下边及上边在各等分垂直线上按图依次量取ka(1)~ka(n/4+1)、 kb(1)~kb(n/4+1)高度; (3)、按图用光滑曲线连接量取的各点,即为补料圆弧板的展开图。 (4)、三角板是平板,按图下料即可。 (三)、主管下料方法: (1)、画一矩形,长度等于L1,宽度等于S1,此为主管外形的展开图;

压力管道的强度计算

压力管道的强度计算 1.承受内压管子的强度分析 按照应力分类,管道承受压力载荷产生的应力,属于一次薄膜应力。该应力超过某一限度,将使管道整体变形直至破坏。 承受内压的管子,管壁上任一点的应力状态可以用3个互相垂直的主应力来表示,它们是:沿管壁圆周切线方向的环向应力σθ,平行于管道轴线方向的轴向应力σz,沿管壁直径方向的径向应力σr,如图2.1,设P为管内介质压力,D n为管子内径,S为管子壁厚。则3个主应力的平均应力表达式为 管壁上的3个主应力服从下列关系式: σθ>σz>σr 根据最大剪应力强度理论,材料的破坏由最大剪应力引起,当量应力为最大主应力与最小主应力之差,故强度条件为 σe=σθ-σr≤[σ] 将管壁的应力表达式代入上式,可得理论壁厚公式

图2.1 承受内压管壁的应力状态 工程上,管子尺寸多由外径D w表示,因此又得昂一个理论壁厚公式 2.管子壁厚计算 承受内压管子理论壁厚公式,按管子外径确定时为 按管子内径确定时为 式中: S l——管子理论壁厚,mm;

P——管子的设计压力,MPa; D w——管子外径,mm; D n——管子内径,mm; φ——焊缝系数; [σ]t——管子材料在设计温度下的基本许用应力,MPa。 管子理论壁厚,仅是按照强度条件确定的承受内压所需的最小管子壁厚。它只考虑了内压这个基本载荷,而没有考虑管子由于制造工艺等方面造成其强度削弱的因素,因此它只反映管道正常部位强度没有削弱时的情况。作为工程上使用的管道壁厚计算公式,还需考虑强度削弱因素。因此,工程上采用的管子壁厚计算公式为 S j=S l+C (2-3) 式中:S j——管子计算壁厚,mm; C——管子壁厚附加值,mm。 (1)焊缝系数(φ) 焊缝系数φ,是考虑了确定基本许用应力安全系数时未能考虑到的因素。焊缝系数与管子的结构、焊接工艺、焊缝的检验方法等有关。 根据我国管子制造的现实情况,焊缝系数按下列规定选取:[1] 对无缝钢管,φ=1.0;对单面焊接的螺旋线钢管,φ=0.6;对于纵缝焊接钢管,参照《钢制压力容器》的有关标准选取: ①双面焊的全焊透对接焊缝: 100%无损检测φ=1.0; 局部无损检测φ=0.S5。 ②单面焊的对接焊缝,沿焊缝根部全长具有垫板: 100%无损检测φ=0.9; 局部无损检测φ=0.8; (2)壁厚附加量(C) 壁厚附加量C,是补偿钢管制造:工艺负偏差、弯管减薄、腐蚀、磨损等的减薄量,以保证管子有足够的强度。它按下列方法计算: C=C1+C2 (2-4) 式中:C1——管子壁厚负偏差、弯管减薄量的附加值,mm; C2——管子腐蚀、磨损减薄量的附加值,mm。 ①管子壁厚负偏差和弯管减薄量的附加值: 在管子制造标准中,允许有一定的壁厚负偏差,为了使管子在有壁厚负偏差时的最小壁厚不小于理论计算壁厚,管子计算壁厚中必须计人管子壁厚负偏差的附加值。 在管子标准中,壁厚允许负偏差一般用壁厚的百分数表示,令α为管子壁厚负偏差百分数,则得

相关主题
文本预览
相关文档 最新文档