当前位置:文档之家› 铁氧体陶瓷吸波材料是什么

铁氧体陶瓷吸波材料是什么

铁氧体陶瓷吸波材料是什么
铁氧体陶瓷吸波材料是什么

铁氧体陶瓷吸波材料是什么?铁氧体陶瓷吸波材料是一种烧结型吸收体,一般采用磁导率较高的尖晶石型铁氧体,如NiZn、MnZn体系等。根据使用频段不同,采用不同磁导率的铁氧体,由于受居里点的限制,铁氧体吸收体不宜应用于200℃以上的高温环境。本文中主要要为大家介绍的是铁氧体的分类。

按照晶体结构的不同,铁氧体可分为尖晶石型、石榴石型和磁铅石型3 种主要类型,它们均可用作吸波材料。

1. 1 尖晶石型铁氧体

尖晶石型铁氧体,是指晶体结构与天然矿物尖晶石具有类似晶体结构的铁氧体,其属于立方晶系,晶体的对称性高,晶体磁各向异性小,因此其磁特性最软。其化学分子通式为MFe2O4,其中M 一般是2价的离子。

尖晶石型铁氧体的晶体结构如图1 所示,以O离子为骨架构成面心立方密堆积,由氧离子构成的空隙分为四面体间隙和八面体间隙。四面体间隙由4个O离子构成,如图1中8个小立方体的体心位置又称为A位置;八面体间隙由6个O离子中心连线构成的8个三角形平面包围而成,图1

中8个小立方体中O离子没有占据的顶角位置,又称为B位置。该间隙较大,只可容纳离子半径较大的金属。

1. 2 石榴石型铁氧体

石榴石型铁氧体指的是一种与天然石榴石具有类似晶体结构的铁氧体,属于立方晶系,具有重要的磁性能。

1. 3 磁铅石型铁氧体

磁铅石型铁氧体就是和天然矿物磁铅石具有类似晶体结构的铁氧体,它以自己高的矫顽力、稳定的化学性能、比较大的饱和磁化强度、优良的性能价格比在永磁材料中占有很重要的地位。磁铅石型铁氧体属于六角晶系,沿六角晶轴方向交替地出现六角和立方密堆积结构,分子式为MFe12O19,M为2价金属离子。

南京昊王电子材料有限公司成立于2006年,公司坐落于南京江宁经济技术开发区,主要为航天科工集团,航天科技集团及中电科技集团等相关科研院所提供稀土原料,化工原料及碳化硅吸收材料,是相关科研院所的合格供应方。公司生产的碳化硅吸收材料主要用于微波吸收负载,微波暗室,暗箱。微波吸收性能良好,耐高功率,耐高温,稳定性好,无毒、无挥发、可加工成各种形状同时因性能一致性高随着微波技术在各行业中广泛应用,碳化硅微波吸收材料也能为更多的行业提供更好的服务。有需要的朋友们可以直接联系咨询昊王公司官网https://www.doczj.com/doc/b59884894.html,

磁性吸波材料与应用

磁性吸波材料与应用 Magnetic Electromagnetic Wave Absorbing Materials and Applications 余声明 中国西南应用磁学研究所四川绵阳105信箱621000 摘要 本文论述了磁性吸波材料的基本原理、种类、应用及其发展。关键词磁性吸波材料应用发展 1前言 隐身技术是一门新兴边缘科学,涉及多个学科与技术领域,应用十分广泛。从各种武器装备、飞行器的隐身到现代电子信息设备的抗干扰系统都是不可缺少的实用技术和组成部分。 就武器而言,隐身技术是通过降低电器、武器或飞行器的光、电、热可探性而达到隐身目的的一种技术;或者说是采用多种技术措施,降低对外来信号(光、电、磁波、红外线等)的反射,使反射信号与它所处的背景信号难以区别,最大限度地减弱自身的特征信号,以达到自身隐蔽的效果。隐身技术可分为有源隐身技术和无源隐身技术。所谓有源是利用计算机分析外来探测信号,并及时主动发射相应的干扰信号,以达到自身的隐蔽。而无源隐身技术是一种被动隐身技术,它包括隐身结构技术和隐身材料技术。隐身结构技术是在尽量不影响功能的条件下降低自身特征信号,并设法减少雷达反射截面积,这在军事上显得特别重要。可见隐身结构技术和隐身材料技术是隐身技术不可分割的两部分,而隐身材料在实现隐身中起着重要作用,也是研究隐身技术的主要内容之一。 随着电子技术的飞速发展,电子产品特别是移动通讯、计算机、家用电器的普及,人们生存环境遭受到电磁波严重污染,城市高层建筑的增多又引起电子环境的恶化,如何降低电磁波干扰已成为全世界电子行业普遍关注的问题。隐身材料也是解决电子产品抗电磁干扰的有效方法之一。 隐身材料又称之为吸波材料,其作用把外来的电磁波能量转换为热能,降低反射波的强度,达到隐身或抗干扰的效果。按吸波材料损耗机理可分为:电阻型、电介质型和磁介质型。为了达到最佳的隐身效果,常常把多种吸波材料结合起来,构成复合型吸波材料,广泛用于雷达、航天、微波通讯及电子对抗、电子兼容的吸收屏蔽等领域。 本文专门介绍磁性介质主要是铁氧体吸波材料的概貌、应用情况及其发展。2磁性吸波材料 2.1吸波材料工作的基本原理 所谓吸波就是吸收电磁波,吸波材料的工作基本原理是: 对于一般材料,材料的介电常数ε与磁导率μ可写成以下复数形式: μ′′?μ′=με′′?ε′=ε??j ;j (1) 式中:ε′和μ′分别为吸波材料在电场或磁场作用下产生的极化和磁化强度的变量,而ε″为在外加磁场作用下,材料电偶矩产生重排引起损耗的度量,μ″为在外加磁场作用下,材料磁偶矩产生重排引起损耗的度量。对介质而言,承担着对电磁波吸波功能的是ε″和μ″,它们引起能量的损耗,损耗因子为tanδ可由下式表示: μ′ μ′′+ε′ε′′=δ+δ=δμεtan tan tan (2) 可见,tan δ随ε″和μ″的增大而增大。 设计吸波材料除了尽可能提高损耗外,还要考虑另一关键因素,即波阻抗匹配问题,使介质表面对波的反射系数(γ)为0或最小,电磁波入射到介质进而被吸收。反射系数γ的定义如式(3)所示: Zo Z Z Z in o in +?=γ(3)

高温吸波材料研究新进展与趋势

高温吸波材料研究新进展与趋势 作者:杨丽君, 王明存, Yang Lijun, Wang Mingcun 作者单位:北京航空航天大学化学与环境学院仿生智能界面科学与技术教育部重点实验室,北京,100191刊名: 宇航材料工艺 英文刊名:Aerospace Materials & Technology 年,卷(期):2012,42(3) 参考文献(36条) 1.石南南;高培伟;董波电磁吸波材料的吸波机理、特性及其建筑上应用 2007 2.Kim Yong Jin;Kim Sung Soo Magnetic and microwave absorbing properties of Ti and Co substituted M-hexaferrites in Kaband frequencies ,(26.5 ~ 40 GHz)[外文期刊] 2010 3.Elsukov E P;Rozanov K N;Lomaeva S F Microwave absorbing properties of fe powders milled in various media[外文期刊] 2008(5) 4.Saville P Review of radar absorbing materials ADA436262/XAB 2005 5.Motojima S;Ueshima N Vapor phase preparation and properties of NbN/C(carbon coils)/NbN-NbN micro-coils/micro-tubes[外文期刊] 2005(1/2) 6.赵东林;高云雷;沈曾民螺旋形碳纤维结构吸波材料的制备及性能研究[期刊论文]-安全与电磁兼容 2009(06) 7.Wan M;Li J;Li S Microtubles of polyanilines as new microwave absorbent materials[外文期刊] 2001 8.Olmedo L;Hourquehie P;Jousse F Microwave absorbing materials based on conducting polymers 1993 9.Courric S;Tran V H The electromagnetic properties of blends of poly (p-phenylene-vinylene) derivatives[外文期刊] 2000 10.唐红梅;袁茂林;邓科二茂铁配位高分子吸波材料的合成与性能表征 2010 11.Sneddon L G Chemical routes to ceramics with tunable properties and structures ADA455765/XAB 2007 12.Stomer A R Stealth aircraft & technology from World War Ⅱ to the Gulf 1991(04) 13.Liu H;Cheng H;Wang J Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases[外文期刊] 2010 14.Ding D;Zhou W;Zhang B Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics[外文期刊] 2010 15.陈志彦;王军;李效东Si-C-Fe-O功能陶瓷纤维的制备 2005 16.邢丽英;刘俊能;任淑芳短碳纤维电磁特性及其在吸波材料中应用 1998(01) 17.Zou T;Shi C;Zhao N Microwave absorbing properties of activated carbon-fiber felt dipole array/epoxy resin composites[外文期刊] 2007(13) 18.Viau G;Ravel F;Acher O Preparation and microwave characterization of spherical and monodisperse Co-Ni particles[外文期刊] 1995(1) 19.Concas G;Spano G;Cannas C Inversion degree and saturation magnetization of different nanocrystalline cobalt forrites[外文期刊] 2009(12) 20.Mizuno K A black body absorber from vertically aligned single-walled carbon nanotubes[外文期刊] 2009(15)

超材料吸波器的研究进展

Instrumentation and Equipments 仪器与设备, 2019, 7(2), 133-141 Published Online June 2019 in Hans. https://www.doczj.com/doc/b59884894.html,/journal/iae https://https://www.doczj.com/doc/b59884894.html,/10.12677/iae.2019.72019 Research Progress of Metamaterial Absorber Jiali Chai, Yanjie Ju* School of Electrical and Information Engineering, Dalian Jiaotong University, Dalian Liaoning Received: Jun. 3rd, 2019; accepted: Jun. 21st, 2019; published: Jun. 28th, 2019 Abstract In order to make better use of electromagnetic waves and eliminate their negative effects, meta-material absorbers have become a major research direction. This is a device that converts elec-tromagnetic wave energy incident on its surface into other energy to deplete it through special structures and materials. Its particularity based on the application of metamaterials, and its unique electromagnetic properties compared with natural materials make it has great signific-ance in the electromagnetic field. In this paper, the current research status of supermaterial ab-sorbers at home and abroad will be introduced through the structures, mechanisms and materials of the absorbers. For the structures, it mainly introduces two types of tiled-array structure and three-dimensional structure. For the absorption mechanisms, it mainly introduces the frequency selection surface, electromagnetic resonance and surface plasma. For the materials, it introduces metal materials, ferrite materials, carbon materials and new materials in detail. With the conti-nuous innovation in the field of materials and the unremitting efforts of researchers, we believed the absorbing device will be applied to more and more fields with more perfect performances and shine in both the civilian and military fields. Keywords Metamaterials, Absorber, Graphene, Absorbing Mechanism 超材料吸波器的研究进展 柴佳丽,鞠艳杰* 大连交通大学电气信息工程学院,辽宁大连 收稿日期:2019年6月3日;录用日期:2019年6月21日;发布日期:2019年6月28日 *通讯作者。

铁氧体吸波材料研究进展

铁氧体吸波材料的研究进展 物理科学与技术学院凝聚态物理罗衡102211013 摘要:铁氧体吸波材料是既具有磁吸收的磁介质又具有电吸收的电介质,是性能极佳的一类吸波材料。本文对铁氧体吸波材料的工作原理、研究进展作了系统的介绍,并指出了铁氧体吸波材料的发展趋势。 关键词:铁氧体吸波材料研究进展 0 引言 近年来,随着电磁技术的快速发展,电磁波辐射也越来越多的充斥于我们的生活空间,电磁波辐射已成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害。如电磁波辐射产生的电磁干扰(EMI)不仅会影响各种电子设备的正常运行,而且对身体健康也有危害。在军事高科技领域,随着世界各国防御体系的探测、跟踪、攻击能力越来越强,陆,海、空各军兵种军事目标的生存力,突防能力日益受到严重威胁;作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段之一的隐身技术,正逐渐成为集陆、海、空、天、电、磁五位一体之立体化现代战争中最重要、最有效的突防战术手段。 目前一般采用的手段是利用电磁屏蔽材料的技术,来进行抗电磁干扰和电磁兼容设计,但是屏蔽材料对电磁波有反射作用,可能造成二次电磁辐射污染和干扰,所以最好的解决办法是采用吸波材料技术,因为吸波材料可以将投射到它表面的电磁波能量吸收,并使电磁波能量转化为热能或其他形式的能量消耗而不反射[1-3]。 用于隐身技术的雷达吸波材料已达十几种之多,与透波材料相比,吸波材料研究得更为成熟,其中应用较广的几类吸波材料有铁氧体、金属微粉、纳米吸波材料、导电高聚物和铁电吸波材料等。在众多吸波材料中,磁性吸波材料具有明显优势,而且将是主要的研究对象。磁性吸波材料主要包括铁氧体、超细金属粉、多晶铁纤维等几类。其中金属吸收剂具有使用温度高、饱和磁化强度和磁损耗能力大等特点,但也存在一些自身的缺点:如频率展宽有一定难度,这主要是由于其磁损耗不够大,磁导率随频率的升高而降低比较慢的缘故;化学稳定性差;耐腐蚀性能不如铁氧体等[4];而对于铁氧体来说,除了具有吸收强、吸收频带宽、成本低廉、制备工艺简单等优点外,还因为具有较好的频率特性(其相对磁导率较大,而相对介电常较小),更适合制作匹配层,相对于高介电常数高磁导率的金属粉,在低频率拓宽频带方面,更具有良好的应用前景[5-8]。

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

各种吸波材料的比较

Christopher L Holloway 沙斐翻译 一前言 最早暗室(全电波)建于50年代,用于天线测量。吸波材料由动物毛发编制而成,外涂一层碳,厚2英寸()。在~10GHz正入射时,反射系数为-20dB。60年代,以上的吸波材料被新一代、由一定形状的吸波材料所取代,正入射时反射系数为 -40dB。 目前普遍使用的聚氨酯锥体40年代就开始研究,60年代才有产品。正入射时的反射系数为 -60dB。然而可使用的频率范围较高,要求锥体的厚度(尖顶到基座)至少是几个波长。 电-厚锥体的良好性能主要来源于锥体直接的良好多重反射。由于锥体的厚度大于波长,锥体的周边反射入射波。波在相邻的锥体间不断的反射,再反射很多次。每次反射时总有一部分波被锥体吸收。因此,仅有小部分抵达锥体基座。基座吸收后到达金属板,金属板反射后又进入锥体,再通过多重反射和吸收。最后从锥体的尖返回的波已是非常小了。 电-厚锥体的最佳性能的获得,依靠锥体内渗碳加载的调节,要求碳负载足够小,以便每次波反射时进入锥体的波尽可能多,但渗碳加载又要足够大,以便充分吸收进入锥体的波的能量。 半电波暗室最早用于70年代,作为开阔场地的替代场地,测量辐射发射。频率范围为30-1000MHz。但最早暗室中粘贴的典型的吸波材料厚度为3-6英尺(-)。显然在30MHz 的频率上,厚度不可能是几个波长。因此暗室的频率范围被限制在90-1000MHz。 30-90MHz频段的吸波材料开发缓慢,因为无法预测和测量电-薄吸波材料(即厚度 <1 4 λ)的性能,只能安装上以后,测量暗室特性来判定。直到80年代中期,计算和测量技 术发展以后,对小型宽带吸波材料的评估才成为可能。【4】-【6】中叙述了在理论模型中使用“均质化方法”可以精确地计算吸波材料的反射特性。【7】-【10】中叙述了使用大测试装置直接测小型宽带吸波材料的反射特性。 在整个30-1000MHz的频段都要获得小的反射率,则小型宽带吸波材料必须使用锥形模型,它们在高频段是电-厚模型,但在低频段则是电-薄形材料。电波入射到电-薄型吸波材料上时,它们并不在乎吸波材料的实际几何形状是锥型还是楔型。相反,它们的行为就象照射到一固体媒质上,该媒质的有效ε和μ随进入媒质的距离而变化。注意这是有效ε和有效μ和构成吸波材料的实际ε和μ是不同的。 最佳的吸波材料提供了从空气阻抗到吸波材料基座的波阻抗的逐渐过渡。正确的渗碳加载可使大部分入射波穿透锥或楔,并在通过基座时被吸收。更进一步调节渗碳可以使入射波被锥或楔反射的那一部分和从金属板反射后从吸波材料中透出来的那一部分那互相抵消,这种抵消可以获得非常小的反射率。显然只能发生在较窄的频率范围。一般说来渗碳加载对电-厚和电-薄材料的要求是不同的,【6】因此对于工作频率在30-1000MHz的小型宽带吸波材料(锥或楔型),渗碳加载既要考虑高频时的电-厚,又要考虑低频时的电-薄情况。这是极富于挑战性的。 60年代初期日本开发了电-薄型铁氧体瓦作为聚氨酯锥型和楔型的替代物。由于瓦的吸波性能和空气比较接近,在空气-瓦片界面反射很小,入射波直接渗入瓦片。又因为瓦片对磁场损耗大,所以渗入波被吸收。如有穿过瓦片的,则被金属板反射,重又回到瓦片,被再次吸收。如还有穿出瓦片回到空气中的,则可以象锥型和楔型吸波材料那样,调节瓦片厚度,在一定的较窄的频率范围内使其与瓦片直接反射到空气中的那一部分相抵消。 近年来,薄锥和楔(200-1000MHz)+铁氧体瓦+介质层(30-600MHz)构成了超小型

一种基于超材料的六频带吸波体设计

第48卷第1期(总第187期) 2019年3月 火控雷达技术 Fire Control Radar Technology Vol.48No.1(Series 187) Mar.2019 收稿日期:2018-10-22作者简介:李易(1993-),男,硕士研究生。研究方向为武器系统与运用工程。 一种基于超材料的六频带吸波体设计 李 易 (西安电子工程研究所 西安710100) 摘 要:本文设计了一种基于电磁超材料的具有多个频带吸波特性的吸波体。该吸波体的主体是由三层结构组成,上层为6个金属方框相套组成,中层为超材料有耗介质,下层的金属铜板作为金 属背板。这种结构可以实现在6个频点处的窄带吸波,其中在2.5GHz 处只能达到64%的吸波率,而在其他五个频点都能达到90%以上的吸波率。此外由于该结构具有旋转对称性,因而具有极化不敏感特性,又经由仿真得到该结构具有宽入射角特性,结果表明该超材料吸波体在雷达隐身领域具有潜在应用价值。 关键词:超材料;吸波体;多频带吸波 中图分类号:TN95文献标志码:A 文章编号:1008-8652(2019)01-085-04 引用格式:李易.一种基于超材料的六频带吸波体设计[J ].火控雷达技术,2019,48(1):85-88.DOI :10.19472/j.cnki.1008-8652.2019.01.018Design of a Six-band Absorber Based on Metamaterial Li Yi (Xi'an Electronic Engineering Research Institute ,Xi'an 710100) Abstract :A six-band absorber based on metamaterial is designed in this paper .This absorber is mainly composed of three layers ,the top one is composed of six metal frames ,the middle layer is metamaterial lossy medium and the lower layer is a metal plate as the metal floor.This absorber can achieve narrowband absorption at six frequency points.When the frequency point at 2.5GHz ,the absorption is only 64%,but others can achieve more than 90%.Moreover ,because of the rotational symmetry ,this structure has polarization-insensitive characteristics.And then ,the simulation results show that the structure has wide incidence angle characteristics and this metamaterial absorber has potential application in radar stealth field. Keywords :metamaterial ;absorber ;multiband absorbing 0引言 超材料吸波体在近些年引起了人们的广泛关 注。自从2008年Landy [1] 等第一次提出了完美吸 波的超材料吸波体, 人们开始深入研究这种通过达到阻抗匹配时的金属结构谐振和有损耗的电介质对 电磁波进行损耗吸收的吸波体。之后,人们对超材料吸波体的研究慢慢扩展开来,例如双频带[2-3] 、三 频带、宽带 [4] 和可调频带吸收。 本文采用6个同心金属环相套的结构, 实现了6个频带的吸波。由于组成该结构单元的金属方环具有四重旋转对称性,所以该结构具有极化无关特性,又由仿真验证该结构具有入射不敏感特性。 1结构设计 本文利用HFSS 软件进行建模仿真,模型由真 空腔,金属背板,超材料介质与金属结构四部分组 成,如图1所示:

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

铁氧体吸波材料

铁氧体吸波材料 资料整理:夏益民 一、电磁辐射防护材料概述与分类 电磁辐射防护材料可分为电磁波屏蔽材料和电磁波吸收材料。 电磁波屏蔽材料是指对入射电磁波有强反射的材料,主要有金属电磁屏蔽涂料、导电高聚物、纤维织物屏蔽材料。 将银、碳、铜、镍等导电微粒掺入到高聚物中可形成电磁波屏蔽涂料其具有工艺简单、可喷射、可刷涂等优点,成本也较低,因此得到广泛应用。据调查,美国使用的屏蔽涂料占屏蔽材料的80%以上,镍系屏蔽涂料化学稳定性好,屏蔽效果好,是目前欧美等国家电磁屏蔽涂料的主流。 导电高聚物屏蔽材料主要有两类,一类是通过在高聚物表面贴金属箔、镀金属层等方法形成很薄的导电性很高的金属层,具有较好的屏蔽效果;另一类是由导电填料与合成树脂构成,导电填料主要有金属片、金属粉、金属纤维、金属合金、碳纤维、导电碳黑等。 金属纤维与纺织用纤维相互包覆可用来制备金属化织物!此类织物既保持了原有织物的特性!又具有电磁屏蔽效能。 电磁波吸收材料指能吸收,衰减入射的电磁波,并将其电磁能转换成热能耗散掉或使电磁波因干涉而消失的一类材料。吸波材料由吸收剂、基体材料、黏结剂、辅料等复合而成,其中吸收剂起着将电磁波能量吸收衰减的主要作用,吸波材料可分为传统吸波材料和新型吸波材料# 传统的吸波材料按吸波原理可分为电阻型、电介质型和磁介质型。 电阻型吸波材料的电磁波能量损耗在电阻上!吸收剂主要有碳纤维、碳化硅纤维、导电性石墨粉、导电高聚物等;金属短纤维、钛酸钡陶瓷等属于电介质型吸波材料;铁氧体、羰基铁粉、超细金属粉等属于磁介质型吸波材料,它们具有较高的磁损耗角正切,主要依靠磁滞损耗、畴壁共振和自然共振、后效损耗等极化机制衰减吸收电磁波,研究较多且比较成熟的是铁氧体吸波材料。 二、铁氧体

关于吸波材料的市场分析报告

关于吸波材料的市场分析报告 一、引言 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 在日益重要的隐身和电磁兼容(EMC)技术中,电磁波吸收材料的作用和地位十分突出,已成为现代军事中电子对抗的法宝和“秘密武器”,其工程应用主要在以下几个方面:隐身技术、改善整机性能、安全保护、微波暗室。此外,在手机外壳,微波行业也是应用非常广泛。 二、情况介绍 随着电子技术的飞速发展,电子产品正迅速向节能化、智能化、信息化、多系统、多功能及娱乐性等多元化方向发展。这些拥有各种个性化娱乐功能的电子产品的普及,在很大程度上丰富了人们的物质生活需要;但与此同时,也不可避免地带来了一些问题,尤其是电磁兼容(EMC)问题。电磁兼容问题的存在,往往使电子、电气设备或系统不能正常工作,性能降低,甚至受到损坏。为解决这些问题,全球各地区基本都设置了与电磁兼容相关的市场准入认证,用以保护本地区的电磁环境,如:北美的FCC、NEBC认证,欧盟的CE认证,日本的VCCEI认证,澳洲的C-TICK认证,台湾地区的BSMI认证,中国的3C认证等。 此外,由于消费类电子产品集成的功能越来越多,以手机为例,目前市场上一部智能手机,往往同时集成有GSM移动通信、蓝牙、Wi-Fi、摄像头等,另外还具有MP3、MP4等多媒体功能,,这使得手机的工作频率越来越高,系统内部各个子模块之间的互相干扰也变得很突出。 另外,目前国内外吸波涂料民用频段的应用还是空白点,(军用频段吸波涂料的应用美国、法国有先例)利用吸波原理的民用系列产品我们是首创,胶板类的吸波材料可以加工卷材是国内首创,吸波材料、吸波涂料的核心技术是材料的配伍,生产工艺简单,加工设备都是通用设备,一次性投资少。 吸波材料在手机电磁兼容设计中的应用 手机在工作时,会不断往外发射电磁波,最大功率可以达到2w,这对周围环境的影响是很大的。比如,在手机通话的过程中,如果与固定电话距离较近,且固定电话也在通话,那么,我们经常会在固定电话的手柄中听到“滋滋滋”的声音,

综述(铁氧体材料)

文献综述 一、研究背景 随着科技的发展,吸波材料在军用及民用领域的应用日益广泛,己经成为各国军事装备隐身和民用防电磁辐射等技术领域研究的热点[1]。在众多的吸波材料中,以自然共振为主要吸波机制的铁氧体吸波材料作为一种传统的吸波剂,具有较好的性能和低廉的成本,因而是目前各国研究得比较多和比较成熟的吸波材料,己经成功地应用于隐身技术[2-3]。这些吸收剂,虽然在一定的频带范围内吸收雷达电磁波较强,但其有一个致命的缺点就是密度太大,难以满足当前国家在军事隐身、军事通讯、电缆信号泄漏防护,民用电磁波辐射防护等方面对吸收电磁波宽频带、吸收强、重量轻的新型吸收剂需求[4]。 二、研究现状 目前开发研制的新型吸波剂达几十种之多,但大部分处于试验阶段,要达到真正的实用化还有许多的工作要做,同时对一些比较成熟的吸波剂进行结构改造也是当前吸波剂发展的重要方向,对材料科学工作者来说,如何经济、有效地解决传统铁氧体吸波剂所存在的弊端是雷达吸波剂研究中的主要问题。 铁氧体是目前研究较多且比较成熟的吸波剂,应用十分广泛。铁氧体既有亚铁磁性又有介电特性,对微波电磁场来说,其相对磁导率和相对介电特性均呈现复数形式,一般称为双复介质。它既能产生磁滞损耗又能产生电致损耗,吸波性能优良。它的吸波机理主要是畴壁共振和自然共振。按其微观结构的不同,铁氧体可以分为立方晶系尖

晶石型、六角晶系磁铅石型和稀土石榴石型三个主要系列,他们均可以作为吸波剂。 铁氧体吸波剂价格低廉,吸波性能优良,一直受到各个国家的重视,至今仍是组成雷达吸波材料的主要成分之一。国内就铁氧体吸波剂也作了许多的研究。但是铁氧体作为吸波剂应用时存在比重大、吸收频带窄等缺点。为了克服这一缺点,各国正在研制开发新型的铁氧体。目前主要有以下三大途径:(1)把铁氧体制成超细粉末,从而大大降低其比重,改变其磁、电、光等物理化学性能,提高吸波能力。国内钱逸泰先生等人已经开始了这方面的研究工作[11];(2)制备含有大量游离电子的铁氧体或在铁氧体内加入少量放射性物质,在雷达波作用下,游离电子急剧循环运动,大量消耗电磁能,从而提高铁氧体吸波性能;(3)研究新型“铁球”吸波剂,在空心的玻璃微球表面涂上铁氧体粉或把铁氧体制成空心微球,这样制成的铁球吸波剂,比重比铁氧体轻得多,而吸波性能优于铁氧体。这是因为铁球吸波涂层不仅能吸波,还能偏转和散射雷达波。美国的F-117A隐形飞机和“海上阴影”号隐身舰艇都采用的是一种叫“铁球”的铁氧体吸波材料。除上述三个措施以外,将立方晶系、六方晶系和反铁磁铁氧体通过改变铁氧体的化学成分、粒径、粒度分布、粒子形状、混合量和表面处理技术来提高铁氧体吸波性能的研究也取得了较大的进展。 铁氧体空心粒子作为一种具有特殊结构的功能材料复合粒子,具有质轻和内核折光指数远低于壳层物质等特点。由于这种空心粒子体密度小、其特有的电磁性能表现有可能克服现有的雷达吸收涂层材料

陶瓷吸波材料的研究进展_范跃农

《陶瓷学报》 JOURNAL OF CERAMICS 第31卷第1期2010年3月 Vol.31,No.1Mar.2010 文章编号:1000-2278(2010)01-0538-04 陶瓷吸波材料的研究进展 范跃农1, 2 龚荣洲2 (1.景德镇陶瓷学院,景德镇:333403,2.华中科技大学,武汉:430074) 摘要 简述了在当今世界能提高各类武器在战争中的生存能力、防卫能力和攻击能力的隐身技术,对其在现代高技术武器装备中的重要作用进行了肯定。对隐身技术中占重要地位的电磁波吸收材料的种类、吸波原理及吸波方式做了进一步阐述。重点讨论了陶瓷吸波材料的吸波原理、组成结构和方式,并着重介绍了几种最近几年陶瓷吸波材料的最新研究成果,列举了它们的吸波性能参数。最后,对陶瓷吸波材料发展方向进行了展望。关键词隐身技术,陶瓷,吸波材料,研究进展中图分类号:TQ174文献标识码:A 1引言 随着电子技术的发展,新型雷达、探测器及精密制导武器相继问世,军事空中防御能力和反导弹能力日益增强,使得武器系统,特别是大型作战武器,如飞机、导弹、舰艇、坦克等所面临的威胁越来越大,作为提高战争中的生存能力、 防卫能力和攻击能力的隐身技术,普遍受到世界各国的高度重视。 隐身技术是指降低目标的雷达、红外、激光、磁信号等特征,使其在一定范围内难以被探测,从而提高其生存能力的技术。 已经成为现代电子战争的重要组成部分,它伴随着武器攻击、防卫技术的发展而产生,其最终目的是使武器系统能在多个的频率范围,进行多方位的隐身。隐身技术发展的关键在于材料技术的发展,要求材料具有质量轻、适应性强的特点。为了适应未来战争的需要,世界各发达国家都在积极致力于开发新型高效的吸波材料,并对其吸波机理进行更进一步的研究[1]。 吸波材料是隐身技术中不可缺少的组成部分,隐身兵器主要依靠吸波材料来吸收和衰减雷达波以达到隐身的目的。 2吸波材料的分类 按照吸波材料的结构,可将其分为涂料型吸波材 料、贴片型吸波材料、吸波腻子、吸波复合材料等[2]。 按照吸波机理可以将吸波材料分为磁损耗型吸波材料、介电损耗型吸波材料和“双复”型吸波材料三类。 陶瓷吸波材料属于介电损耗型吸波材料,主要包括碳化硅、Si 3N 4、莫来石、钛酸钡、Al 2O 3、AlN 、堇青石、硼硅酸铝、粘土和炭黑等一类陶瓷材料,同铁氧体、复合金属粉末等比较,这一类材料的吸波性能好,而且还可以有效地减弱红外辐射信号,能有效损耗雷达波的能量。由于它们比重小、耐高温、介电常数随烧结温度有较大的变化范围,是制作多波段吸波材料的主要成分,有可能通过对显微结构和电磁参数的控制,来获得所希望的吸波效果。此外,由金属微粉和陶瓷微粉共烧而成的以金属为分散相,陶瓷为连续相的金属陶瓷也属于这一类。这一类材料对雷达波能量的吸收、转移主要以热能形式散发[3]。 要达到良好的吸波效果,必须具备以下两个条件:(l)入射来的电磁波要尽可能多地进入吸波材料而不被反射;(2)材料要能将电磁波损耗吸收掉[4]。因此, 收稿日期:2009-10-11通讯联系人:范跃农 DOI:10.13957/https://www.doczj.com/doc/b59884894.html,ki.tcxb.2009.04.022

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

吸波材料

吸波材料的用途与分类 从吸波材料的应用上来分类,它的用途可以分为,军用、商用以及民用,吸波材料的吸波实质是吸收或衰减入射的电磁波,并通过材料的介质损耗使电磁波能量转变成热能或其它形式的能量而耗散掉。吸波材料一般由基体材料(黏结剂)与吸收介质(吸收剂)复合而成。吸波材料可以分为电损耗型和磁损耗型,电损耗型材料主要靠介质的电子极化、离子极化、分子极化或界面极化来吸收、衰减电磁波。磁损耗型材料主要是靠磁滞损耗、畴壁共振和后效损耗等磁激化机制来引起电磁波的吸收和衰减。由于纳米晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,使纳米材料有许多不同于一般粗晶材料的性能。纳米微粒具有小尺寸效应、表面与界面效应、量子尺寸效应、介电效应和宏观量子隧道效应等。纳米材料之所以具有非常优良的吸波性能,主要是以下原因:首先,纳米材料具有高浓度晶界,晶界面原子的比表面积大、悬空键多、界面极化强,容易产生多重散射,在电磁场辐射作用下,由于纳米粒子的表面效应造成原子、电子运动的加剧而磁化,使电磁能更加有效地转化为热能,产生了强烈的吸波效应;其次,量子尺寸效应的存在使纳米粒子的电子能级发生分裂,分裂的能级间隔正处于微波的能级范围(10-2~10-5eV),从而成为纳米材料新的吸波通道;此外纳米离子具有较大的饱和磁感、高的磁滞损耗和矫顽力,使得纳米材料具有涡流损耗高、居里点及使用温度高、吸波频率宽等性能。纳米材料的这种结构特征使得纳米吸波材料具有吸收频带宽、兼容性好、质量轻和厚度薄等特点,易满足雷

达吸波材料“薄、轻、宽、强”的要求,是一种非常有发展前景的高性能、多功能吸收剂。随着现代军事技术的迅勐发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。现代化战争对吸波材料的吸波性能要求越来越高,一般传统的吸波材料很难满足需要。由于结构和组成的特殊性,使得纳米吸波涂料成为隐身技术的新亮点。纳米材料是指三维尺寸中至少有一维为纳米尺寸的材料,如薄膜、纤维、超细粒子、多层膜、粒子膜及纳米微晶材料等,一般是由尺寸在1~100nm的物质组成的微粉体系。 随着电子化、信息化的高速发展,产业界对电磁干涉屏蔽和吸波材料的民用需求与日俱增,高度集成原件,与高频原件的应用,导致电子兼容性EMC问题难于解决,传统的屏蔽材料已经不能够解决现代电子信息条件下的电磁屏蔽,而且传统的屏蔽材料只能通过反射原理防止被骚扰,在许多特殊电磁环境中显得“无能为力”,那么在电子信息高度发展的今天,有没有什么更高端的产品来彻底解决电磁辐射,和电磁干扰(EMI)的问题?吸波材料的问世肯定的回答了这一问题,在国内来说,深圳市兆荣软磁材料有限公司,通过国防科大、北矿磁材等企事业的通力合作,研发出具有国内领先水平的薄片类,吸波材

一种超宽带、轻质、宽入射角超材料吸波体的拓扑优化设计-

文章编号:1001-9731(2015)23-23056-05 一种超宽带二轻质二宽入射角超材料吸波体的拓扑优化设计?随一赛,马一华,王冬骏,庞永强,王甲富,屈绍波 (空军工程大学理学院,西安710051) 摘一要:一基于电阻型频率选择表面,通过遗传算法进行拓扑优化的方法,设计了一种具有超宽带二轻质二宽入射角和极化不敏感特性的超材料吸波体,该吸波体的吸收率在90%以上的带宽为3.4~23.2GHz,相对带宽高达149%,并且针对TE极化,当入射角增加至55?时,吸收率均仍保持在80%以上;对于TM极化,该吸波体保持90%以上吸收率到70?.由于采用聚氨酯泡沫作为基体,该吸波体面密度仅为0.35/cm3.设计的超材料吸波体具有易于实现的特点,具有良好的应用前景.同时该拓扑设计的方法还可应用到左手材料二频率选择表面的超材料设计中. 关键词:一电阻型频率选择表面;吸波;拓扑优化;遗传算法 中图分类号:一TB34文献标识码:A DOI:10.3969/j.issn.1001-9731.2015.23.012 1一引一言 近年来,新型人工超材料作为自然材料不能实现功能的补充和拓展,已经引起了广泛的关注.超材料是由人工复合结构或者复合材料组成的对特定电磁波具有调制作用的人工材料,其研究应用范围涵盖了左手材料二完美吸波体二频率选择表面二相位梯度超表面二电磁带隙结构和完美磁导体等[1-8].Pendr y等通过开口谐振环首次实现了负的磁导率和介电常数[2];Shel-b y首次通过实验实现了左手材料[9];Land y等提出了一种完美吸波体的超材料[5].从Land y等的工作出发,相继出现了高效吸收99.9%的吸波体二双带以及多带超材料吸波体[10-14].Fili pp o等[15]提出了电阻型超材料吸波体,并根据等效电路理论给出了设计规则,设计的吸波体可以实现宽频强吸收. 超材料完美吸波体作为一种新型的吸波材料已被应用[16-17].但目前,最常见的超材料基于谐振机制,其性能主要由结构类型二结构参数以及组份材料的性质决定.由于结构类型的多样性以及材料性质对结构参数的敏感性,超材料的设计仅仅依赖简单的物理模型和经验是不够的.因此,借助某种成熟的优化算法,对结构及其参数进行优化设计已经成为超材料设计和应用研究的重要途径[4,6,8]. 拓扑优化作为一种新颖的优化设计方法,克服了仅仅依赖于人的经验和简单物理模型结构等主观性较强的方法的缺点.通过遗传算法按照一定规律随机生成一连串的二进制编码,并按照相应的机制解码后行建模和数值计算.本文根据拓扑优化的设计方法,设计了一种基于电阻型频率选择表面的超材料吸波体(resistance fre q uenc y selective surface absorber,RF-SSA)[18-19].该吸波体采用泡沫作为介质基板表面加载电阻型频率选择表面,具有轻质二宽吸收频带等优点,吸收率在90%以上的带宽拓宽为3.4~23.2GHz.仿真和实验结果均验证了该吸波体的宽带吸收性能.2一RFSSA的拓扑设计及优化 2.1一RFSSA拓扑设计 本文根据电阻型频率选择表面设计的设计方法,设计了一种轻质二宽频带三明治夹层结构的吸波体,结构如图1所示,在加载金属背板的介质基板(聚氨酯泡沫,ε=1.2)上用二进制编码的方式设计拓扑结构,结构采用电阻型频率选择表面实现 . 图1一吸波体结构及拓扑图 Fi g1The confi g uration of RFSSA and its to p olo gy 考虑到吸波体的极化无关特性,采用中心对称的二进制编码,每层编码区域为5?10的像素点,每个像素点由1和0分别表示有无电阻片,这种编码方式使得编码长度大大缩减,从而有利于提高拓扑设计的效率和优化算法的收敛速度.同时将周期性单元结构的 6503 22015年第23期(46)卷 ?基金项目:国家自然科学基金资助项目(61331005,11204378,11274389);中国博士后科学基金资助项目(2013M532131,2013M532221);全国优秀博士论文作者专项资金资助项目(201242) 收到初稿日期:2014-12-30收到修改稿日期:2015-06-15通讯作者:马一华,E-mail:mahuar@163.com 作者简介:随一赛一(1993-),男,安徽亳州人,在读硕士,师承马华教授,主要从事超材料应用研究.

相关主题
文本预览
相关文档 最新文档