当前位置:文档之家› 04 第四节 正态总体的置信区间

04 第四节 正态总体的置信区间

04 第四节 正态总体的置信区间
04 第四节 正态总体的置信区间

第四节 正态总体的置信区间

与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色.

本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间;

4. 双正态总体均值差(方差已知)的置信区间;

5. 双正态总体均值差(方差未知但相等)的置信区间;

6. 双正态总体方差比的置信区间.

注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的.

分布图示

★ 引言

★ 单正态总体均值(方差已知)的置信区间

★ 例1 ★ 例2

★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4

★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间

★ 例7 ★ 例8

★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4

内容要点

一、单正态总体均值的置信区间(1)

设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间

,,2/2/????

?

??+?-n u X n u X σσαα

二、单正态总体均值的置信区间(2)

设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量

n S X T /μ-=,

从第五章第三节的定理知).1(~/--=

n t n

S X T μ

对给定的置信水平α-1, 由

αμαα-=?

?????-<-<--1)1(/)1(2/2/n t n S X n t P ,

即 ,1)1()1(2/2/αμαα-=?

??

????-+<

因此, 均值μ的α-1置信区间为

.)1(,)1(2/2/???

? ???-+?--n S n t X n S n t X αα

三、单正态总体方差的置信区间

上面给出了总体均值μ的区间估计,在实际问题中要考虑精度或稳定性时,需要对正态总体的方差2σ进行区间估计.

设总体),,(~2σμN X 其中μ,2σ未知,n X X X ,,,21 是取自总体X 的一个样本. 求方差

2σ的置信度为α-1的置信区间. 2σ的无偏估计为2S , 从第五章第三节的定理知,

)1(~122

2

--n S n χσ

, 对给定的置信水平α-1, 由

,1)1()1()1()1(,1)1(1)1(22/12222/22

2

/2222/1αχσχαχσχαααα-=??

????????--<<---=?

?????-<-<---n S n n S

n P n S n n P 于是方差2σ的α-1置信区间为

??

?

? ??-----)1()1(,)1()1(22/1222/2n S n n S n ααχχ

而方差σ的α-1置信区间

.)1()1(,)1()1(2

2/1222/2

???

? ??-----n S n n S n ααχχ

四、双正态总体均值差的置信区间(1)

在实际问题中,往往要知道两个正态总体均值之间或方差之间是否有差异,从而要研究两个正态总体的均值差或者方差比的置信区间。

设X 是总体),(211σμN 的容量为1n 的样本均值, Y 是总体),(2

22σμN 的容量为2n 的样本

均值, 且两总体相互独立, 其中2

221,σσ已知.

因X 与Y 分别是1μ与2μ的无偏估计, 从第五章第三节的定理知

),1,0(~//)

()(2

2

2

12121N n n Y X σσμμ+---

对给定的置信水平α-1, 由

,1//)()(2/22

212121ασσμμα-=??

???

?????<+---u n n Y X P

可导出21μμ-的置信度为α-1的置信区间为

.,2221212

/2221212/???

? ??

+?+-+?--n n u Y X n n u Y X σσσσαα

五、双正态总体均值差的置信区间(2)

设X 是总体),(21σμN 的容量为1n 的样本均值, Y 是总体),(22σμN 的容量为2n 的样本

均值, 且两总体相互独立, 其中1μ,2μ及σ未知.从第五章第三节的定理知

).2(~/1/1)()(212

121-++---=

n n t n n S Y X T w μμ

其中.2

1212

2212212112

S n n n S n n n S w -+-+-+-=

对给定的置信水平α-1, 根据t 分布的对称性, 由

,1)}2(|{|212/αα-=-+

可导出21μμ-的α-1置信区间为

.11))2()(,11))2()(21212/21212/???

?+?-++- ??+?-+--n n S n n t Y X n n S n n t Y X w w αα

六、双正态总体方差比的置信区间

设21S 是总体),(211σμN 的容量为1n 的样本方差, 22S 是总体),(2

22σμN 的容量为2n 的样本

方差, 且两总体相互独立, 其中222211,,,σμσμ未知. 21S 与22S 分别是21σ与22σ的无偏估计, 从第五章第三节的定理知

),1,1(~2122

212

12--???? ??=n n F S S F σσ

对给定的置信水平α-1, 由

,1)}1,1()1,1({212/212/1ααα-=--<<---n n F F n n F P ,1)1,1(1)1,1(12221212/122212221212/ασσαα-=???????--<

221/σσ的α-1置信区间为

.)1,1(1,)1,1(12221212/1222121

2/?

???

???--?---S S n n F S S n n F αα

例题选讲

单正态总体均值(方差已知)的置信区间

例1(E01) 某旅行社为调查当地一旅游者的平均消费额, 随机访问了100名旅游者, 得知平均消费额80=x 元. 根据经验, 已知旅游者消费服从正态分布, 且标准差12=σ元, 求该地旅游者平均消费额μ的置信度为95%的置信区间.

解 对于给定的置信度 ,95.01=-α ,05.0=α ,025.02/=α

查标准正态分布表,96.1025.0=u 将数据,100=n ,80=x ,12=σ ,96.1025.0=u 代入n

u x σ

α?

±2/计算得μ的置信度为95%的置信区间为),4.82,6.77( 即在已知12=σ情形

下, 可以95%的置信度认为每个旅游者的平均消费额在77.6元至82.4元之间.

例2 设总体),,(~2σμN X 其中μ未知, .42=σ n X X ,,1 为其样本. (1) 当16=n 时, 试求置信度分别为0.9及0.95的μ的置信区间的长度. (2) n 多大方能使μ的90%置信区间的长度不超过1? (3) n 多大方能使μ的95%置信区间的长度不超过1? 解 (1) 记μ的置信区间长度为A, 则

)/()/(2/2/n u X n u X σσαα?--?+=?,22/n u σα?=

于是当%901=-α时, ,65.116/265.12=??=? 当%951=-α时, .96.116/296.12=??=?

(2) 欲使,1≤? 即,1/22/≤?n u σα 必须,)2(22/ασu n ≥ 于是, 当%901=-α时,

,)65.122(2??≥n 即,44≥n 即n 至少为44时, μ的90%置信区间的长度不超过1. (3) 当%951=-α时,类似可得.62≥n

注: ① 由(1)知, 当样本容量一定时, 置信度越高, 则置信区间长度越长, 对未知参数的估计精度越低.

② 在置信区间的长度及估计精度不变的条件下, 要提高置信度, 就须加大样本的容量,n 以获得总体更多的信息.

单正态总体均值(方差未知)的置信区间

例3(E02) 某旅行社随机访问了25名旅游者, 得知平均消费额80=x 元, 子样标准差12=s 元, 已知旅游者消费额服从正态分布, 求旅游者平均消费额μ的95%置信区间.

解 对于给定的置信度),05.0%(95=α,0639.2)24()1(025.02/==-t n t α

将,80=x ,12=s ,25=n ,0639.2)24(025.0=t 代入计算得μ的置信度为95%的置信区间为,05.75(),95.84 即在2σ未知情况下, 估计每个旅游者的平均消费额在75.05元至84.95元之

间, 这个估计的可靠度是95%.

注: 与例1相比, 在标准差σ未知时, 用样本的标准差S 给出的置信区间偏差不太大.

例4 (E03) 有一大批袋装糖果. 现从中随机地取16袋, 称得重量(以克计)如下:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

设袋装糖果的重量近似地服从正态分布, 试求总体均值μ的置信水平为0.95的置信区间.

解 ,95.01=-α ,025.02/=α ,151=-n ,1315.2)15(025.0=t

由给出的数据算得,75.03.5=x .2022.6=s 可得到均值μ的一个置信水平为0.95的置信区间为),16/2022.61315.275.503(?± 即).1.507,4.500(

这就是说, 估计袋装糖果重量和均值在500.4克与507.1克之间, 这个估计的右信程度为95%. 若以此区间内任一值作为μ的近似值, 其误差不大于

61.616/2022.61315.22=??(克)

这个误差估计的可信程度为95%.

单正态总体方差的置信区间

例5 (E04) 为考察某大学成年男性的胆固醇水平, 现抽取了样本容量为25的一样本, 并测得样本均值,186=x 样本标准差12=s . 假定所论胆固醇水平),,(~2σμN X μ与2σ均未

知. 试分别求出μ以及σ的90%置信区间.

解 μ的置信度为α-1的置信区间为./)1((2/n s n t x ?-±α

按题设数据,1.0=α,186=x ,12=s ,25=n 查表得,7109.1)125(2/1.0=-t 于是,106.425/127109.1/)1(2/=?=?-n s n t α 即).11.190,89.181(

σ的置信度为α-1置信区间为.)1()1(,)1()1(2

2/1222/2

????

? ??

-----n S n n S n ααχχ 查表得,85.13)125(,42.36)125(2

2/1.0122/1.0=-=--χχ 于是, 置信下限和置信上限分别为

,

74.942.36/12242=?,80.1585.13/12242=?

所求σ的90%置信区间为).80.15,74.9(

双正态总体均值差(方差已知)的置信区间

例6 (E05) 2003年在某地区分行业调查职工平均工资情况: 已知体育、卫生、社会福利事业职工工资X (单位: 元));218,(~21μN 文教、艺术、广播事业职工工资Y (单位: 元)),227,(~22μN 从总体X 中调查30人, 平均工资1272元, 求这两大类行业职工平均工资之差的99%的置信区间.

解 由于,99.01=-α 故,01.0=α 查表得,576.2005.0=u

又,251=n ,302=n ,218221=σ ,22722

2=σ ,1286=x ,1272=y

于是21μμ-的置信度为99%的置信区间为],96.168,96.140[- 即两大类行业职工平均工资相差在96.140-96.168~之间, 这个估计的置信度为99%.

双正态总体均值差(方差未知)的置信区间

例7 (E06) A , B 两个地区种植同一型号的小麦. 现抽取了19块面积相同的麦田, 其中9块属于地区A , 另外10块属于地区B , 测得它们的小麦产量(以kg 计)分别如下:

地区A : 100, 105, 110, 125, 110, 98, 105, 116, 112;

地区B : 101, 100, 105, 115, 111, 107, 106, 121, 102, 92. 设地区A 的小麦产量),,(~21σμN X 地区B 的小麦产量),(~22σμN Y , 1μ,2μ,2σ均未知. 试求这两个地区小麦的平均产量之差21μμ-的90%置信区间.

解 由题意知所求置信区间的两个端点分别为.1

1)2()(2

1212/n n S n n t Y X w +??-+±-α 由,1.0=α ,91=n ,102=n 查表得,7396.1)17(2/1.0=t 按已给数据计算得

,109=x ,106=y ,8/55021=s ,9/6062

2=s

,682

)1()1(212

222112=-+-+-=n n s n s n s w

,246.8=w s

于是置信下限为 ,59.310191246.87396.1)106109(-=+?

?-- 置信上限为 ,59.910

191246.87396.1)106109(=+?

?+- 故均值差21μμ-的90%的置信区间为).59.9,59.3(-

例8 为比较I, II 两种型号步枪子弹的枪口速度, 随机地取I 型子弹10发, 得到枪口速度的平均值为 )/(5001s m x =, 标准差)/(10.11s m s =, 随机地取II 型子弹20发, 得到枪口速度的平均值为)./(4962s m x = 标准差)./(20.12s m s =假设两总体都可认为近似地服从正态分布. 且由生产过程可认为方差相等. 求两总体均值差21μμ-的一个置信水平为0.95的置信区间.

解 按实际情况, 可认为分别来自两个总体的样本是相互独立的, 且两总体的方差相等, 但数值未知, 由于

,95.01=-α ,025.02/=α

,101-n ,202=n ,28221=-+n n ,0484.2)28(025.0=t

,28/)20.11910.19(222?+?=w s .12==w w s s ,1688

故所求的两总体均值差21μμ-的一个置信水平为0.95的置信区间是

),93.04(201101)28(025.021±=???

?

??+?±-t s x x w 即).93.4,07.3( 注: 本题中得到的置信区间的下限大于零, 在实际中我们就认为1μ比2μ大,即Ⅰ型子弹的枪口速度大于Ⅱ型子弹的枪口速度.

双正态总体方差比的置信区间

例9(E07) 某钢铁公司的管理人员为比较新旧两个电炉的温度状况, 他们抽取了新电炉

的31个温度数据及旧电炉的25个温度数据, 并计算得样本方差分别为7521=s 及1002

2=s . 设新电炉的温度),(~211σμN X , 旧电炉的温度),(~222σμN Y . 试求2221/σσ的95%置信区间.

解 2

221/σσ的α-1置信区间的两个端点分别是

22211

212/))1,1((s s n n F ?---α与,)1,1(22

2

1

122/s s n n F ?--α ,05.0=α ,311=n ,252=n

查表得,21.2)24,30(2/05.0=F .14.2)30,24(2/05.0=F

于是置信下限为

,34.010075

21.21=? 置信上限为,61.1100

7514.2=?

所求置信区间为).61.1,34.0(

注: 在内容小结中分别总结了有关单正态总体参数和双正态总体参数的置信区间, 以方便查用.

课堂练习

1. 已知某地区农户人均生产蔬菜量为X (单位:kg), 且),,(~2σμN X 现随机抽取9个农户, 得人均生产蔬菜量为

75, 143, 156, 340, 400, 287, 256, 244, 249

问该地区农户人均生产蔬菜量最多为多少)05.0(=α?

2. 为了考察温度对某物体断裂强度的影响, 在70℃与80℃时分别重复了8次试验,测

试值的样本方差依次为

,8266.0,8857.02221==s s

假定70℃下的断裂强度),,(~211σμN X 80℃下的断裂强度),,(~2

22σμN Y 且X 与Y 相互独立, 试求方差比2221/σσ的置信度为90%的置信区间.

第四节正态总体的置信区间

第四节 正态总体的置信区间 与其他总体相比, 正态总体参数的置信区间是最完善的,应用也最广泛。在构造正态总体参数的置信区间的过程中,t 分布、2χ分布、F 分布以及标准正态分布)1,0(N 扮演了重要角色. 本节介绍正态总体的置信区间,讨论下列情形: 1. 单正态总体均值(方差已知)的置信区间; 2. 单正态总体均值(方差未知)的置信区间; 3. 单正态总体方差的置信区间; 4. 双正态总体均值差(方差已知)的置信区间; 5. 双正态总体均值差(方差未知但相等)的置信区间; 6. 双正态总体方差比的置信区间. 注: 由于正态分布具有对称性, 利用双侧分位数来计算未知参数的置信度为α-1的置信区间, 其区间长度在所有这类区间中是最短的. 分布图示 ★ 引言 ★ 单正态总体均值(方差已知)的置信区间 ★ 例1 ★ 例2 ★ 单正态总体均值(方差未知)的置信区间 ★ 例3 ★ 例4 ★ 单正态总体方差的置信区间 ★ 例5 ★ 双正态总体均值差(方差已知)的置信区间 ★ 例6 ★ 双正态总体均值差(方差未知)的置信区间 ★ 例7 ★ 例8 ★ 双正态总体方差比的置信区间 ★ 例9 ★ 内容小结 ★ 课堂练习 ★ 习题6-4 内容要点 一、单正态总体均值的置信区间(1) 设总体),,(~2σμN X 其中2σ已知, 而μ为未知参数, n X X X ,,,21 是取自总体X 的一个样本. 对给定的置信水平α-1, 由上节例1已经得到μ的置信区间 ,,2/2/???? ? ??+?-n u X n u X σσαα 二、单正态总体均值的置信区间(2) 设总体),,(~2σμN X 其中μ,2σ未知, n X X X ,,,21 是取自总体X 的一个样本. 此时可用2σ的无偏估计2S 代替2σ, 构造统计量 n S X T /μ-=, 从第五章第三节的定理知).1(~/--= n t n S X T μ 对给定的置信水平α-1, 由 αμαα-=? ?????-<-<--1)1(/)1(2/2/n t n S X n t P ,

标准正态分布表

标准正态分布表 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

标准正态分布表

4432198653 1.80.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0.970 6 1.90.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0.975 6 0.976 2 0.976 7 20.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.10.982 1 0.982 6 0.983 0.983 4 0.983 8 0.984 2 0.984 6 0.985 0.985 4 0.985 7 2.20.986 1 0.986 4 0.986 8 0.987 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.989 2.30.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.40.991 8 0.992 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.50.993 8 0.994 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.60.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0.996 1 0.996 2 0.996 3 0.996 4 2.70.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0.997 1 0.997 2 0.997 3 0.997 4 2.80.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0.998 1 2.90.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x00.10.20.30.40.50.60.70.80.9 30.998 7 0.999 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 正态分布概率表 Φ( u ) =

(完整版)t分布的概念及表和查表方法.doc

t分布介绍 在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t 分布曲线形态与 n(确切地说与自由度 df )大小有关。与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。 中文名t 分布应用在对呈正态分布的总体 外文名t -distribution 别称学生 t 分布 学科概率论和统计学相关术语t 检验 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t 测定的基础。 t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生 t-分布可简称为t 分布。其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

正态分布可信区间

3. 某地200例正常成人血铅含量的频数分布如下表。 (1)简述该资料的分布特征。 (2)若资料近似呈对数正态分布,试分别用百分位数法和正态分布法估计该地正常成人血铅值的95%参考值范围。 表某地200例正常成人血铅含量(μmol/L)的频数分布 血铅含量频数累积频数 0.00~7 7 0.24~49 56 0.48~45 101 0.72~32 133 0.96~28 161 1.20~13 174 1.44~14 188 1.68~ 4 192 1.92~ 4 196 2.16~ 1 197 2.40~ 2 199 2.64~ 1 200 [参考答案] (1)从表可以看出,血铅含量较低组段的频数明显高于较高组段,分布不对称。同正态分布相比,其分布高峰向血铅含量较低方向偏移,长尾向血铅含量较高组段延伸,数据为正偏态分布。 某地200例正常成人血铅含量(μmol/L)的频数分布 血铅含量组中值频数累积频数累积频率 0.00~0.12 7 7 3.5 0.24~0.36 49 56 28.0 0.48~0.60 45 101 50.5 0.72~0.84 32 133 66.5 0.96~ 1.08 28 161 80.5

1.20~ 1.32 13 174 87.0 1.44~ 1.56 14 188 94.0 1.68~ 1.80 4 192 96.0 1.92~ 2.04 4 196 98.0 2.16~ 2.28 1 197 98.5 2.40~ 2.52 2 199 99.5 2.64~ 2.76 1 200 100 (2)因为正常人血铅含量越低越好,所以应计算单侧95%参考值范围。 百分位数法:第95%百分位数位于1.68~组段,组距为0.24,频数为4,该组段以前的累积频数为188,故 95 (2000.95188) 1.680.24 1.80(μmol/L) 4 P ?- =+?= 即该地正常成人血铅值的95%参考值范围为小于1.80μmol/L。 正态分布法:将组中值进行log变换,根据题中表格,得到均值和标准差计算表。 某地200例正常成人血铅含量(μmol/L)均值和标准差计算表 血铅含量组中值lg组中值(x) 频数(f) fx2fx 0.00~0.12 -0.92 7 -6.44 5.9248 0.24~0.36 -0.44 49 -21.56 9.4864 0.48~0.60 -0.22 45 -9.9 2.178 0.72~0.84 -0.08 32 -2.56 0.2048 0.96~ 1.08 0.03 28 0.84 0.0252 1.20~ 1.32 0.12 13 1.56 0.1872 1.44~ 1.56 0.19 14 2.66 0.5054 1.68~ 1.80 0.26 4 1.04 0.2704 1.92~ 2.04 0.31 4 1.24 0.3844 2.16~ 2.28 0.36 1 0.36 0.1296 2.40~ 2.52 0.40 2 0.80 0.3200 2.64~ 2.76 0.44 1 0.44 0.1936 合计——200 -31.52 19.8098

标准正态分布表

标准正态分布表 x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.523 9 0.527 9 0.531 9 0.535 9 0.1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0.2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 8 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 4 0.644 3 0.648 0 0.651 7 0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.719 0 0.722 4 0.6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.835 5 0.834 0 0.836 5 0.838 9 1 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.86 2 1 1.1 0.864 3 0.866 5 0.868 6 0.870 8 0.872 9 0.87 4 9 0.877 0 0.879 0 0.881 0 0.883 0 1.2 0.884 9 0.886 9 0.888 8 0.890 7 0.892 5 0.894 4 0.89 6 2 0.898 0 0.899 7 0.901 5 1.3 0.903 2 0.904 9 0.906 6 0.90 8 2 0.90 9 9 0.911 5 0.913 1 0.914 7 0.916 2 0.917 7 1.4 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.926 5 0.927 9 0.929 2 0.930 6 0.931 9 1.5 0.933 2 0.934 5 0.935 7 0.937 0 0.938 2 0.939 4 0.940 6 0.941 8 0.943 0 0.944 1 1.6 0.945 2 0.946 3 0.947 4 0.948 4 0.949 5 0.950 5 0.951 5 0.952 5 0.953 5 0.953 5 1.7 0.955 4 0.956 4 0.957 3 0.958 2 0.959 1 0.959 9 0.960 8 0.961 6 0.962 5 0.963 3 1.8 0.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0 0.970 6 1.9 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0 0.975 6 0.976 2 0.976 7 2 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.1 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8 0.984 2 0.984 6 0.98 5 0 0.985 4 0.985 7 2.2 0.98 6 1 0.986 4 0.986 8 0.98 7 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.98 9 0 2.3 0.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.4 0.991 8 0.992 0 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.5 0.993 8 0.994 0 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.6 0.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0 0.996 1 0.996 2 0.996 3 0.996 4 2.7 0.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0 0.997 1 0.997 2 0.997 3 0.997 4 2.8 0.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0 0.998 1 2.9 0.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 0.998 7 0.999 0 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 0

Excel求置信区间的方法

应用Excel求置信区间 一、总体均值的区间估计 (一)总体方差未知 例:为研究某种汽车轮胎的磨损情况,随机选取16只轮胎,每只轮胎行驶到磨坏为止。记录所行驶的里程(以公里计)如下: 假设汽车轮胎的行驶里程服从正态分布,均值、方差未知。试求总体均值μ的置信度为的置信区间。 步骤:

1.在单元格A1中输入“样本数据”,在单元格B4中输入“指标名称”,在单元格C4中输入“指标数值”,并在单元格A2:A17中输入样本数据。 2.在单元格B5中输入“样本容量”,在单元格C5中输入“16”。 3.计算样本平均行驶里程。在单元格B6中输入“样本均值”,在单元格C6中输入公式:“=AVERAGE(A2,A17)”,回车后得到的结果为。

4.计算样本标准差。在单元格B7中输入“样本标准差”,在单元格C7中输入公式:“=STDEV(A2,A17)”,回车后得到的结果为。 5.计算抽样平均误差。在单元格B8中输入“抽样平均误差”,在单元格C8中输入公式:“=C7/SQRT(C5)” ,回车后得到的结果为。 6.在单元格B9中输入“置信度”,在单元格C9中输入“”。 7.在单元格B10中输入“自由度”,在单元格C10中输入“15”。 8.在单元格B11中输入“t分布的双侧分位数”,在单元格C11中输入公式:“ =TINV(1-C9,C10)”,回车后得到α=的t分布的双侧分位数t=。 9.计算允许误差。在单元格B12中输入“允许误差”,在单元格C12中输入公式:“=C11*C8”,回车后得到的结果为。

10.计算置信区间下限。在单元格B13中输入“置信下限”,在单元格C13中输入置信区间下限公式:“=C6-C12”,回车后得到的结果为。 11.计算置信区间上限。在单元格B14中输入“置信上限”,在单元格C14中输入置信区间上限公式:“=C6+C12”,回车后得到的结果为。 (二)总体方差已知 仍以上例为例,假设汽车轮胎的行驶里程服从正态总体,方差为10002,试求总体均值μ的置信度为的置信区间。

标准正态分布表

标准正态分布表 就力二「冷=亡P(X

正态分布概率表 0( u ) t F(t)t F(0t F( t)t F(t) 0+00O.COOO0,230.181 90,460.354 50.690.509 8 0.010.008 00.24o, m70.470,361 60J00.516 1 0+020.016 00,250,197 40,480.368 80+710,522 3 0+030023 90 260.205 10,490.375 91720.528 5 0.04 C.031 90.270.212 80.500.382 90.730.534 6 0.050+039 90.280.220 50.510.389 90.740.540 7 0.060.047 80 290. 22S 20.520.396 90.750.546 7 0,070,055 S0. 300.235 80.530.403 90.760.552 7 0.0S0.063 8(1. 310.243 40.540.410 80.770.558 7 0 + 090.071 7C,320.251 00&0.417 70+780.564 6 (k 1U0079 7(J. 330.258 60.560.424 50+790.570 5 0.11O.fi87 6 C. 340.266 10.570.431 3o.so0, 57 6 3 4 120.09 5 50 350.273 70,5S0,43S 1 0.S10.582 1 A130.103 1 C. 360.281 20.590.444 80,820.587 8 0.140,111 30. 370.288 60.600.451 50.S30.593 5 0+150.119 20.380,29 6 10.610.458 1 (U40*599 1 0.160,12 7 ] 0.390, 303 50.620.464 70.350,604 7 0.170 135 0G.400310 80.630.471 30, R60.6102 0.180J42 S0.410.31 8 20.640.477 S0+870,15 7 0.190.150 70 420325 50.650.484 30+880.621 1 0.200.158 50.430. 332 80.660.490 70.890 . 62 6 5 0,210J66 3C,440.340 10.670.497 1 0.900.631 9 A 220.174 ] 0.45(L 347 30.680.503 50.910.637 2

标准正态分布查询表

附表1. 标准正态分布表 x0.000.010.02 0.0 3 0.0 4 0.0 5 0.0 6 0.0 7 0.0 8 0.0 9 0 .0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1 .0 1 0.5 00 0 0.5 39 8 0.5 79 3 0.6 17 9 0.6 55 4 0.6 91 5 0.7 25 7 0.7 58 0 0.7 88 1 0.8 15 9 0.8 41 3 0.8 0.5 04 0 0.5 43 8 0.5 83 2 0.6 21 7 0.6 59 1 0.6 95 0 0.7 29 1 0.7 61 1 0.7 91 0 0.8 18 6 0.8 43 8 0.8 0.5 08 0 0.5 47 8 0.5 87 1 0.6 25 5 0.6 62 8 0.6 98 5 0.7 32 4 0.7 64 2 0.7 93 9 0.8 21 2 0.8 46 1 0.8 0.5 12 0 0.5 51 7 0.5 91 0 0.6 29 3 0.6 66 4 0.7 01 9 0.7 35 7 0.7 67 3 0.7 96 7 0.8 23 8 0.8 48 5 0.8 0.5 16 0 0.5 55 7 0.5 94 8 0.6 33 1 0.6 70 0 0.7 05 4 0.7 38 9 0.7 70 3 0.7 99 5 0.8 26 4 0.8 50 8 0.8 0.5 19 9 0.5 59 6 0.5 98 7 0.6 36 8 0.6 73 6 0.7 08 8 0.7 42 2 0.7 73 4 0.8 02 3 0.8 28 9 0.8 53 1 0.8 0.5 23 9 0.5 63 6 0.6 02 6 0.6 40 4 0.6 77 2 0.7 12 3 0.7 45 4 0.7 76 4 0.8 05 1 0.8 35 5 0.8 55 4 0.8 0.5 27 9 0.5 67 5 0.6 06 4 0.6 44 3 0.6 80 8 0.7 15 7 0.7 48 6 0.7 79 4 0.8 07 8 0.8 34 0 0.8 57 7 0.8 0.5 31 9 0.5 71 4 0.6 10 3 0.6 48 0 0.6 84 4 0.7 19 0 0.7 51 7 0.7 82 3 0.8 10 6 0.8 36 5 0.8 59 9 0.8 0.5 35 9 0.5 75 3 0.6 14 1 0.6 51 7 0.6 87 9 0.7 22 4 0.7 54 9 0.7 85 2 0.8 13 3 0.8 38 9 0.8 62 1 0.8

OR的置信区间及如何由置信区间求解标准差

OR的置信区间及如何由置信区间求解标准差 董圣杰(Dongsj) 02-08-2014

关于OR 、lnOR 及置信区间的计算 暴露非暴露合计处理组 59(a )28(b )87(n1)对照组 8(c ) 33(d ) 41(n2) 合计67(m1)61(m2)128(N ) 1、处理组的暴露比值=a/b ,对照组的暴露比值=c/d ,两组的优势比OR= a b c d = ad bc 2、OR 置信区间的计算:主要有计算方法,即Miettinen 法和Woolf 法,其中Woolf 法 是Meta 分析中采用的方法;先简单介绍两种方法。 (1) Miettinen 法:计算中要利用四个表的卡方值,计算如下: (2) Woolf 法:该法采用了对数转换,利用了正态分布的进行计算,总体OR 的α的置信区间: 59338.69 828 OR ?==?()()()()() 2 226.07 ad bc n a b c d a c b d χ-?==++++() /2 2 1.961126.07 8.69 3.39,19.93Z OR αχ ±± ==标准正态分布的分位数 [] /2lnOR exp lnOR Z SE α±?ln 111111110.456 5928833 OR SE a b c d =+++=+++=()() exp ln 8.69 1.960.456 3.56,21.24±?=

如何采用Stata计算OR及其置信区间命令很简单: Woolf法计算的结果

知道置信区间如何求解标准差(误) ?经典统计学置信区间的计算,是通过构建枢轴量,根据枢轴量的分布获得的。

正态总体参数的区间估计

第19讲 正态总体参数的区间估计 教学目的:理解区间估计的概念,掌握各种条件下对一个正态总体的均值和方差进行 区间估计的方法。 教学重点:置信区间的确定。 教学难点:对置信区间的理解。 教学时数: 2学时。 教学过程: 第六章 参数估计 §6.3正态总体参数的区间估计 1. 区间估计的概念 我们已经讨论了参数的点估计,但是对于一个估计量,人们在测量或计算时,常不以得到近似值为满足,还需估计误差,即要求知道近似值的精确程度。因此,对于未知参数θ,除了求出它的点估计?θ外,我们还希望估计出一个范围,并希望知道这个范围包含参数θ真值的可信程度。 设?θ为未知参数θ的估计量,其误差小于某个正数ε的概率为1(01)αα-<<,即 ?{||}1P θθεα -<=- 或 αεθθεθ-=+<<-1)??(P 这表明,随机区间)?,?(εθεθ+-包含参数θ真值的概率(可信程度)为1α-,则这个区间)?,?(εθεθ+-就称为置信区间,1α-称为置信水平。 定义 设总体X 的分布中含有一个未知参数θ。若对于给定的概率1(01)αα-<<,存在两个统计量1112(,,,)n X X X θθ= 与2212(,,,)n X X X θθ= ,使得 12{}1P θθθα <<=-

则随机区间12(,)θθ称为参数θ的置信水平为1α-的置信区间,1θ称为置信下限,2θ称为置信上限,1α-称为置信水平。 注(1)置信区间的含义:若反复抽样多次(各次的样本容量相等,均为n ),每一组样本值确定一个区间12(,)θθ,每个这样的区间要么包含θ的真值,要么不包含θ的真值。按伯努利大数定理,在这么多的区间中,包含θ真值的约占100(1)%α-,不包含θ真值的约仅占100%α。例如:若0.01α=,反复抽样1000次,则得到的1000个区间中,不包含θ真值的约为10个。 (2)置信区间的长度表示估计结果的精确性,而置信水平表示估计结果的可靠性。对于置信水平为1α-的置信区间12(,)θθ,一方面置信水平1α-越大,估计的可靠性越高;另一方面区间12(,)θθ的长度(2)ε越小,估计的精确性越好。但这两方面通常是矛盾的,提高可靠性通常会使精确性下降(区间长度变大),而提高精确性通常会使可靠性下降(1α-变小),所以要找两方面的平衡点。 在学习区间估计方法之前,我们先介绍标准正态分布的α分位点概念。 设 () ~0,1X N ,若 z α 满足条件 { },01 P X z α αα>=<<,则称点z α为标准正态分布的α分位点。例如求0.01z 。按照α分位点定义,我们有 {}0.010.01P X z >=,则{}0.010.99P X z ≤=,即0.01()0.99z φ=。查表可得0.01 2.327z =. 又 由()x ?图形的对称性知1z z αα-=-。下面列出了几个常用的z α值: 2. 正态总体均值μ的区间估计 设已给定置信水平为1α-,总体()2~,X N μσ,12,,,n X X X 为一个样本,2 ,X S 分别是样本均值和样本方差。

标准正态分布表

标准正态分布表 标准正态分布表怎么看 将未知量Z对应的列上的数与行所对应的数字结合查表定位 例如要查Z=1.96的标准正态分布表 首先在Z下面对应的数找到1.9 然后在Z右边的行中找到6 这两个数所对应的值为0.9750 即为所查的值 有谁知道,为什么标准正态分布表x的右边和下边都有值啊,难道一个x可以有两个值,看表是怎么看啊 那是一个精度问题,例如当x=0.12,那么应该先在x下方找到0.1,再在右边找到0.02,那么这两个同时对应的那个数就应该是你所要的! 标准正态分布的x值算出来介于两个之间,取哪一个。概论值如果介于两个间,取更大的还是更近的啊 精度要求不是很高的话,在正中取中间值,靠一边取更近的,四舍五入。 精度要求高的话用插值函数,比如在两点间作一次函数逼近。 为什么u0.025等于1.96?标准正态分布表查不到这个结果啊。u0.05是多少?u0.1是多少? 因为P{Z<1.96}=1-0.025=0.975 u0.05=1.645 因为P{Z<1.645}=1-0.05 u0.1类似 统计学中,标准正态分布表中Z值代表意义 Z值只是一个临界值,他是标准化的结果,本身没有意义,有意义的在于在标准正态分布模型中它代表的概率值。通过查表便可以知道。 标准正态分布 期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。 标准正态分布的密度函数为:

标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。

标准正态分布查询表

附表1. 标准正态分布表 令狐采学 x0.000.010.020.030.040.050.060.070.080.09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 0.500 0 0.539 8 0.579 3 0.617 9 0.655 4 0.691 5 0.725 7 0.758 0 0.788 1 0.815 9 0.841 3 0.864 3 0.884 9 0.903 2 0.919 2 0.933 2 0.945 2 0.955 4 0.964 1 0.971 3 0.977 2 0.982 1 0.986 1 0.989 3 0.991 8 0.993 8 0.995 3 0.996 5 0.997 4 0.998 1 0.504 0 0.543 8 0.583 2 0.621 7 0.659 1 0.695 0 0.729 1 0.761 1 0.791 0 0.818 6 0.843 8 0.866 5 0.886 9 0.904 9 0.920 7 0.934 5 0.946 3 0.956 4 0.964 8 0.971 9 0.977 8 0.982 6 0.986 4 0.989 6 0.992 0 0.994 0 0.995 5 0.996 6 0.997 5 0.998 2 0.508 0 0.547 8 0.587 1 0.625 5 0.662 8 0.698 5 0.732 4 0.764 2 0.793 9 0.821 2 0.846 1 0.868 6 0.888 8 0.906 6 0.922 2 0.935 7 0.947 4 0.957 3 0.965 6 0.972 6 0.978 3 0.983 0 0.986 8 0.989 8 0.992 2 0.994 1 0.995 6 0.996 7 0.997 6 0.998 2 0.512 0 0.551 7 0.591 0 0.629 3 0.666 4 0.701 9 0.735 7 0.767 3 0.796 7 0.823 8 0.848 5 0.870 8 0.890 7 0.908 2 0.923 6 0.937 0 0.948 4 0.958 2 0.966 4 0.973 2 0.978 8 0.983 4 0.987 1 0.990 1 0.992 5 0.994 3 0.995 7 0.996 8 0.997 7 0.998 3 0.516 0 0.555 7 0.594 8 0.633 1 0.670 0 0.705 4 0.738 9 0.770 3 0.799 5 0.826 4 0.850 8 0.872 9 0.892 5 0.909 9 0.925 1 0.938 2 0.949 5 0.959 1 0.967 2 0.973 8 0.979 3 0.983 8 0.987 4 0.990 4 0.992 7 0.994 5 0.995 9 0.996 9 0.997 7 0.998 4 0.519 9 0.559 6 0.598 7 0.636 8 0.673 6 0.708 8 0.742 2 0.773 4 0.802 3 0.828 9 0.853 1 0.874 9 0.894 4 0.911 5 0.926 5 0.939 4 0.950 5 0.959 9 0.967 8 0.974 4 0.979 8 0.984 2 0.987 8 0.990 6 0.992 9 0.994 6 0.996 0 0.997 0 0.997 8 0.998 4 0.523 9 0.563 6 0.602 6 0.640 4 0.677 2 0.712 3 0.745 4 0.776 4 0.805 1 0.835 5 0.855 4 0.877 0 0.896 2 0.913 1 0.927 9 0.940 6 0.951 5 0.960 8 0.968 6 0.975 0 0.980 3 0.984 6 0.988 1 0.990 9 0.993 1 0.994 8 0.996 1 0.997 1 0.997 9 0.998 5 0.527 9 0.567 5 0.606 4 0.644 3 0.680 8 0.715 7 0.748 6 0.779 4 0.807 8 0.834 0 0.857 7 0.879 0 0.898 0 0.914 7 0.929 2 0.941 8 0.952 5 0.961 6 0.969 3 0.975 6 0.980 8 0.985 0 0.988 4 0.991 1 0.993 2 0.994 9 0.996 2 0.997 2 0.997 9 0.998 5 0.531 9 0.571 4 0.610 3 0.648 0 0.684 4 0.719 0 0.751 7 0.782 3 0.810 6 0.836 5 0.859 9 0.881 0 0.899 7 0.916 2 0.930 6 0.943 0 0.953 5 0.962 5 0.970 0 0.976 2 0.981 2 0.985 4 0.988 7 0.991 3 0.993 4 0.995 1 0.996 3 0.997 3 0.998 0 0.998 6 0.535 9 0.575 3 0.614 1 0.651 7 0.687 9 0.722 4 0.754 9 0.785 2 0.813 3 0.838 9 0.862 1 0.883 0 0.901 5 0.917 7 0.931 9 0.944 1 0.953 5 0.963 3 0.970 6 0.976 7 0.981 7 0.985 7 0.989 0 0.991 6 0.993 6 0.995 2 0.996 4 0.997 4 0.998 1 0.998 6 x0.00.10.20.30.40.50.60.70.80.9

利用Excel的NORMSDIST计算正态分布函数表

利用Excel的NORMSDIST 函数建立正态 分布表 董大钧,乔莉 理工大学应用技术学院、信息与控制分院,113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都 可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的力、抗压强度、 口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个 量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。 在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表 去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDISTX )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1正态分布及其应用 正态分布(normal distribution )又名高斯分布(Gaussian distribution),是一个在数学、 物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为卩、标准方差为 /的高斯分布,记为N(卩,/ )。则其概率密度函数为正态分布的期望值□决定了其位置,其标准差b决定了分布的幅度。因其曲线呈钟

相关主题
文本预览
相关文档 最新文档