当前位置:文档之家› 应用空气动力学

应用空气动力学

应用空气动力学
应用空气动力学

一.简述应用空气动力学在飞机设计中的应用

1)气动外形以及翼型的多学科优化

2)气动性能估算,升阻特性,力矩等

3)确定气动载荷,作为结构设计依据。

4)确定气动特性参数,稳定性,控制,操纵品质等

5)气动弹性分析,颤振,发散

二.N-S方程,欧拉方程,全位流方程,跨声速小扰动方程和Laplace方程的适用范围以及这些方程的联系和区别。

答:N-S:对流体可完整描述,非定常,可压缩,可描述湍流,真实可靠

欧拉:无粘假设,一般0.2~0.3马赫数,可认为不可压缩

可压缩,全速势:假定欧拉无旋,在流场中激波不太强时,用于民机的气动设计

跨声速小扰动:绕流物体比较薄,细长的

Laplace:全位流方程做不可压假设

三.面元法和涡格法是基于什么方程求解,有什么异同,简述涡格法求解步骤

答:1,拉普拉斯方程

2,同:a基本求解都是基于一个面上

b边界条件在控制点上是不可穿透的

c求解高维线性方程组得知每个基本解的强度

异:a涡格法强调升力,不能模拟厚度

b边界条件不一样,涡格法布置在中性面上,不在实际的面上

c基本解布置位置不一样,涡格法不是布置在整个面上

d涡格法考虑的是薄面,面元法对厚度没限制

3,涡格法求解步骤

a对某个近似平面用四边形划分涡格

b在每个涡格上布置马蹄涡(1/4c)

c每个涡格控制点满足不可穿透条件

d根据每个马蹄涡的环量强度,计算每个马蹄涡的升力,然后据此计算全机的升力

4.面元法求解步骤:

将翼型上下表面打断城直线段,假定在每一线段或者每一块面内点源强度是一个常量,每个快之间是不同的值,而涡格强度对每个面内都是常量。

四,简述CFD求解方程

答:1建立控制方程——2确立初始条件及边界条件——3划分网格,生成计算节点——4建立离散方程——5离散初始条件和边界条件——6给定求解控制参数——7求解离散方程——8判断解是否收敛(不收敛则返回4)——9显示和输出计算结果

五.什么是离散化?常用离散化的方法,各自的特点。

答:1,离散化:在对制定问题进行CFD 计算之前,首先要将计算区域离散化,即对空间上

连续计算的区域进行划分,把他划分成多个子区域,并确定每个区域中得节点,从而生成网格。然后将控制方程在网格上离散,即将偏微分格式的控制方程转化为各个节点上的代数方程组。对于瞬态问题,还要进行时间域的离散。

即对计算区域进行空间和时间方向的离散。

2,常用的离散化有:

a 有限差分法:直接将微分问题变成代数问题的近似数值解法,这种方法发展较早,比较成

熟,适用于求解双曲型和抛物型问题,但求解边界条件复杂、尤其是椭圆问题不如有限元或有限体积法方便。

b 有限元法:具有广泛的适应性,特别适用于集合无力条件比较复杂的问题(尤其是对椭圆

问题有更好的适用性)。求解速度比有限差分法和有限体积法慢,故在CFD 软件里应用并不普遍。

c 有限体积法:简单地说,子域法加离散,就是有限体积法的基本方法。特点是计算效率高,

在CFD 领域得到了广泛应用。 六.一维对流方程0=??+??x

a t φφ,试分别用显式时间向前、空间向后差分格式和隐式时间向后、空间中心差分格式对其进行离散,写出显式格式的稳定条件,并说明这两种格式的特点。

七.一维对流方程

0=??+??x

u a t u 。给定初始条件)()0,(x F x u =。用特征线化求1t 时刻1x 处的u 值。

八.二维稳态无源项的对流扩散问题。

)()()()(y

y x x y v x u ????+????=??+??φτφτφρφρ 已知1,4,1,1====τρv u 。试用一阶迎风格式,写出关于节点1,2,3,4,处的φ值的离散方程组。

九.当地时间步长,多重网格,预处理的加速收敛机理? 答:当地时间步长:max max t λx ?≈?,ij NF

j i s c n v CFL t ?+?∑Ω=?→→-)(1

多重网格:

多重网格是一种非常有效的加速收敛技术,即可用于显式格式,又可用于隐式格式。其思想是,为了是密网格上的流场计算尽可能快地收敛到最终的定常解,同时在另外几套依次变稀的网格上做计算,稀网格的计算结果再反馈给密网格。其加速收敛的机理是:

大多数的计算是在稀网格上进行的,可取较大的时间步长,而且计算量较小。(收敛快,计算机时少)

绝大部分显式或隐式时间推进和迭代求解方法降低高频误差有效,对降低低频误差效果很差。计算域内所有频段的误差都得到降低才能达到最终的定常解(一般地,对一给定的网格,经过若干迭代步,可以很快消除掉高频误差,而低频误差则需要更多的迭代步数)。多重网格正是在快速消除高低频误差这一点上有很大帮助:密网格上的低频误差相当于稀网格上的高频误差,所以在各自不同密度的网格上快速降低各自的高频误差,相当于同时降低了密网格上从高到低的所有频率的误差。

应用计算空气动力学大作业

1、气动力的计算 2、重心位置计算 先将参考点设为(0,0,0),根据对焦点取力矩,力矩始终不变的原理来计算。设焦点距离参

考点d,迎角a1的压心位于距离参考点X1的地方(具体是什么位置不用管)升力为C L1,迎角a2的压心位于X2,升力为C L2,则L1*X1=M1,L2*X2=M2,L1(X1-d)=L2(X2-d),可以解出d的表达式,d=c*(C M2-C M1)/(C L2-C L1) 1、a=2°C L=0.37526体轴系 2、a=4°C L=0.50923体轴系 可得d=0.35745即X cg=0.35745 要使静稳定裕度等于10%,平均气动弦长c=0.4m 则Xac-Xcg=0.1*c=0.04,所以重心距离前缘位置应该为0.35745-0.04=0.31745m 在参数设定中将参考点从(0,0,0)变为重心(0.31745,0,0) 3 根据极曲线,设计升力系数取迎角为12°时,C L设计=1.02493 4、配平计算 由题目3得出的结论,巡航迎角为12°。所以在迎角为12°前提下改变升降舵的角度,直至俯仰力矩系数C M=0为止,通过计算,最终升降舵配平角度为-14.6°即向上偏转14.6°此时CLtot = 0.51514,CDtot = 0.03309,CYtot = 0.00000 ,Cmtot = 0.00021 附录: feiyi-DaiXinxi 0.00 !Mach 0.0 0.0 0.0 !iYsym iZsym Zsym 0.800 0.40 2.00 !Sref Cref Bref 0.31745 0.0 0.00 !Xref Yref Zref 0.017 !CDo # #============================================= SURFACE WING 5.0 1.0 31.0 0.0

1第一章 空气动力学基础知识复习过程

1第一章空气动力学 基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 1.1 大气层和标准大气 1.1.1 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组 成成分保持不变。 仅供学习与交流,如有侵权请联系网站删除谢谢1

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下56.5度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 1.1.2 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 仅供学习与交流,如有侵权请联系网站删除谢谢2

空气动力学

空气动力学 科技名词定义 中文名称:空气动力学 英文名称:acerodynamics;aerodynamics 定义1:流体力学的分支学科,主要研究空气运动以及空气与物体相对运动时相互作用的规律,特别是飞行器在大气中飞行的原理。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义2:研究空气和其他气体的运动以及它们与物体相对运动时相互作用规律的科学。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片

同名书籍 空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 目录

编辑本段 1.动量理论 推导出作用在风机叶轮上的功率P和推力T(忽略摩擦阻力)。 由于受到风轮的影响,上游自由风速V0逐渐减小,在风轮平面内速度减小为U1。上游大气压力为P0,随着向叶轮的推进,压力逐渐增加,通过叶轮后,压力降低了ΔP,然后有又逐渐增加到P0(当速度为U1时)。 根据伯努力方程 H=1/2(ρv2)+P (1) ρ—空气密度 H—总压 根据公式(1), ρV02/2+P0=ρu2/2+p1 ρu12/2+P0=ρu2/2+p2 P1-p2=ΔP 由上式可得ΔP=ρ(V02- u12)/2 (2) 运用动量方程,可得作用在风轮上的推力为: T=m(V1-V2) 式中m=ρSV,是单位时间内的质量流量 所以:T=ρSu(V0-u1) 所以:压力差ΔP=T/S=ρu(V0-u1) 由(2)和(3)式可得: u=1/2[(V0-u1)] (4) 由(4)式可见叶轮平面内的风速u是上游风速和下游风速的平均值,因此,如果我们用下式来表示u。 u=(1-a)*V0 (5) a 称为轴向诱导因子,则u1可表示为: u1=(1-2a)*V0 (6)

空气动力学资料

音障是一种物理现象,当物体(通常是航空器)的速度接近音速时,将会逐渐追上自己发出的声波。声波叠合累积的结果,会造成震波(Shock Wave)的产生,进而对飞行器的加速产生障碍,而这种因为音速造成提升速度的障碍称为音障。突破音障进入超音速后,从航空器最前端起会产生一股圆锥形的音锥,在旁观者听来这股震波有如爆炸一般,故称为音爆或声爆(Sonic Boom)。强烈的音爆不仅会对地面建筑物产生损害,对于飞行器本身伸出冲击面之外部分也会产生破坏。 除此之外,由于在物体的速度快要接近音速时,周边的空气受到声波叠合而呈现非常高压的状态,因此一旦物体穿越音障后,周围压力将会陡降。在比较潮湿的天气,有时陡降的压力所造成的瞬间低温可能会让气温低于它的露点(Dew Point)温度,使得水汽凝结变成微小的水珠,肉眼看来就像是云雾般的状态。但由于这个低压带会随着空气离机身的距离增加而恢复到常压,因此整体看来形状像是一个以物体为中心轴、向四周均匀扩散的圆锥状云团。 [编辑本段]飞机音障共振瞬间 人们在实践中发现,在飞行速度达到音速的十分之九,即马赫数MO.9空中时速约950公里时,局部气流的速度可能就达到音速,产生局部激波,从而使气动阻力剧增。要进一步提高速度,就需要发动机有更大的推力。更严重的是,激波能使流经机翼和机身表面的气流,变得非常紊乱,从而使飞机剧烈抖动,操纵十分困难。同时,机翼会下沉、机头往下栽;如果这时飞机正在爬升,机身会突然自动上仰。这些讨厌的症状,都可能导致飞机坠毁。这就是所谓“音障”问题。由于声波的传递速度是有限的,移动中的声源便可追上自己发出的声波。当物体速度增加到与音速相同时,声波开始在物体前面堆积。如果这个物体有足够的加速度,便能突破这个不稳定的声波屏障,冲到声音的前面去,也就是冲破音障。 一个以超音速前进的物体,会持续在其前方产生稳定的压力波(弓形震波)。当物体朝观察者前进时,观察者不会听到声音;物体通过后,所产生的波(马赫波)朝向地面传来,波间的压力差会形成可听见的效应,也就是音爆. 当飞机的飞行速度比音速低时,同飞机接触的空气好像“通信员”似的,以传递声音的速度向前“通知”前面即将遭遇飞机的空气,使它们“让路”。但当飞机的速度超过音速时,飞机前面的空气因来不及躲避而被紧密地压缩在一起,堆聚成一层薄薄的波面——激波,激波后面,空气因被压缩,使压强突然升高,阻止了飞机的进一步加速,并可能使机翼和尾翼剧烈振颤而发生爆炸。 而音障不单单仅有声波,还有来自空气的阻力,当飞行物体要接近1马赫(声速单位)飞

空气动力学复习题

3 流体的粘性系数与温度之间的关系:气体的粘性系数随温度的升高而增大。 4 在大气层内,大气密度随高度增加而减小 压强随高度增加而减小。 6影空粘性力要因素B速度梯度C空气温度 1于露点温度“相对湿度达100%时的温度是露点温度、“露点温度下降,绝对湿度下降” 13”对于音速、音速是空气可压缩性的标志B空气音速高,粘性就越大 1海平面的大气参数是. P=1013 hPa T=15℃ρ=1.225kg/m3 19音速随大气高度的变化情况是B在对流层内随高度增高而降低。C在平流层底层保持常数 2民机巡航的气层对流层顶层、平流层底层 25对起飞降落安全性造成不利影响的是A低空风切变C垂直于跑道的飓风 26影响飞机机体腐蚀的大气因素是A空气的相对湿度C空气的温差D空气污染物 27影响飞机机体腐蚀的大气因素是A空气的相对湿度C空气的温度和温差D空气污染物 36附面层? A层流附面屡的厚度小于紊流附面层的厚度C附面层的气流各层不相混杂面成层流动,称为层流附面层。 3亚音速空气流速增加可有如下效果B气流分离点后移C阻力增加D升力增加 84机翼的压力中心B翼弦与机翼空气动力作用线的交点 2控制飞机绕横轴运动的舵面升降舵,绕立轴运动的舵面是方向舵。绕纵轴运动的舵面是副翼 1机翼展弦比是展长与平均几何弦长之比。 64相对湿度是指大气中所含水蒸气的量与同温度下大气能含有的水蒸气最大量之比‘相对厚度‘翼型的最大厚度与弦长的比值。相对弯度’翼型的最大弯度与弦长的比值、迎角‘机翼的弦线与相对气流速度之间的夹角称. 1连续介质——把空气看成是由空气微团组成的没有间隙的连续体。作用——把空气压强(P)、密度(ρ)、温度(T)和速度(V)等状态参数看作是空间坐标及时间的连续函数,便于用数学工具研究流体力学问题。 2.。流场——流体所占居的空间。定常流动——流体状态参数不随时间变化。非定常流动——流体状态参数随时间变化。3流线——在定常流动中,空气微团流过的路线(轨迹)。流线谱——用流线组成的描绘流体微团流动情况的图画。流管——在流场中取一封闭曲线,通过曲线上各点的流线所形成的管形曲面,流体不会穿越管壁流动。 6.说明气体伯努利方程的物理意义和使用条件? p+1/2ρv2=p0=常数方程物理意义:空气在低速一维定常流动中,同一流管的各个截面上,静压与动压之和(总压)相等。在同一流管中,流速快的地方,压力小;流速慢的地方,压力大。 方程应用条件:1.气流是连续的、稳定的气流(定常流);2.没有粘性(理想流体);3.空气密度的变化可忽略不计(不可压流) 9.附面层是怎样产生的? 空气流过物体时,由粘性作用,在紧贴物体表面的地方,就产生了流速沿物面法线方向逐渐增大的薄层空气。这薄层空气称为附面层。 11.什么是层流附面层、紊流附面层、转捩点? 层流附面层——分层流动,互不混淆,无上下乱动现象,厚度较小,速度梯度小; 紊流附面层——各层强烈混合,上下乱动明显,厚度较大,速度梯度大; 转捩点——层流附面层与紊流附面层之间的一个过渡区,可看成一个点。 6机翼前缘线与垂直机身中心线的直线之间的夹角称为机翼的后掠角 6水平安定面的安袈角与机翼安装角之差称为纵向上反角 21.安装角?机翼弦线与机身中心线之间的夹角。23机翼的前缘半径、后缘角?翼型前缘处的曲率半径1翼型上下表面围线在后缘处的切线之间的夹角 28.简述飞机升力产生的机理 气流以一定的正迎角流经机翼,机翼上表面流管变细,气流速度增大,压力下降;机翼下表面流管变粗,气流速度减小,压力升高。机翼上表面负压,下表面正压,机翼总气动力在竖直方向的分量形成升力,在水平方向的分量形成阻力。 1.激波形成;参数变化;答:当气流以超音速流过带有内折角物体表面时,收到强烈压缩而形成的强扰动波。气流通过激波后:速度下降,压力、密度、温度上升。 63正激波:波面与气流方向垂直,波阻最大斜激波:波面与气流方向不垂直 64膨胀波答:当气流以超音速流过带有外折角物体表面时,气流速度增高、压力和密度

空气动力学基本概念

第一章 一、大气的物理参数 1、大气的(7个)物理参数的概念 2、理想流体的概念 3、流体粘性随温度变化的规律 4、大气密度随高度变化规律 5、大气压力随高度变化规律 6、影响音速大小的主要因素 二、大气的构造 1、大气的构造(根据热状态的特征) 2、对流层的位置和特点 3、平流层的位置和特点 三、国际标准大气(ISA) 1、国际标准大气(ISA)的概念和基本内容 四、气象对飞行活动的影响 1、阵风分类对飞机飞行的影响(垂直阵风和水平阵风*) 2、什么是稳定风场? 3、低空风切变的概念和对飞行的影响 五、大气状况对飞机机体腐蚀的影响 1、大气湿度对机体有什么影响? 2、临界相对湿度值的概念 3、大气的温度和温差对机体的影响 第二章 1、相对运动原理 2、连续性假设 3、流场、定常流和非定常流 4、流线、流线谱、流管 5、体积流量、质量流量的概念和计算公式。 二、流体流动的基本规律 1、连续方程的含义和几种表达式(注意适用条件) 2、连续方程的结论:对于低速、不可压缩的定常流动,流管变细,流线变密,流速变快;流管变粗,流线变疏,流速变慢。 3、伯努利方程的含义和表达式 4、动压、静压和总压 5、伯努利方程的结论:对于不可压缩的定常流动,流速小的地方,压力大;而流速大的地方压力小。(这里的压力是指静压) 重点伯努利方程的适用条件:1)定常流动。2)研究的是在同一条流线上,或同一条流管上的不同截面。3)流动的空气与外界没有能量交换,即空气是绝热的。4)空气没有粘性,不可压缩——理想流体。 三、机体几何外形和参数 1、什么是机翼翼型; 2、翼型的主要几何参数; 3、翼型的几个基本特征参数 4、表示机翼平面形状的参数(6个) 5、机翼相对机身的角度(3个) 6、表示机身几何形状的参数四、作用在飞机上的空气动力 1、什么是空气动力? 2、升力和阻力的概念 3、应用连续方程和伯努利方程解释机翼产生升力的原理 4、迎角的概念 5、低速飞行中飞机上的废阻力的种类、产生的原因和减少的方法; 6、诱导阻力的概念和产生的原因和减少的方法; 7、附面层的概念、分类和比较;附面层分离的原因 8、低速飞行时,不同速度下两类阻力的比较 9、升力与阻力的计算和影响因素 10、大气密度减小对飞行的影响 11、升力系数和升力系数曲线(会画出升力系数曲线、掌握升力随迎角的变化关系,零升力迎角和失速迎角的概念) 12、阻力系数和阻力系数曲线 13、掌握升阻比的概念 14、改变迎角引起的变化(升力、阻力、机翼的压力中心、失速等) 15、飞机大迎角失速和大迎角失速时的速度 16、机翼的压力中心和焦点概念和区别 六、高速飞行的一些特点 1、什么是空气的可压缩性? 2、飞行马赫数的含义 3、流速、空气密度、流管截面积之间关系 4、对于“超音速流通过流管扩张来加速”的理解 5、小扰动在空气中的传播及其传播速度 6、什么是激波?激波的分类 7、气流通过激波后参数的变化 8、什么是波阻 9、什么是膨胀波?气流通过膨胀波后参数的变化 10、临界马赫数和临界速度的概念 11、激波失速和大迎角失速的区别 12、激波分离 13、亚音速、跨音速和超音速飞行的划分* 14、采用后掠机翼的优缺点比较 第三章 一、飞机重心、机体坐标和飞机在空中运动的自由度 1、机体坐标系的建立 2、飞机在空中运动的6个自由度 二、飞行时作用在飞机上的外载荷及其平衡方程 外载荷组成平衡力系的2个条件*: ①、外载荷的合力等于零(外载荷在三个坐标轴投影之和分别等于零)∑x = 0 ∑Y = 0 ∑Z = 0 ②、外载荷的合力矩等于零(外载荷对三个坐标轴力矩之和分别等于零) ∑Mx=0 ∑My= 0 ∑Mz= 0 1、什么是定常飞行和非定常飞行? 2、定常飞行时,作用在飞机上的载荷平衡条件和平衡方程组

汽车车身的空气动力学应用

研究性学习论文 小组成员: 班级:机电1011 指导教师:卢梅

汽车车身的空气动力学应用摘要:汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响。因此轿车的车身设计既要服从空气动力学,要有尽量低的空阻系数,降低发动机的输出负担,又要采取措施,降低诱导阻力,以保证轿车的行驶安全。 关键词:空气动力学,车身外形设计,导流板,扰流板背景:迄今为止,汽车的发展已经过了112 年,无论是汽车的速度,还是汽车的配置,或者是汽车的造型多有了长足的发展。随着汽车速度的提高,空气阻力成为汽车前进的最大障碍。在此因素下,汽车造型经历了马车型汽车,箱型汽车,甲壳虫型汽车,船型汽车,鱼型汽车以及楔型汽车等六个阶段的演变,从而越来越符合空气动力学的要求,越来越符合人们的审美观。在这一发展历程,也可看 做是人们对空气动力学的认识及应用过程。 1934 年,流体力学研究中心的雷依教授,采用模型汽车在风洞中试验的方法测量了各种车身的空气阻力,这是具有历史意义的试验。它标志着人们开始运用流体力学原理研究汽车车身的造型。1937年,德国设计天才费尔南德保时捷开始设计类似甲壳虫外形的汽车。它是第一代大量销售的空气动力学产物的汽车。1949年福特公司推出了福特V8汽车,这种车型改变了以往汽车造型模式、使前翼子板和发动机罩,后翼子板和行李舱溶于一体,大灯和散热器罩也形成整体,车身两侧是一个平滑的面,驾驶室位于中部,整个造型很象一只小船,因此,我们把这类车称为“船型汽车”。船形汽车不论从外形上还是从性能上来看都优于甲壳虫形汽车,并且还较好地解决了甲壳虫形汽车对横风不稳定的问题。船型汽车尾部过分向后伸出,形成阶梯状,在高速行驶时会产生较强的涡流,为了克服这一缺点,人们把船型车的后窗玻璃逐渐倾斜,倾斜的极限即成为斜背式。由于这个背部很象鱼的背脊,所以这类车称为“鱼型汽车”。“鱼”型虽然解决了涡流的困难,但也引起了一些空气动力学缺陷。是当汽车高速行驶时汽车的升力会比较大。鉴于鱼形汽车的缺点,设计师在鱼形汽车的尾部安上了一个上翘的“鸭尾巴”以此来克服一部分空气的升力,这便是“鱼形鸭尾式”车型。这是最早为克服气动升力而做的空气动力学设计。为了从根本上解决鱼型车的升力问题,科学家们设想了种种方案,最后终于找到了一种楔型造型。就是将车身整体向前下方倾斜,车身后部像刀切一 样平直,这种造型有效地克服了升力。目前,各种身价过百万元的超级跑车设计都基本上采用楔型。各大车厂也都开发带有楔型效果的小客车,如两厢式旅行车, 子弹头面包车等形式的轿车。在此基础上,增加扰流板等装置,进一步解决了空气升力的问题。 正文: 汽车气动阻力分析:从种类上分,汽车气动阻力由形状阻力、干扰阻力、摩擦阻力、诱导阻力和内部阻力五部分迭加构成。 形状阻力:由于气流分离现象。在汽车后面形成尾流区,前后气流压力不相等,从而形成压差阻 力。压差阻力的大小是由车身外部形状决定的,所以一般称为形状阻力。它约占空气阻力的58%,是气动阻力的主要部分。 干扰阻力:车身表面凸起物、凹槽和车轮等局部影响气流流动,从而引起空气阻力,约占14%。 摩擦阻力:空气的粘滞性使气流在经过车身表面时产生一个切向力. 其综合 合力在汽车行驶方向的分力就是摩擦阻力。约占气动阻力的10%。

计算物理的发展与应用

物理学前沿论文(设计)论文题目:计算物理学的发展与应用 学生姓名:袁强 学号:2012118504147 院系:信息系 班级:电子信息1212班 完成日期:2013年12月11日

目录 一、计算机物理学的定义 (1) 二、计算物理学的发展与现状 (1) 三、计算物理学的应用 (2) (一)计算机在物理学中的应用 (2) 1.计算机数值分析 (2) 2.实验数据处理 (2) 3.计算机模拟 (2) 4.计算机符号处理 (2) (二)计算机在其他方面的应用 (2) 四、总结 (3) 参考文献 (4)

计算物理学的发展与应用 摘要 计算物理学是伴随着电子计算机的出现和发展而逐步形成的一门新兴的边缘学科。它是以电子计算机为工具,应用数学的方法,解决物理问题的应用科学。它是物理、数学和计算机三者结合的产物。计算物理学起源于第二次世界大战期间美国对核武器的研制,它是由于核科学技术的需要而产生,并且随着电子计算机的发展而发展。现在这门科学已广泛地应用于其他领域。本文就其发展和应用领域,阐述了计算物理在物理学中的重要性和作用。 关键词:计算物理学发展应用领域

The development and application fields of Computational physics Abstract Computational physics is along with the emergence and development of the electronic computer and gradually formed a new edge discipline.it was based on the electronic computer as the tool,applied mathematics,the method of the application to solve the problem of physical science.It is the product of physics,mathematics,and computer https://www.doczj.com/doc/b55836049.html,putational physics originated during the second world war the United States for the development of nuclear weapons,it is produced due to the need of nuclear science and technology,and develops with the development of the electronic computer.now the science has been widely used in other areas.In this paper,the development and the application field,this paper expounds the importance of computational physics in physics and function. Key word:computational physics application fields develop

飞机空气动力学复习

实用标准文案 飞机空气动力学复习 一.概念: 1.升力、翼型分离、压差阻力、压力中心和失速P116-120 2. 机翼展向压强变化P135-136 3.马蹄涡系、下洗与诱导阻力P137-140 4. 声速、马赫数、马赫线、马赫角和马赫锥P187-200 5. 亚声速、超声速与截面积关系P197-201 6. 亚声速小扰动理论P273-282 7. 跨声速翼型气动特性284-294 8. 超声速翼型P314-321 9. 超声速机翼P330-335,338-340 10.高超声速流P363-371 二.论述: 1.低速翼型气流分离的原因?论述后缘分离对压强分布的影响,并绘图示意。 P129-130 2.低速翼型的前缘气泡?论述产生前缘气泡的原因,并绘图示意前缘气泡对压强分布的影响。P130-131 3.分别论述后掠翼的前、后缘是亚声速流还是超声速流?并画出各机翼中某翼型处的压强系数与翼弦的分布示意图。P330-331,338 4.分别论述高超声速有粘性干扰的边界层和激波,并画出流动简图和压强分布图。P363-364 5. 论述超音速机翼锥形流法的含义,描述机翼前后缘均为超声速后掠机翼锥形流理论的处理方法,画出用锥形流法处理的区域示意图。P334 三.计算 1.已知某机翼平板二维机翼翼型参数,求二维机翼翼型升力及升力系数。 2.已知单翼椭圆机翼飞机飞行状态,求诱导阻力及根部剖面处的环量。 3.机翼为椭圆机翼低速平飞,已知重量、速度和翼展、展弦比,求飞机的升力系数﹑阻力系数和阻力。 4.一架飞机以某马赫数高速飞行,求飞机的飞行速度和皮托管测出的总压。 5.翼型以某马赫数和迎角运动,已知翼型参数, 用线化理论算翼型的升力系数和波阻系数。 精彩文档

空气动力学

基于空气动力学的车身设计方法 14车辆卓越雷方龙1408032214 现如今工业技术急速进步,为汽车工业发展创造了良好的契机,汽车变得越来越普及、越来越高速,由此车身空气动力学曲线问题得到诸多研究人员的热点关注。 众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比。如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。据测试,一辆以100km/h速度行驶的汽车,发动机输出功率的80%将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。如图1为空气流动对汽车的各方面影响。 图1 自卡尔·本次在1886年发明生产出世界上第一辆汽车起,汽车已有了百年的发展历史。从汽车造型角度而言,自最初的马车型汽车(无空气动力学阶段),到现如今的复合型汽车(空气动力学高度化阶段),车身空气动力学曲线发展收获了显著的成效[1]。车身空气动力学一方面重要影响着汽车的各式各样关键性能,好比动力性能、安全性能、环保性能以及经济性能等,另一方面也重要影响着汽车的外观转变及审美发展潮流。随着社会经济发展,人们生活水平日益改善,人们对于出行必备交通工具汽车的性能要求愈来愈高,汽车生产商对于车辆的气动特征也越来越关注,气动性能的好坏以转变成汽车行业竞争的关键因素。 汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的80%以上。

一、在研究汽车空气动力学的过程中的三种方法。 (1)、理论研究方法理论研究方法通过抓住所分析问题的主要影响因素,抽象出合理的简化理论模型,并根据总结出来的相关物理定律和有关介质性质的试验公式来建立描述介质运动规律的积分或微分方程。然后利用各种数学工具及相应的初始、边界条件解出方程组,通过对解分析来揭示各种物理量的变化规律,包括将它与实验或观察资料对照,确定解的准确度和适用范围。 (2)、数值计算研究方法由于数学发展水平的局限,理论研究只能建立较为简单的近似模型,无法完全满足研究更复杂更符合实际的气流的要求。于是近年来出现了依托快速电子计算机进行有效数值计算的方法CFD,其中包括有限元法、有限差分法等,它属于汽车计算机辅助空气动力学CAA的设计范畴,并已成为与理论分析和实验并列或具有同等重要性的研究方法。其优点是能够用来预测或解决一些理论及实验无法处理的复杂流动问题,取代部分实验环节,省时省工。但它要求事前对问题的物理特性有足够的理解,提炼出较精确的数学方程及相应的初始、边界条件等。但这些都离不开试验和理论方法的支持,并且数值方法通常无法直接反映同类问题中有普遍指导意义的结论或规律。 (3)、试验研究方法试验研究方法在空气动力学研究中占有重要地位,如风洞试验法、道路试验法。它使人们能在与所研究问题相同或相近条件下进行观测,提供建立运动规律及理论模型的依据,检验理论或计算结果的准确性、可靠性和适用范围,其作用是不可替代的。但试验方法受限于试验手段、设备和经费等物质条件,甚至有些问题尚无法在实验室中进行研究。 理论、数值计算和试验三种方法相互促进,彼此影响,取长补短从而推动汽车空气动力学的不断发展。 二、轿车外形设计的两种方法 (1)、局部最优化方法。基本思路是在满足功能、工艺学、人机工程学、安全法规以及美学造型等方面的要求下设计出汽车车身造型,然后再进行空气设计程序。此方法的优点是:操作简单,在流线型较差的车上有较好的效果。通过对原始模型仿真,从结果中得出某细节修改的模型,再重新进行仿真分析。像这样循环反复,最终达到自己预期的目标。这种方法在现实设计中运用广泛。 (2)、整体最优化方法。整体最优化是基于空气动力学原理,在汽车造型设计初期获得极佳的气动特性的理想外形,接着再根据功能结构需求,调整集合的局部外形,使其满足人机工程学、国家安全法规等各个必要因素的汽车[1]。所以,对于这种汽车的空气动力学设

空气动力学

空气动力学 崔尔杰* (中国航天科技集团第701研究所) 本文简要回顾空气动力学发展的历史及其在航空航天飞行器研制中的作用,对现代空气动力学新的发展趋势和新一代航天飞行器研制中可能遇到的关键气动力问题进行探讨和分析,并对今后发展提出看法。 一、空气动力学与航空航天飞行器发展 空气动力学是研究空气和其他气体的运动规律以及运动物体与空气相互作用的科学,它是航空航天最重要的科学技术基础之一。 1.空气动力学推动20世纪航空航天事业的发展 1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.01m2的小型风洞。正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。 20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。 1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音速空气动力学和空气热力学的研究。航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。航空方面的研究重点则放在了发展高性能作战飞机、超音速客机、垂直短距起落飞机和变后掠翼飞机。这一时期,空气动力研究方面的另一项重要成就是“超临界机殿”新概念的提出,它可以显著提高机翼的临界马赫数。20世纪70年代后,脱体涡流型和非线性涡升力的发现和利用,是空气动力学的又一重要成果。它直接导致了第三代高机动性战斗机的产生,如美国的F-15、F-16,苏联苏-27、米格-29和法国的“幻影2000”。

汽车空气动力学复习笔记(骄阳教育)

1、汽车空气动力学经历了哪四个阶段?它们的特点分别是什么? 答:(1)基本形状化造型阶段:直接将水流和气流中的合理外形应用到汽车上,采用了鱼雷形、船尾形、汽艇形等水滴形汽车外形。已经开始从完整的车身来考虑空气动力学问题,但限于条件不可能更深入地考虑汽车空气动力学问题。 (2)流线形化造型阶段:提出“最小阻力的外形是以流线形的一半构成的车身”,考虑到了地面效应,尾部气流的分离也是气动阻力系数增加的原因。减少气动阻力不再是唯一目标,而是同时综合考虑气动升力和侧风稳定性,追求更全面的气动性能。 (3)车身细部优化阶段:着重从已有汽车产品上来改进车身细部气动造型,通过各个细部造型的优化和相互动协调来优化汽车整车的气动性能。 (4)汽车造型的整体优化阶段:从一开始就十分重视汽车外形的整体气动性能,因而开发的实用车型具有优秀的空气动力学特性,整体造型更为流畅,形体更为生动,美学造型和气动造型相得益彰。 2、按基本型设计为什么得不到良好的性能呢? 答:早期的汽车外形在考虑了流线形化后,气动阻力系数明显地改善了。但当时没有认识到气流流经这种旋转体时已不再是轴对称,因为把旋转体靠近地面,又加上了车轮及行驶系统,与单纯水滴形的流场已不再相同,造型实用性不强;没有实现“一体化”,气动阻力很大;气流在前端和翼子板处分离后,不能再附着;所以得不到良好的性能。 3、汽车行驶时,除了受到来自地面的力外,还受到其周围气流的气动力和力矩的作用。来自地面的力取决于汽车的总重、滚动阻力和重心位置。气动力和力矩则由行驶速度、车身外形和横摆角决定。 4、什么是气动六分力?如何产生?对汽车动力特性有何影响? 答:气动六分力分别为:气动阻力、气动升力、纵倾力矩、侧向力、横摆力矩及侧倾力矩。(1)气动阻力:是与汽车运动方向相反的空气力。减小气动阻力就是减小气动阻力系数,气动阻力系数越小,汽车动力特性越好; (2)气动升力及纵倾力矩:由于汽车车身上部和下部气流的流速不同,使车身上部和下部形成压力差,从而产生升力。由于升力而产生绕Y轴的纵倾力矩。侧风作用下的轻型高速汽车,车身前部可能有较大的局部升力,作用于汽车上的升力将减小轮胎对地面的压力,使轮胎附着力和侧偏刚度降低,影响汽车的操纵稳定性。 (3)侧向力及横摆力矩:侧向力和横摆力矩都影响汽车的行驶稳定性,为了保证汽车的行驶稳定性,在减小侧向力的同时,还应使侧向力的作用点即风压中心移向汽车重心之后。(4)侧倾力矩:对汽车左右车轮的重量分配有较大的影响,并且直接影响到汽车的侧倾角。侧倾力矩主要是由车身侧面形状决定的,一般侧面流线形好的汽车,侧倾力矩相对较小。汽车的高度和宽度对侧倾力矩影响很大,一般低而宽的汽车侧倾力矩系数比高而狭长的汽车的侧倾力矩系数小。汽车设计时,应尽量使风压中心接近侧倾轴线。 5、风压中心即侧向力的作用点 6、汽车空气动力学的基本研究方法:实验研究、理论研究、数值计算 7、汽车的最高车速、加速时间和最大爬坡度是评价汽车动力性的主要指标

直升机空气动力学现状和发展趋势

直升机空气动力学现状 二级学院:航空维修工程学院 班级:航修六班 学号:14504604 姓名:李达伦 日期:2015年6月30日

直升机空气动力学现状 (航修六班14504604 李达伦) 摘要:直升机空气动力学是直升机技术研究及型号研制的基础性学科和先进学 科,本文概述了国外的直升机气动理论与方法研究、基于气动理论和方法的应用基础研究、直升机气动试验技术的研究现状。 关键词:空气动力学;直升机 Abstract:Aerodynamics of helicopter is a helicopter technological research and model development of basic disciplines and advanced subject. This paper summarizes the foreign helicopters gas dynamic theory and method of research, based on the aerodynamic theory and methods of applied basic research, helicopter aerodynamic test technology research status. Key word:Air dynamics; helicopter 1 前言 飞行器的设计和研制必须以其空气动力学为主要依据,这是飞行器研制区别 于其它武器平台的典型特征。直升机以旋翼作为主要的升力面、推力面和操纵面, 这种独特的构型和旋翼驱动方式,更使其气动特征具有复杂的非定常特征,其气 动分析和设计技术固定翼飞行器更具挑战性。 直升机气动研究是指认识直升机与空气之间作用规律、解释直升机飞行原 理、获取提升直升机飞行能力和效率的新知识、新原理、新方法的研究活动,其 主要任务是获得直升机的空气动力学特性[1]。由于直升机气动特征性直接决定了 型号飞行性能、振动特性、噪声水平,且是结构设计、寿命评估等的直接依据, 因此直升机气动研究是直升机技术研究的重要方面,更是型号研制的基础。尤其 是要实现舒适、安全、便利、快捷的直升机型号研制目标,直升机空气动力学将 体现其核心推动作用。 2 内容和范围 直升机空气动力学专业发展涵盖的内容和范围主要有直升机气动理论与方 法的研究、基于气动原理的应用基础研究以及气动特性试验研究三大内容。 直升机气动理论与方法的研究重点关注旋翼与周围空气相互作用现象及机 理的分析模型和方法,通过对气动理论和方法的研究,实现对直升机及其流场的 深入了解,以准确地计算其空气动力学特性。 气动应用研究是指基于气动理论和方法,以直升机研制为目标所展开的应用 基础研究,涵盖气动特性、气动弹性、气动噪声、结冰模拟、流动控制等应用领

(汽车行业)空气动力学在汽车设计中的应用

(汽车行业)空气动力学在汽车设计中的应用

空气动力学 汽车作为壹种商品,首先向人们展示的就是它的外形,外形是否讨人喜欢直接关系到这款车子甚至汽车厂商的命运。汽车的外形设计,专业的说法叫做汽车造型设计,是根据汽车整体设计的多方面要求来塑造最理想的车身形状。汽车造型设计是汽车外部和车厢内部造型设计的总和。它不是对汽车的简单装饰,而是运用艺术的手法、科学地表现汽车的功能、材料、工艺和结构特点。汽车造型的目的是以美去吸引和打动观者,使其产生拥有这种车的欲望。汽车造型设计虽然是车身设计的最初步骤,是整车设计最初阶段的壹项综合构思,但却是决定产品命运的关键。汽车的造型已成为汽车产品竞争最有力的手段之壹。汽车造型主要涉及科学和艺术俩大方面。设计师需要懂得车身结构、制造工艺要求、空气动力学、人机工程学、工程材料学、机械制图学、声学和光学知识。同时,设计师更需要有高雅的艺术品味和丰富的艺术知识,如造型的视觉规律原理、绘画、雕塑、图案学、色彩学等等。二战以后现代主义提倡的民主制度,强调每个人都必须平等。但人和人之间始终存在着许多不同。我们必须承认,所谓清壹色的平等只能够创造出壹种假象,而且不是真正满足了每个人的需要。所以,今后的汽车造型设计将更多注重个体性和差异性。技术的进步为设计师提供了强有力的技术支持,让他们有能力做出更灵活、更多样化的设计满足消费者的需求,旧有的规格化和标准化将被推翻。目前部分技术实力高超的小型汽车厂商已经开始提供个人定制汽车服务,但要价不菲,2007年曾有美国富商向宾西法尼亚订购了壹辆价值300万美元的跑车。消费者参和原始时期,人类使用的器物都是自己制作,且从制作过程中得到满足和成就感,这是人类的本能之壹。大工业生产包办了壹切制作过程,人得到的只有最后的成品。新的世纪里,这种本能将会被重新提倡。既成品的概念已经成为过去。在不完全否定工业大生产的前提下,现代产业体制将会做出灵活的调整。今后的汽车会像今天我们所能见的电脑产品壹样,不再以最终完成品的状态出厂,而是有各种性能升级的空间。汽车产品的使用环境不再固定,而是成了互动的使用环境。汽车的保有量不断增加,而相应配套的市政设施、停车场空间等却和发展不相称,这势必要求汽车整车外形尺寸要越小越好,但又不能对乘坐舒适性产生不利的影响,我们能够从五种途径来增大空间利用率:减少发动机所占空间,驾驶室前移;加长轴距,减少前后悬的长度;行李箱向车尾部后移或向车顶部上移;从三厢式向单厢式发展;改变车门开启方式。为了减少发动机所占空间,需要对底盘和整车总体布置进行充分地研究,以便利用有效空间和增加使用空间的可变性,通常前挡风玻璃总是尽量往前移,形成子弹头形状。轴距加长是在车身总长不变的前提下,能够减少前后悬的突出部分,使后排座位的人上下车更加方便,增加乘坐舒适性。行李箱设计尽量向后移或向上移是为了增大乘坐空间,充分利用车顶部的空间。车身布置尽量紧凑合理,浑然壹体,使得汽车在满足舒适陛的前提下更加轻便化、流线型化。许多日系小型车将这类设计概念发挥到了极致,比如以大空间著称的日产TIIDA。高速、安全、低耗是现代汽车发展的主题。为了适应这个潮流,汽车造型应在严格的风洞试验的基础上做好形态设计,创造楔形车身或流线型楔形车身。未来汽车降低油耗的途径将是多方面的,采用新能源是壹项重要措施。能源的改变使汽车造型、内饰、色彩均和众不同。例如电动汽车,采用蓄电池和电动系统为动力,其动力舱部分空间就要比内燃机小得多,大大增加了造型设计的灵活性。由此可见,未来车身的整体形状由于汽车动力能源的不同,将出现丰富多彩的艺术造型。 研究空气或其他气体的运动规律,空气或其他气体和飞行器或其他物体发生相对运动时的相互作用和伴随发生的物理化学变化的学科。流体力学的壹个分支。它是在流体力学基础上随航空航天技术的发展而形成的壹门学科。研究内容根据空气和物体的相对速度是否小于约100米/秒(相应马赫数约0.3),可分为低速空气动力学和高速空气动力学。前者主要研究不可压缩流动,后者研究可压缩流动。根据是否忽略粘性,可分为理想空气动力学和粘性空气动力学。作用于飞行器的升力、力矩问题,可主要通过理想空气动力学求解。按流场边界

并行计算流体力学的研究与应用

并行计算流体力学的研究与应用 1 计算流体力学(CFD)概况 自然界存在着大量复杂的流动现象,随着人类认识的深入,开始利用流动规律改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。 计算流体力学(CFD,Computational Fluid Dynamics)是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动,甚至数值天气预报也可列入其中。 自二十世纪六十年代以来CFD技术得到飞速发展,其原动力是不断增长的工业需求,而航空航天工业自始至终是最强大的推动力。传统飞行器设计方法试验昂贵、费时,所获信息有限,迫使人们需要用先进的计算机仿真手段指导设计,大量减少原型机试验,缩短研发周期,节约研究经费。四十年来,CFD在湍流模型、网格技术、数值算法、可视化、并行计算等方面取得飞速发展,并给工业界带来了革命性的变化。如在汽车工业中,CFD和其它计算机辅助工程(CAE)工具一起,使原来新车研发需要上百辆样车减少为目前的十几辆车;国外飞机厂商用CFD取代大量实物试验,如美国战斗机YF-23采用CFD进行气动设计后比前一代YF-17减少了60%的风洞试验量。目前在航空、航天、汽车等工业领域,利用C FD进行的反复设计、分析、优化已成为标准的必经步骤和手段。 当前CFD问题的规模为:机理研究方面如湍流直接模拟,网格数达到了109(十亿)量级,在工业应用方面,网格数最多达到了107(千万)量级。 2 并行计算流体力学(Parallel CFD)研究与应用现状 2.1 Parallel CFD的推动力 随着计算机技术的迅猛发展,CFD得以迅速发展和普及。单机性能的提高使过去根本无法解算的问题在普通微机上可以解算,从而推动了CFD成为尖端工业、乃至一般过程工业的基本设计分析手段,从而大大激发了其应用,但人们一直难以解决以下问题: (1)工业应用方面的大规模设计计算问题。如飞机设计中全机气动性能计算,火箭发动机复杂多变的燃烧和跨音速流动模拟,导弹的气动隐身性能评估,低阻力系数高性能汽车外形的设计和分析,透平机械复杂叶型及组合的设计分析,潜艇尾迹模拟,高超音速航天器空气动力学设计分析,核电站水蒸汽两相流流动分析,非定常状态的物理过程如飞机起飞降落、过载下空间推进剂晃动分析等。这些大规模设计计算问题不但单个作业计算量庞大,且需不断调整,重复计算。

相关主题
文本预览
相关文档 最新文档