当前位置:文档之家› 高等数学同济第六版上_答案解析第四章

高等数学同济第六版上_答案解析第四章

高等数学同济第六版上_答案解析第四章
高等数学同济第六版上_答案解析第四章

高等数学(同济五版)-第四章-不定积分-练习题册

34 / 8 第四章 不定积分 第一节 不定积分的概念与性质 一、求下列不定积分: 1.dx x x ? . 2.?x x dx 2 . 3.?-dx x 2 )2(. 4.?-dx x x 2 )1( 5.? +++dx x x x 1133224. 6.?+dx x x 2 2 1. 7.??-?dx x x x 3 2532. 8.?-dx x x x )tan (sec sec . 二、一曲线通过点)3,(2 e 且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程. 第二节 换元积分法

35 / 8 一、填空题: 1.=dx )37(-x d . 2.=xdx )5(2 x d . 3.=dx x 3 )23(4 -x d . 4.=- dx e x 2 )1(2 x e d - +. 5.=xdx 23sin )23(cos x d . 6.=x dx |)|ln 53(x d -. 7. 291x dx + )3(arctan x d . 8.=-21x xdx )1(2 x d -. 9. ?=dx x x )(')(φφ . 10.若 ?+=C x F dx x f )()(则?=)()]([x dg x g f . 二、选择题(单选): 设)(x f 为 可导函数,则: (A) ()C x f dx x f +='?)2()2(; (B) ()C x f dx x f +=' ?)2(2)2(; (C) ())2()2(x f dx x f =' ?; (D) C x f dx x f +='?)2()2(. 答:( ) 三、求下列不定积分: 1.?-dx x 3 )23(. 2.? -3 32x dx . 3.? ?xdx x 210 sec tan . 4.? x x dx cos sin . 5.? -dx xe x 2 . 6.dx x x ? -2 32.

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

高等数学(同济大学版)第四章练习(含答案)

第四章 不定积分 一、学习要求 1、理解原函数与不定积分的概念及性质。 2、掌握不定积分的第一类换元法、第二类换元法及分部积分法。 二、练习 1.在下列等式中,正确的结果是( C ). A. '()()f x dx f x =? B.()()df x f x =? C. ()()d f x dx f x dx =? D.[()]()d f x dx f x =? 2.若ln x 是函数()f x 的一个原函数,则()f x 的另一个原函数是( A ); A. ln ax B.1ln ax a C.ln x a + D.21(ln )2 x 3.设()f x 的一个原函数是2x e -,则()f x =( B ); A. 2x e - B. 22x e -- C. 24x e -- D. 24x e - 4.'' ()xf x dx =? ( C ). A.'()xf x C + B. '()()f x f x C -+ C. '()()xf x f x C -+ D. '()()xf x f x C ++. 5 .将 化为有理函数的积分,应作变换x =( D ). A. 3t B. 4 t C. 7 t D. 12 t 6.dx = 1/7 ()73d x -, 2cos 2dx x = 1/2 ()tan 2d x ,2 19dx x =+1/3 ()arctan3d x ; 7. 已知(31)x f x e '-=,则()f x =1 3 3x e c ++. 8.设()f x 是可导函数,则'()d f x x ?为()f x C +. 9.过点(1,2)且切线斜率为34x 的曲线方程为41y x =+ 10.已知()cos xf x dx x C =+?,则()f x =sin x x - 11.求下列不定积分 解: (1) 22 32tan 1tan tan tan 1sin 3 x dx xd x x c x ==+-?? (2) 22arctan 11 x x x x x x x dx e dx de e c e e e e -===++++??? 5 34 2 (3)t a n s e c t a n s e c s e c x x d x x x d x ? =??? 22 2(s e c 1)s e c s e c x x d x =-?? ()642sec 2sec sec sec x x x d x =-+?753121 sec sec sec 753 x x x c = -++

同济大学(高等数学)-第四章-不定积分

第四章 不定积分 前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法. 第1节 不定积分的概念与性质 1.1 不定积分的概念 在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为 ()s s t =, 则质点在时刻t 的瞬时速度表示为 ()v s t '=. 实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度 ()v v t =, 求出质点的位移函数 ()s s t =. 即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念. 1.1.1原函数 定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有 ()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数. 例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0), x x x =>所以ln x 是 1 x 在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件. 定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有 ()()'=F x f x . 简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数. 定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

高等数学同济七版第四章电子教案

第四章 不定积分 第一节 不定积分的概念与性质 一、原函数与不定积分的概念 定义:如果在区间I 上,可导函数 ()F x 的导函数为()f x ,即对于任一x I ∈都有 ()()F x f x '=或d ()()d ,F x f x x =则称函数()F x 为()f x (或()d f x x )在区间I 上的 一个原函数. 例如:因() 22x x '=,故2 x 是2x 的一个原函数. 定理(原函数存在定理):如果函数 ()f x 在区间I 上连续,那么在区间I 上存在可导函数 ()F x ,使对任一x I ∈都有()().F x f x '=即连续函数必有原函数. 注:①如果()f x 有一个原函数的话,那么()f x 就有无限多个原函数. ②()f x 的任意两个原函数只差一个常数. 定义:在区间I 上,函数()f x 的带有任意常数项的原函数称为()f x (或()d f x x )在区间I 上的不定积分,记作()d f x x ?, 其中? 称为积分号, ()f x 称为被积函数,()d f x x 称 为被积表达式, x 称为积分变量. 即()d ().f x x F x C =+? 注:()d f x x ?是()f x 的原函数,故有 d ()d ()d f x x f x x ? ?=???或d ()d ()d ;f x x f x x ??=??? 又因为()F x 是()F x '的原函数,所以有()d ()F x x F x C '=+?或d ()().F x F x C =+? 所以记号? 与d 是互逆的 例:求 d x x ? 解:由于2 2 x x ' ??= ??? ,所以22x 是x 的一个原函数,因此2 d 2 x x x C = +? 例:求1 d x x ? 解:当0x >时,有1(ln )x x '= 当0x <时,有[]11ln()(1)x x x '-= ?-=-,故ln |1d |x C x x =+? 函数()f x 的原函数的图形称为()f x 的积分曲线.

同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题 分,共 ?分) .下列各组函数中,是相同的函数的是( ) (?)()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 ( )g x = ( )()f x x = 和 ( )2 g x = ( )()|| x f x x = 和 ()g x = .函数( )() 20ln 10 x f x x a x ≠=+?? =? 在0x =处连续,则a = ( ) (?) ( ) 1 4 ( ) ( ) .曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) (?)1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( ) y x = .设函数()||f x x =,则函数在点0x =处( ) (?)连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微 .点0x =是函数4 y x =的( ) (?)驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点

.曲线1 || y x = 的渐近线情况是( ) (?)只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线 ( )既无水平渐近线又无垂直渐近线 . 211 f dx x x ??' ???? 的结果是( ) (?)1f C x ?? -+ ??? ( )1f C x ?? --+ ??? ( )1f C x ?? + ??? ( )1f C x ?? -+ ??? . x x dx e e -+?的结果是( ) (?)arctan x e C + ( )arctan x e C -+ ( )x x e e C --+ ( ) ln()x x e e C -++ .下列定积分为零的是( ) (?)424arctan 1x dx x π π-+? ( )44 arcsin x x dx ππ-? ( )112x x e e dx --+? ( )()1 2 1 sin x x x dx -+? ?.设()f x 为连续函数,则 ()1 2f x dx '?等于( ) (?)()()20f f - ( )()()11102f f -????( )()()1 202f f -????( )()()10f f - 二.填空题(每题 分,共 ?分) .设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = .已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '= .21 x y x =-的垂直渐近线有条 . ()21ln dx x x = +?

高等数学同济第七版上册知识点总结归纳

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法

1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x

2-5高等数学同济大学第六版本

2-7 1. 已知y =x 3-x , 计算在x =2处当?x 分别等于1, 0.1, 0.01时的?y 及dy . 解 ?y |x =2, ?x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ?x =1=(3x 2-1)?x |x =2, ?x =1=11; ?y |x =2, ?x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161, dy |x =2, ?x =0.1=(3x 2-1)?x |x =2, ?x =0.1=1.1; ?y |x =2, ?x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601, dy |x =2, ?x =0.01=(3x 2-1)?x |x =2, ?x =0.01=0.11. 2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、?y 及?y -d y 并说明其正负. 解 (a )?y >0, dy >0, ?y -dy >0. (b )?y >0, dy >0, ?y -dy <0. (c )?y <0, dy <0, ?y -dy <0. (d )?y <0, dy <0, ?y -dy >0. 3. 求下列函数的微分: (1)x x y 21+=; (2) y =x sin 2x ; (3)12+=x x y ; (4) y =ln 2(1-x ); (5) y =x 2e 2x ;

(6) y=e-x cos(3-x); (6) dy=y'dx=[e-x cos(3-x)]dx=[-e-x cos(3-x)+e-x sin(3-x)]dx =e-x[sin(3-x)-cos(3-x)]dx . (8) dy=d tan2(1+2x2)=2tan(1+2x2)d tan(1+2x2) =2tan(1+2x2)?sec2(1+2x2)d(1+2x2) =2tan(1+2x2)?sec2(1+2x2)?4xdx =8x?tan(1+2x2)?sec2(1+2x2)dx. 4.将适当的函数填入下列括号内,使等式成立:

同济高等数学第七版第4章习题解答

209 教材习题同步解析 习题4-1 2. 求下列不定积分: (2)x ?; (3)x (4)?x x x d 32; (5) ?x x x d 1 2 ; (11)x x x d )1(13? -+)(; (12)?-x x x d )1(2; (15)x x e e x x d 1? ??? ? ??--; (16)?x e x x d 3; (19)? x x d 2 cos 2; (20)?+x x d 2cos 11; (21)? -x x x x d sin cos 2cos ; (22)?x x x x d sin cos 2cos 2 2; (23)? x x d cot 2; (25)22d 1 x x x +?. (26)?++x x x x d 12322 4. 解 (2)35 222 d 5 x x x x C ==+?? . (3)x C =. (4)C x x dx x x x x += =? ? 3 3373 210 3d . (5) C x x x x x x x +?-==? ?- 132d d 1 252 .

209 (11) x x x d )1(13?-+)(x x x x d 132? ?? ? ??-+-= ?? ? ? - + - =x x x x x x x d d d d 23 21 2 C x x x x +-+-=25 23 35 2 3231. (12) ()? ? +-= -x x x x x x x d 21d 12 2 C x x x x x x x ++-=??? ? ??+-=? -25 232123212152342d 2. (15)C x e x x e x x e e x x x x +-=??? ? ??-=???? ??-? ?--21212d d 1. (16)C e C e e x e x e x x x x x x ++=+= =? ? 1 3ln 3)3ln()3(d )3(d 3. (19)? ?+=x x x x d 2cos 1d 2cos 2 C x x x x ++=+=? )sin (2 1d )cos 1(21. (20)? ?+==+C x x x x x tan 21 d cos 21d 2cos 112. (21)x x x x x x x x x d sin cos sin cos d sin cos 2cos 22?? --=- ? +-=+=C x x x x x cos sin d )sin (cos . (22)222222cos 2cos sin d d cos sin cos sin x x x x x x x x x -=? ? 22 1 1d sin cos x x x ??=- ??? ?C x x +--=tan cot .

(完整word版)同济大学第六版高等数学课后答案详解全集

同济六版高等数学课后答案全集 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A\B 及A\(A\B)的表达式. 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B)C =AC ?BC . . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f(A ?B)=f(A)?f(B); (2)f(A ?B)?f(A)?f(B). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 5. 设映射f : X →Y , A ?X . 证明: (1)f -1(f(A))?A ; (2)当f 是单射时, 有f -1(f(A))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8)x x y 1 arctan 3+-=;. (9) y =ln(x +1); (10) x e y 1 =. 7. 下列各题中, 函数f(x)和g(x)是否相同?为什么? (1)f(x)=lg x2, g(x)=2lg x ; (2) f(x)=x , g(x)=2x ; (3)334)(x x x f -=,31)(-=x x x g . (4)f(x)=1, g(x)=sec2x -tan2x . 8. 设 ???? ?≥<=3|| 03|| |sin |)(ππ?x x x x , 求)6(π?, )4(π?, ) 4(π?-, ?(-2), 并作出函数y =?(x)

同济版 高等数学 课后习题解析

书后部分习题解答 P21页 3.(3)n n n b b b a a a ++++++++∞→ 2211lim (1,1<x ,)(211n n n x a x x += + 证:由题意,0>n x ,a x a x x a x x n n n n n =??≥+= +221)(211(数列有下界) 又02)(212 1≤-=-+=-+n n n n n n n x x a x x a x x x (因a x n ≥+1) (数列单调减少) 由单调有界定理,此数列收敛;记b x n n =∞ →lim ,对)(211n n n x a x x += +两边取极限, 得)(21b a b b +=,解得a b =(负的舍去) ,故此数列的极限为a . P35页4.(8)极限=-++-+→211)1()1(lim x n x n x n x 211) 1()1()]1(1[lim -++--++→x n x n x n x 21 221111)1()1()1()1()1(1lim -++--+-+-+=+++→x n x n x x C x C n n n x 2 ) 1(21+= =+n n C n (若以后学了洛必达法则(00型未定型),则211) 1()1(lim -++-+→x n x n x n x 2 ) 1(2)1(lim )1(2)1())1(lim 111+= +=-+-+=-→→n n nx n x n x n n x n x ) 书后部分习题解答2 P36页 8.已知当0→x 时,1cos ~1)1(3 12--+x ax ,求常数a .

同济六版高等数学课后答案

同济六版高等数学课后答案 高等数学是理工类专业重要的基础课程,也是硕士研究生入学考试的重点科目。同济大学数学系主编的《高等数学》是套深受读者欢迎并多次获奖的优秀作品。2007年同济大学数学系推出了《高等数学》第六版,该教材保持了原来的优点、特点,进一步强调提高学生的综合素质并激发学生的创新能力。 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A\B 及A\(A\B)的表达式. 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B)C =AC ?BC . . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f(A ?B)=f(A)?f(B); (2)f(A ?B)?f(A)?f(B). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中IX 、IY 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有IX x =x ; 对于每一个y ∈Y , 有IY y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 5. 设映射f : X →Y , A ?X . 证明: (1)f -1(f(A))?A ; (2)当f 是单射时, 有f -1(f(A))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;. (2)211x y -=; (3)211x x y --=;(4)241x y -=;(5)x y sin =; (6) y =tan(x +1);(7) y =arcsin(x -3); (8) x x y 1 arctan 3+-=;. (9) y =ln(x +1);

同济大学高等数学第四版 详解 习题九

194 习题九 1. 求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π 4 t = ; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0). 解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===- 曲线在点π 4 t = 的切向量为 {}πππ,,,0,444T x y z a c ????????'''==-?? ? ? ????????? 当π 4 t =时, ,,222a b c x y z === 切线方程为 2220a b c x y z a c - --==-. 法平面方程为 0()0.222a b c a c x y z ??????++-=--- ? ? ??????? 即 22 022 a c ax cz -- +=. (2)联立方程组 2226 x y z x y z ?++=? ++=? 它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得 d d 2220d d d d 10d d y z x y z x x y z x x ? +?+?=??? ?++=?? 解 得 d d ,,d d y z x z x y x y z x y z --==-- 在点M 0(1,-2,1)处,00 d d 0,1d d M M y z x x ==- 所以切向量为{1,0,-1}. 故切线方程为 121 101 x y z -+-==- 法平面方程为 1(x -1)+0(y +2)-1(z -1)=0 即x -z =0. (3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得 d d 22,21d d y z y m z x x ==- 于是 d d 1,d d 2y m z x y x z ==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2m y z ??-???? ,故切线方程 为 000 00 ,112x x y y z z m y z ---==- 法平面方程为 00000 1()()()02m x x y y z z y z -+ ---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin 2 t 在相应点的切线垂直于平面0x y ++=,并求相应的切 线和法平面方程。 解:1cos ,sin ,2cos 2t x t y t z '''=-==, 在t 处切向量为{} 1cos ,sin ,2cos 2 t T t t =-, 已知平面的法向量为{1,1,2n = . 且T ∥n , 故 2cos 1cos sin 11 t t t -==解得 π2t =,相应点的坐 标为π1,1,2?- ? .且 {1,1T = 故切线方程为 π 1 1211x y - +-== 法平面方程为 π 1102 x y z - ++--= 即 π042x y ?? ++-=+ ??? . 3. 证明:螺旋线x = acost, y = asint, z = bt 的切线与z 轴形成定 角。 证明:sin ,cos ,.x a t y a t z b '''=-== 螺旋线的切向量为 {sin ,cos ,}T a t a t b =-. 与z 轴同向的单位向量为 {0,0,1}k = 两向量的夹角余弦为 cos θ= = 为一定值。 故螺旋线的切线与z 轴形成定角。

高等数学(同济大学版)第一章练习(含答案)

第一章 函数与极限 一、要求: 函数定义域,奇偶性判定,反函数,复合函数分解,渐近线,求极限, 间断点类型判定,分段函数分段点连续性判定及求未知参数,零点定理应用. 二、练习: 1.函数 2112 ++-=x x y 的定义域 ;答:2x ≥-且1x ≠±; 2. 函数y = 是由: 复合而成的; 答:2 ln ,,sin y u v v w w x ====; 3. 设 ,112 2 x x x x f +=??? ? ?+ 则()f x = ;答:22x -; 4. 已知)10f x x x ?? =+≠ ??? ,则()f x = ; 答: ( )11f x x x = +=+ ()0x ≠; 5.11lim 1 n x x x →--= ,答:n ; !lim 1 n n n →∞ += ;答: 0; 6. 当a = 时,函数(), 0, x e x f x a x x ?<=? +≥?在(,)-∞+∞上连续;答:1a =; 7.设(3)(3)f x x x +=+,则(3)f x -=( B ); A.(3)x x -, B.()6(3)x x --, C.()6(3)x x +-, D.(3)(3)x x -+; 8. 1lim sin n n n →∞ =( B ); A.0 , B.1, C.+∞, D.-∞; 9.1x =是函数2 2 1 ()32 x f x x x -= -+的(A ); A.可去间断点,B.跳跃间断点, C.第二类间断点, D.连续点; 10. |sin | ()cos x f x x xe -=是( A ); A.奇函数, B.周期函数, C.有界函数, D.单调函数; 11.下列正确的是( A ) A.1lim sin 0x x x →∞ =,B.1lim sin 0x x x →∞ =, C.0 1lim sin 1x x x →=, D.11lim sin 1x x x →∞ =; 12. 1x =是函数)1,13, 1 x x f x x x -≤?=? ->?的( D )

同济高等数学(第6版)习题答案7-4

习题7-4 1. 画出下列曲线在第一卦限内的图形: (1)???==2 1y x ; (2)???=---=0 422y x y x z ; (3) ???=+=+222222a z x a y x .

2. 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)? ??-=+=3215x y x y ; 解 在平面解析几何中, ? ??-=+=3215x y x y 表示直线y =5x +1与y =2x -3的交点)317 ,34(--; 在空间解析几何中, ? ??-=+=3215x y x y 表示平面y =5x +1与平面y =2x -3的交线, 它过点)0 ,3 17 ,34(--, 并且行于z 轴. (2)?????==+3 19422y y x . 解 在平面解析几何中, ?????==+3 19422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ?????==+3 19422y y x 表示椭圆柱面19 422=+y x 与其切平面y =3的交线. 3. 分别求母线平行于x 轴及y 轴而且通过曲线 ? ??=-+=++0162222222y z x z y x 的柱面方程. 解 把方程组中的x 消去得方程3y 2-z 2=16, 这就是母线平行

于x 轴且通过曲线???=-+=++0 162222222y z x z y x 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于 y 轴且通过曲线???=-+=++0 162222222y z x z y x 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程. 解 由x +z =1得z =1-x 代入x 2+y 2+z 2=9得方程2x 2-2x +y 2=8, 这是母线平行于z 轴, 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ? ??==+-082222z y x x . 5. 将下列曲线的一般方程化为参数方程: (1)???==++x y z y x 9222 ; 解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2 =9, 即13 )2 3(2222=+z x . 令t x cos 23=, 则z =3sin t . 故所求参数方程为 t x cos 23=, t y cos 2 3=, z =3sin t . (2)???==+++-0 4)1()1(222z z y x . 解 将z =0代入(x -1)2+y 2+(z +1)2=4得(x -1)2+y 2=3. 令t x cos 31+=, 则t y sin 3=. 于是所求参数方程为

(完整版)同济版《高等数学》稿WORD版导数与微分

第二章 导数与微分 教学目的: 1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系. 2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分. 3、 了解高阶导数的概念,会求某些简单函数的n 阶导数. 4、 会求分段函数的导数. 5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数. 教学重点: 1、导数和微分的概念与微分的关系; 2、导数的四则运算法则和复合函数的求导法则; 3、基本初等函数的导数公式; 4、高阶导数; 6、 隐函数和由参数方程确定的函数的导数. 教学难点: 1、复合函数的求导法则; 2、分段函数的导数; 3、反函数的导数 4、隐函数和由参数方程确定的导数. §2. 1 导数概念 一、引例 1.直线运动的速度 设一质点在坐标轴上作非匀速运动, 时刻t 质点的坐标为s , s 是t 的函数: s =f (t ), 求动点在时刻t 0的速度. 考虑比值 000) ()(t t t f t f t t s s --=--, 这个比值可认为是动点在时间间隔t -t 0内的平均速度. 如果时间间隔选较短, 这个比值在实践 中也可用来说明动点在时刻t 0的速度. 但这样做是不精确的, 更确地应当这样: 令t -t 0→0, 取

比值 0) ()(t t t f t f --的极限, 如果这个极限存在, 设为v , 即 0) ()(lim t t t f t f v t t --=→, 这时就把这个极限值v 称为动点在时刻t 0的速度. 2.切线问题 设有曲线C 及C 上的一点M , 在点M 外另取C 上一点N , 作割线MN . 当点N 沿曲线C 趋于点M 时, 如果割线MN绕点M旋转而趋于极限位置MT , 直线MT就称为曲线C有点M处的切线. 设曲线C 就是函数y =f (x )的图形. 现在要确定曲线在点M (x 0, y 0)(y 0=f (x 0))处的切线, 只要定出切线的斜率就行了. 为此, 在点M 外另取C 上一点N (x , y ), 于是割线MN 的斜率为 0 000) ()(tan x x x f x f x x y y --= --= ?, 其中?为割线MN 的倾角. 当点N 沿曲线C 趋于点M 时, x →x 0. 如果当x → 0时, 上式的极限存 在, 设为k , 即 00) ()(lim 0x x x f x f k x x --=→ 存在, 则此极限k 是割线斜率的极限, 也就是切线的斜率. 这里k =tan α, 其中α是切线MT 的 倾角. 于是, 通过点M (x 0, f (x 0))且以k 为斜率的直线MT 便是曲线C 在点M 处的切线. 二、导数的定义 1. 函数在一点处的导数与导函数 从上面所讨论的两个问题看出, 非匀速直线运动的速度和切线的斜率都归结为如下的极限: 00) ()(lim 0x x x f x f x x --→. 令?x =x -x 0, 则?y =f (x 0+?x )-f (x 0)= f (x )-f (x 0), x →x 0相当于?x →0, 于是0 0) ()(lim 0 x x x f x f x x --→ 成为 x y x ??→?0lim 或x x f x x f x ?-?+→?)()(lim 000. 定义 设函数y =f (x )在点x 0的某个邻域内有定义, 当自变量x 在x 0处取得增量?x (点x 0+?x 仍在该邻域内)时, 相应地函数y 取得增量?y =f (x 0+?x )-f (x 0); 如果?y 与?x 之比当?x →0时的极限存在, 则称函数y =f (x )在点x 0处可导, 并称这个极限为函数y =f (x )在点x 0处的导数, 记为0|x x y =', 即 x x f x x f x y x f x x ?-?+=??='→?→?)()(lim lim )(00000,

同济大学(高等数学)_第四章_不定积分

第四章 不定积分 令狐采学 前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法. 第1节 不定积分的概念与性质 1.1 不定积分的概念 在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为 ()s s t =, 则质点在时刻t 的瞬时速度表示为 ()v s t '=. 实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度 ()v v t =,

求出质点的位移函数 ()s s t =. 即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念. 1.1.1原函数 定义1如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有 ()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数. 例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1 (ln )'(0),x x x =>所以ln x 是 1x 在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件. 定理1如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有 ()()'=F x f x . 简言之,连续函数一定有原函数.由于初等函数在其定义

相关主题
文本预览
相关文档 最新文档