当前位置:文档之家› 分形图像压缩的应用与方法1

分形图像压缩的应用与方法1

分形图像压缩的应用与方法1
分形图像压缩的应用与方法1

分形图像压缩的应用与方法

摘要:本文首先大体上介绍了分形的概念和发展历史,然后着重开始讨论分形的图像压缩技术,给出了图像压缩的一些概念包括了优缺点,因为要查找图形内自相似部分而导致压缩时间过长, 但是解压缩过程却非常快,过长的压缩时间使得分形压缩不可能应用于实时压缩。其次从多个角度讨论了分形图像压缩的方法,比如采用迭代函数系统的图像压缩方法。

关键字:分形;图像压缩;迭代函数系统;

正文:

1.分形的概念和发展

1.1分形的概念[1]

分形理论是当今世界十分活跃的新理论。作为前沿学科的分形理论认为,大自然是分形构成的。大千世界,对称、均衡的对象和状态是少数和暂时的,而不对称、不均衡的对象和状态才是多数和长期的,分形几何是描述大自然的几何学。作为人类探索复杂事物的新的认知方法,分形对于一切涉及组织结构和形态发生的领域,均有实际应用意义,并在石油勘探、地震预测、城市建设、癌症研究、经济分析等方面取得了不少突破性的进展。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbrot)率先提出的。1967年他在美国《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。

分形,是以非整数维形式充填空间的形态特征。分形可以说是来自于一种思维上的理论存在。1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。

曼德勃罗曾经为分形下过两个定义:

1.满足下式条件

Dim(A)>dim(A)的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。

2.部分与整体以某种形式相似的形,称为分形。

然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”

也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。

数学上的分形有以下几个特点:

(1)具有无限精细的结构;

(2)比例自相似性;

(3)一般它的分数维大于它的拓扑维数;

(4)可以由非常简单的方法定义,并由递归、迭代产生等。

1.2 分形的发展

1975年,曼德布罗特发现:具有自相似性的形态广泛存在于自然界中,如连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形,这个单词由拉丁语Frangere衍生而成,该词本身具有“破碎”、“不规则”等含义。

曼德布罗特的研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论或分形几何学。

2.分形中的图像压缩

2.1分形图像压缩的概念

特别适合压缩自然景观的图片,依赖于特定的图像及同一副图像的一部分与其他部分的相似程度。Michael Barnsley在1987年提出分形压缩技术,最广为人知的具有实际用处的分形压缩算法是由Barnsley和Alan Sloan提出的。所有的这些算法都是基于使用叠函数系统的分形变换.

2.1.1 分形图像压缩的优缺点

分形压缩没有被广泛的使用,这是因为分形压缩的压缩和解压速度远比JPEG慢,此外,它的专利也不允许被广泛使用。

对于低质量的图象,分形压缩比JPEG优越,另一个优于JPEG的方面是当图像被放大时,采用分形压缩的图像比JPEG图像质量要高。

分形压缩最大能达到10000:1的压缩率,但是还不够成熟。

2.1.2 分形图像压缩的历史

1987年, Michael Barnsley 创建了分形压缩的概念和方法, 他因此而持有多个技术专利. Barnsley 和Alan Sloan 发明了可用于实践的分形压缩算法. 1992年, Barnsley的研究生Arnaud Jacquin 开发了第一个应用于图形压缩的分形压缩软件. 所有这些方法都是基于使用迭代函数系统的分形变换. Michael Barnsley 和Alan Sloan 1987年发明的迭代函数系统已经被授予了与分形压缩相关的20多个专利。

2.1.3 分形图像压缩的特点

分形压缩的缺点就是因为要查找图形内自相似部分而导致压缩时间过长, 但是解压缩过程却非常快, 这种压缩算法通常被称为不对称压缩算法. 过长的压缩时间使得分形压缩不可能应用于实时压缩. 但对于某些领域, 如提供文件下载, 视频文件等只需要解压缩时间快的应用, 分形压缩就很有竞争力.

通常分形压缩算法可以达到50:1的压缩比, 这和基于小波理论的压缩算法例如JPEG是相似的, 高压缩比的分形压缩算法甚至能提供比JPEG更好的解压质量. 卫星图的压缩比超

过170:1但仍保持较高的可接受的图像质量. 应用于视频的分形压缩通常有25:1 到 244:1 的压缩比, 对应于时间上就是 2.4 到 66 秒/帧。

2.2 分形图像压缩的步骤[1]

整个图像压缩的过程可以分成两大部分,一是编码过程,一是解码过程。在分形压缩中,前者主要基于拚贴定理,这个过程中要考虑图像的灰度分布,以及概率求取的策略。后者主要是随机迭代问题。

2.2.1 编码主要步骤

分割成适当的块,这可以借助于传统的图像处理技术,如边缘检测,频谱分析,纹理

分析等,当然也可以使用分数维的方法。分割出的每部分可以是一棵树,一片云等;也可能稍微复杂一些,如一片海景,它包括泡沫、礁石、雾震等;一般这每一部分都有比较直观的自相似性特征。

IFS 编码求取,每一部分求其 IFS 编码,这就要借助拼贴定理了,同时也是人要参

与的地方,在这个过程中有一些必须注意的地方。

1)每一块的“拷贝”必须小于原块,这是为了保证仿射变换的收缩性,至于每个拷贝

的大小要根据各块图像的性质来确定。

2)用于拼贴的每个拷贝之间最好为不相连或紧相邻的。而不要重叠或者有空缺。这一

点对概率的确定很重要,它影响到重构图像的不变测度。所以对有重叠或空缺时,这部分

的“质量”在计算中不能复用或者简单地丢弃,并最终要保证

1

=

∑i p N i

的成立。

最后进行仿射变换的概率设定。

2.2.2 解码

分形的解码步骤很简单,可以用任意的图像作为初始图像,经过存储的相应的迭代函数的若干次迭代就可以准确的恢复原图。

2.3 分形图像压缩的应用

分形技术在数据压缩中的应用是一个非常典型的例子。美国数学会会刊在1996年6月的刊物上发表了巴斯利的文章《利用分形进行图形压缩》,他把分形用于光盘制作的图形压缩中。一般来说,我们总是把一个图形作为像素的集合来加以存储和处理。一张最普通的图片也常常涉及几十万乃至上百万像素,从而占据大量的存储空间,传输速度也大大受到限制。巴斯利运用了分形中的一个重要思想:分形图案是与某种变换相联系的,我们可以把任何一个图形看作是某种变换反复迭代的产物。因此,存储一个图形,只需存储有关这些变换过程的信息,而无需存储图形的全部像素信息。只要找到这个变换过程,图形就可以准确地再现出来,而不必去存储大量的像素信息。使用这种方法,在实际的应用中,已经达到了压缩存储空间至原来1/8的效果。

2.4 分形图像压缩的特点

10 多年来,虽然分形图像自动编码和解码不断改进.但仍然不够成熟,产生的压缩比不够高,压缩效果还不十分理想,在当前图像压缩编码中还不能占据主导地位。国际标准MPEG-4 中已经把小波列了进去,但分形不在其中。静态图像压缩标准JPEG2000 是完全使

用小波的图像编码方法,也没有把分形列进去。但我们应该看到分形图像压缩方法的优势和巨大潜力。

分形图像压缩既考虑局部与局部,又考虑局部与整体之间的相关性,适合于自相

似或自仿射的图像压缩,而自然界中存在大量的自相似或自仿射的几何形状。因此,它的适应范围很广。

分形图像压缩(当前尚须人工干预)能获得相当高的压缩比(10000:1 甚至更高)

和很好的压缩效果,具有很大的潜力。

分形解码时能放大到任意大的尺寸,且保持精细的结构。

在高压缩比的情况下,分形图像压缩自动编码能有很高的信噪比和很好的视觉效

果,这是其它方法不能相比的。

因此.分形图像压缩是一个有潜力、有发展前途的压缩方法。

2.5 分形图像压缩的发展趋势

分形图像压缩编码研究发展趋势将有如下几个方面:

分形编码在人工干预条件下能够达到相当高的压缩比。但对于如何去掉人工干预

则需研究给定的图像,实现计算机自动确定分形生长模型、 L 系统、IFS 码和 RIFS码等,寻找新的压缩模型和新的突破点。

综合分析当前自动编码的各种改进算法,在此基础上,继续寻找加快编码速度、

提高压缩比、改善压缩效果的突破性的改进方法。

研究按分形维数分割图像、将分形维数相同的区域块用分形方法进行编码的理论、

方法和实现的算法。

继续研究分形编码与其它编码方法相结合的新的编码方法。

研究新的度量相似性的准则,在保持压缩比的前提下,降低恢复图像的失真率。[2]

3.结束语

分形图像编码的过程是依据拼贴定理,通过给定的图像,寻找一组收缩映射,使其组

成的迭代函数系统的吸引子逼近给定图像,然后记录下相应参数。解码过程是由相应参数确定迭代函数系统,并根据迭代函数系统定理,经过迭代生成图像。分形图像压缩的思想新颖、潜力很大,其在压缩比达 10 000∶1 时,解码图像仍有很好的视觉效果,是一个很

有发展前途的图像压缩方法。但是,实现自动IFS编码(没有人工干预)仍有相当难度,该领域至今仍存在许多问题有待解决。[3]

参考文献:

[1] 迟健男,宋春林,杨旭,一种新的快速分形图像压缩方法,辽宁省交通高等专科学校学报,2004.3,

6(1):21-24

[2] 吴蓓,翟娟娟,李晓辉,基于视觉特性的分形图像压缩编码,信息技术,2002,10

[3] 刘冠荣,郭京蕾,何华,基于遗传算法的二值图像压缩,武汉理工大学学报,2001.12,23(4):9-13

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

分形图像压缩

扭曲、

d = ln3 / ln2 = 1.58496 用类似的方法可以求得科和曲线的维数d = ln4 / ln3。需要指出,这种维数称为相似维数,它适用于有严格自相似的分形集合。 分形维数的定义还有许多种,它门之间不仅有性质上的差别,而且对同一形态算出的维数也可能不同。在许多定义中,豪斯多夫维数在理论上可能是最重要的,可惜这种维数的计算十分困难,目前还无法用来描述自然界的复杂形态。 建立了分形维数的概念,就可以理解为什么用传统的几何方法去度量不列颠海岸线或者科和曲线的长度时,得不到准确结果。对待这些曲线,要先计算其分形维数,只有在相同维数下度量才有意义。 2 分形图象压缩 2.1 收缩仿射变换(Contractive Affine Transformation) 如果1个平面图形上的各点经过线性变换 后,图形上各点的距离比原有的距离要小,那么就称这种变换是收缩仿射变换。这个变换的a,b,…,f是变换矩阵的系数。比如,一个变换为: 用它对图2.1(a)的图F各点进行变换,变换后得到W(F)(见图2.1(b))。其形状与原图形F相似,但各点的距离缩短。显然,如果对一个图形反复施加收缩仿射变换,即对W(F)再行变换得到W2(F),对W2(F)又施行变换得到W3(F)……,其迭代的结果将使原来图形收缩为一个点。 2.2 迭代函数系统(Iterated Function System) 人们把若干个收缩仿射变换的组合称为迭代函数系统(IFS),即:

当然,上面各个变换W的系数应保证W是收缩仿射变换。 分形几何学中有一个定理:每一个迭代函数系统都定义了一个唯一的分形图形,这个分形图形称为该迭代函数系统的吸收子(attractor)。这个定理称为收缩影射不动点原理。最典型的例子是一片蕨子叶却所对应的迭代函数系统: 它所定义的蕨子叶如图2.2所示。从这个例子可看出,要产生一个复杂的图形需要得数据并不多。蕨子叶对应的迭代函数系统只有24个系数。如果以8比特代表一个系数,那么192比特就可以代表一片蕨子叶。可见压缩比是很大的。分形图象压缩的提出者之一邦利斯曾经扬言,他实现过10000:1的压缩。是否夸大不得而知,但分形压缩很有潜力却是无疑的。 2.3 采用迭代函数系统的图像压缩方法 从蕨子叶的例子可看出,迭代函数系统用不多的系数就可以代表一幅图像,从而得到很大的压缩比。但在实用时,如何寻找一的图像的迭代函数系统呢?目前有两个办法;一是基于图像的自相似性,直接计算迭代函数系统各收缩仿射变换的系数、二是把图像分割成教小的部分,然后从迭代函数系统库中查找这些小部分所对应的迭代函数系统。前一种方法适合于那些自相似性很强的图形。此处以谢尔品斯基垫为例加以说明。图2.3(a)是一个谢尔品斯基垫,可以看出,整个垫子是由上、左下、右下3个较小的垫子组成。每个较小的垫子是由原来的垫子经收缩仿射变换得来的。如果能分别找出把原图形变成3个小图形的收缩放射变换,那么,整个迭代函数系统就定下来了。 设原来垫子3各顶点的坐标分别为(x1,y1),(x2,y2),(x3,y3)。变换所得小垫子的3个顶点坐标为(x'1,y'1),(x'2,y'2),(x'3,y'3)。图2.3(b)表示的是把原电子变为上面小垫子的坐标。把W1的变换式: 展开:

数字图像压缩技术的研究现状与展望

图像压缩技术的现状和展望 一.前言介绍 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,具有庞大数据量的数字图像通信对现有的有限带宽以严峻的考验,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 本文通过介绍其发展历程及其基本原理和其现阶段的应用,对图像压缩编码技术进行了系统性概述,最后对其前景作了总体上的展望。 二.图像压缩编码技术的发展历程 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有60多年的历史了。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。 三.JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(Joint Photographic Expert Group,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。 1.JPEG 压缩原理 JPEG 算法中首先对图像进行分块处理,一般分成互不重叠的大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag 扫描重新组织,然后进行哈夫曼编码。 2. JPEG压缩的研究状况及其前景

分形图像编码(英文)

FRACTAL IMAGE CODING Po-kai Chen,Lizabeth Li pokai@https://www.doczj.com/doc/b54928578.html,,lizli@https://www.doczj.com/doc/b54928578.html, 1.INTRODUCTION Fractal coding employs an unconventional method of rep-resenting the original image with a series of transforma-tions that map image blocks to smaller,similar blocks within the image.When recursively iterated on any ini-tial image,the contractive transformations produce a se-quence of images that will converge to an approximation of the original [1,2]. The mappings considered in this paper are discrete,contractive block transformations involving either spatial contraction or the transformation of pixel values and lo-cations,explored in section 2.The bulk of the encoding time is spent ?nding block transformations that produce the lowest mean square error.To improve coding ef?-ciency and time,in section 3,we classify certain types of blocks in order to reduce the number of allowable trans-formations performed on those blocks.After encoding,the transformations with the least root mean square er-ror are transmitted using a method we describe in section 4.On the decoder end,the application of these trans-formations on an initial image will reach convergence in roughly 4iterations.Section 5contains sample im-ages and results,including rate-distortion curves com-pared with JPEG and JPEG-2000.We present our con-cluding remarks in section 6. 2.BLOCK MAPPING AND PROCESSING 2.1.Image Partitions The ?rst step in encoding the image involves partitioning the image into non-overlapping B x B pixel blocks called range blocks.For each range block,we search a pool of 2B x 2B domain blocks from the original M x M im-age for the most optimally similar domain block.These domain blocks are generated by sliding a 2B x 2B win-dow across the original image,with spacing 1<δ1in order to speed up the algorithm. Another parameter imposed by our algorithm on the search for domain blocks is the allowable search dis-tance.In order to decrease encoding time,we also limit the search distance for domain blocks so that the algo-rithm does not search through the entire image for a min-imal distortion domain block.In the event that a suitable domain block cannot be found that produces a root mean square error below an error threshold,we split the B x B range parent block into four B/2x B/2child blocks,and rerun the search,searching for domain blocks that are now B x B in size.Child blocks are especially useful in capturing more detail in complex parts of an image,while parent blocks represent an ef?cient way of encod-ing areas of uniform pixel value.Fig.1represents the partitioning and mapping explained above. Fig.1.Parent and child block partitioning and mapping. 1

分形算法与应用

《分形算法与应用》教学大纲 1 课程的基本描述 课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36 课程性质:专业课适用专业:计算机专业 教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11 总学时:32学时理论学时:32学时 实验学时:0学时课程设计:无 学分:2学分开课学期:第七学期 前导课程:算法分析 后续课程:毕业设计 2 教学定位 2.1 能力培养目标 通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。 2.2 课程的主要特点 本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位 通过本课程的学习,使学生达到知识和技能两方面的目标: 1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。 2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。 3 知识点与学时分配 3.1掌握分形的基本概念 分形简介 分形 分维 分形的测量 共2学时 3.2分形图生成算法之一 分形图的递归算法 Cantor三分集、Koch曲线、Sierpinski垫片、 Peano曲线、分形树等的递归算法。 共2学时 3.3分形图生成算法之二 文法构图算法 LS文法、单一规则的LS文法生成、多规则的LS文法生成、 随机LS文法生成。 共2学时 3.4分形图生成算法之三 迭代函数系统

数字图像压缩编码

数字图像处理 ——图像压缩编码概述 数据编码的目的各异,信息保密、信息的压缩存储与传输等。数据压缩是以较少的数据量表示信源以原始形式所代表的信息,其目的在于节省存储空间、传输时间、信号频带或发送能量等。这些概念对于静态的文字、图像,动态的音频、视频都适用。 各种数据压缩的方法不尽相同,但是系统的组成框架如图1所示 图1 图中信源编码主要解决压缩的有效性问题,而信道编码主要解决编码的可靠性问题。从原理上看,压缩主要依靠前者,而后者是可靠实现压缩过程的可靠保证。 若信源编码的熵大于信源的实际熵,则信源中的数据一定存在冗余度。冗余数据的去除并不会减少信息量。一般图像中存在着以下数据冗余因素:编码冗余;像素间的相关性形成的冗余;视觉特性和显示设备引起的冗余。 常用的图像压缩技术指标:图像熵与平均码长;图像冗余度与编码效率;压缩比;客观评价(信噪比);主观评价(参与测试组的全体组员的平均判分)。 传统数据压缩方法的分类:无损压缩包括统计编码(Huffman编码,Shannon编码,游程编码,算术编码等)和轮廓编码;有损压缩包括预测编码(脉冲编码调制PCM,Differential PCM,AdaptiveDPCM等)、变换编码(DFT,DCT,KLT,WHT,小波变换等)和混合编码。 统计编码是根据信源的概率分布特性,分配具有惟一可译性的可变长码字,降低平均码字长度,以提高信息的传输速度,节省存储空间。其基本原理是在信号概率分布情况已知的基础上,概率大的信号对应的码字短,概率小的信号对应的码字长,这样就降低了平均码字长度。 Huffman(哈夫曼)编码算法如下①将图像的灰度等级按概率大小进行升序排序。②在灰度级集合中取两个最小概率相加,合成一个概率。③新合成的概率与其他的概率成员组成新的概率集合。④在新的概率集合中,仍然按照步骤②~③的规则,直至新的概率集合中只有一个概率为1的成员。这样的归并过程可以用二叉树描述。⑤从根节点按前缀码的编码规则进行二进制编码。优点:实现Huffman编码的基础是统计源数据集中各信号的概率分布。Huffman编码在无失真的编码方法中效率优于其他编码方法,是一种最佳变长码,其平均码长接近于熵值。

《高频电子线路》课程设计指导书.doc

《高频电子线路》课程设计指导书 一、课程设计基本信息 核心课程名称(中文)高频电子线路核心课程名称(英文)High-frequency Electronic Circuits 课程设计名称高频电子线路课程设计 课程设计编号课程设计类型实物制作 相关辅助课程电路分析、电子线路(线性部分) 教材及实验指导书教材《电子线路(非线性部分)》,谢嘉奎,高等教育出版 课程设计时间:第五学期18 周 面向专业电子信息科学与技术 二、课程设计的目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,加深对调幅的理解,学会电路的调整;进一步培养学生的动手能力 三、主要仪器设备 序号实验项目名称仪器设备名称仪器设备编号 1调幅收音机设计高频信号发生器、数字示波器、稳压电源 四、课程设计的内容与要求 1、内容:根据所学知识,设计一超外差调幅收音机电路,选择合适的元器件,进行安装和调试电路;应能接收正常广播,且接收的广播节目不少于3套° 序 号 名称目的方式场所要求

1调幅收音机设计加深对调幅的理解,学会 电路的调整;进一步培养 学生的动手能力 实物制作 通信学 院 2、要求 1设计电路图; 2供电电压:直流3V 3 接收频段:535kHz ~ 1605kHz; 4输出功率:P o> 1W。 5为满足偷出功率要求,采用两级放大电路; 6采用互补推挽功率放大器作为输出级。 五、考核与报告 考核内容:1实际操作:包括电路设计、安装、焊接及调试 2设计报告:包括原理、电路图、元器件的选择 成绩评定:实际操作和设计报告各占50%o 六、主要参考文献 1、《电子线路(非线性部分)》,谢嘉奎,高等教育出版社 2、《实用电子电路手册》,孙肖子,高等教育出版社 3、《电子技术技能训练》,张大彪,电子工业出版社七、课程设计报告 1、报告内容 目的、原理、电路图、安装注意事项、调试过程及结果。 2、版面格式 (1)A4纸打印,上、下、左、右边距为2. 5cm,段落间距0,行间距1. 5倍; (2)标题使用四号黑体、居中,正文使用小四号宋体; 一级标题:小四号黑体(如:1、2、3……);

图像压缩综述

图像压缩综述 摘要:随着信息时代的不断发展,数字图像处理技术得到了广泛的应用,而作为数字图像处理技术的重要组成部分——数字图像压缩,也得到了迅猛的发展。本文从数字图像压缩的概念、发展历史、图像压缩的必要性和可能性、图像压缩标准、图像压缩基本方法和图像压缩效果评价等方面进行了综述。 引言 在当前这个信息化社会中,新信息技术革命使人类被日益增多的多媒体信息所包围。多媒体信息主要是由图像、文本和声音三大元素组成。图像作为其主要元素之一,发挥着越来越重要的作用。而传输和存储图像需要占用大量的数据空间,这严重影响了传输速率和实时处理量,极大地制约了图像通信的发展。其中,数据量最大的是数字视频数据。未经处理的数字视频信息需要消耗巨大的存储资源,以主流高清视频为例,在分辨率为1280×720,帧率为30帧每秒的视频应用中,存储一分钟的视频信息,需要约18.5G(以常4:2:0视频,每像素12比特)比特存储空间,一部120分钟高清电影约需要2225G比特的存储空间。可见未经处理的视频信息量非常大,为了满足存储和传输需求,视频信息的压缩是十分必要的。在同等的通信容量下,如果图像数据可以压缩之后再传输,就可以使传输的数据量变得很小,也就能够增加通信能力。因此图像压缩编码技术受到了越来越多的关注及广泛的应用。如数码相机、USB摄像头、可视电话、视频点播、视频会议系统、数字监控系统等等,都使用到了图像或视频的压缩技术。 数字图像压缩是以尽可能少的比特数代表图像或图像中所包含的信息量的技术,图像通过压缩处理去掉其中的数据冗余、符号冗余、视觉冗余等各种冗余信息,提高传输速率,节省存储空间。 1图像压缩的发展历史 自1948年提出的电视信号数字化设想后, 即开始了图像压缩的研究,到现在已有60多年的历史。20世纪五六十年代的图像压缩编码主要集中在预测编码、哈夫曼编码等技术的研究,还不成熟。1969年在美国召开的第一届“图像编码会议”,标志着图像编码作为一门独立学科的诞生。到了七八十年代,图像压缩技术的主要成果体现在变换编码技术上, 矢量量化编码技术也有较大的发展。80年代末,小波变换理论、分形理论、人工神经网络理论、视觉仿真理论建立,人们开始突破传统的信源编码理论, 图像压缩编码向着更高的压缩率和更好的压缩质量的方向发展,进入了一个崭新的发展时期。 2图像压缩的可能性 图像之所以能够进行压缩有以下几个方面的原因: 一是原始图像数据是高度相关的,存在很大的数据冗余。如图像内相邻像素之间的空间冗余度、系列图像前后帧之间的时间冗余度、多光谱遥感图像各频谱间的频率域冗余度等,它们造成了大量的比特数浪费,消除这些冗余就可以节约码字,大大减少数据量,达到数据压 缩的目的。 二是信源符号出现的概率不同,若用相同码长表示不同出现概率的符号,就会造成符号冗余度。如果采用可变长编码技术,对出现概率高的符号用短码字,对出现概率低的符号用长码字表示,就可以消除符号冗余度,从而节约码字。 三是人眼具有视觉冗余,允许图像编码有一定的失真。人类视觉系统(HVS)是有缺陷的,人眼对于某些失真不敏感难以察觉。在许多场合中,并不要求经压缩及复原以后的图像和原始图像完全相同,可以允许有少量的失真,只要这些失真并不被人眼所察觉即可。这就为压缩比的提高提供了十分有利的条件,这种有失真的编码称为限失真编码。在多数应用中,人眼往

图像编码、处理、识别技术综述

图像编码、处理、识别技术综述 摘要:随着科技水平的发展和生活质量的提高,在生产生活中,实时处理图像技术被应用得越来越广泛,数字图像处理技术涉及信息科学、计算机科学数学、物理学及生物学,应用于生活中的各个领域。图形识别技术也越来越多地渗透到我们的日常生活中,详细叙述了图像处理、编码和识别技术,展望图像处理技术在现实生活种的重要性。 关键词:科技,图像处理,图像识别 1、图像编码技术 1.1图像编码基础 图像编码压缩是指在满足一定图像质量的条件下,用尽可能少的数据量来表示图像。编码技术比较系统的研究始于Shannon信息论,从此理论出发可以得到数据压缩的两种基本途径。一种是设法改变信源的概率分布,使其尽可能地非均匀,再用最佳编码方法使平均码长逼近信源熵。使用此途径的压缩方法其效率一般以其熵为上界,压缩比饱和于10:1,如Huffman编码、算术编码、行程编码等。另一种是联合信源的冗余度也寓于信源间的相关性之中,去除它们之间的相关性,使之成为或基本成为不相关信源,如预测编码、变换域编码、混合编码等,但也大都受信息熵的约束。总体上可以概括为熵编码,预测编码,变换编码,也称为三大经典编码方法。 随着人们对传统压缩编码方法的深入研究和应用,逐渐发现了这些传统方法的许多缺点。如高压缩比时恢复图像会出现方块效应,人眼视觉系统(HVS)的特性不易被引入到算法中等。为了克服这些缺点,1985年M.Kunl等人提出了第2代图像压缩编码的概念。经过近20年的发展,在这一框架下,人们提出了几种新的编码方法:分形编码、小波变换编码和基于模型的编码方法等。于是,对数据压缩技术的研究就突破了传统Shannon理论的框架,使得压缩效率得以极大提高。 1.2图像编码基本原理 数字图像的冗余主要表现为一下几种形式:空间冗余,时间冗余,视觉冗余,信息熵冗余,结构冗余和知识冗余。图像数据的这些冗余信息为图像压缩编码提供了依据。图像编码的目的就是充分利用图像中存在的各种冗余信息,特别时空间冗余,时间冗余以及视觉冗余,以尽量少的比特数来表示图像。利用各种冗余信息,压缩编码技术能够很好地解决在将模拟信号转换为数字信号后所产生的带宽需求增加的问题,它是使数字信号走上实用化的关键技术之

分形图程序

(1)Koch曲线程序koch.m function koch(a1,b1,a2,b2,n) %koch(0,0,9,0,3) %a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数 a1=0;b1=0;a2=9;b2=0;n=3; %第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中 [A,B]=sub_koch1(a1,b1,a2,b2); for i=1:n for j=1:length(A)/5; w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j)); for k=1:4 [AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)]=sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4)); end end A=AA; B=BB; end plot(A,B) hold on axis equal %由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中 function [A,B]=sub_koch1(ax,ay,bx,by) cx=ax+(bx-ax)/3; cy=ay+(by-ay)/3; ex=bx-(bx-ax)/3;

ey=by-(by-ay)/3; L=sqrt((ex-cx).^2+(ey-cy).^2); alpha=atan((ey-cy)./(ex-cx)); if (ex-cx)<0 alpha=alpha+pi; end dx=cx+cos(alpha+pi/3)*L; dy=cy+sin(alpha+pi/3)*L; A=[ax,cx,dx,ex,bx]; B=[ay,cy,dy,ey,by]; %把由函数sub_koch1生成的五点横、纵坐标A,B顺次划分为四组,分别对应四条折线段中 %每条线段两端点的坐标,并依次分别存储在4*4阶矩阵k中,k中第i(i=1,2,3,4)行数字代表第%i条线段两端点的坐标 function w=sub_koch2(A,B) a11=A(1);b11=B(1); a12=A(2);b12=B(2); a21=A(2);b21=B(2); a22=A(3);b22=B(3); a31=A(3);b31=B(3); a32=A(4);b32=B(4); a41=A(4);b41=B(4); a42=A(5);b42=B(5); w=[a11,b11,a12,b12;a21,b21,a22,b22;a31,b31,a32,b32;a41,b41,a42,b42];

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

分形图像压缩的算法

大学本科学生毕业设计 —分形图像压缩的算法 二零一二年六月 中文摘要 分形图像编码方法是近十年来诞生并发展起来的一种新型图像压缩方法,它将图像编码为一组收缩映射,由这组收缩映射的不动点近似待编码对象。借助自

可变换性特征有效地消除了图像表达上的数据冗余,具有编码效率高、与分辨率无关、解码算法简单等潜在优势,已成为当今国际上图像编码领域中令人瞩目的研究方向。 本课题旨在以分块迭代函数系统为基础,研究分形图像编码的理论、方法和实现技术,探讨其工作机理,评价其能力,弥补其缺陷,设计并实现高效的图像压缩/解压算法,为多媒体智能软件系统提供有效的工具。 本文阐述了分形理论应用在图像压缩领域的基本原理和实现该算法的关键技术,介绍了具有代表性的各种图像压缩的新方法,阐明了各个方法的优劣,最后简要总结了分形图像压缩的改进方法以及未来的发展趋势 关键词:图像压缩,分形,算法

ABSTRACT Fractal image coding, which is also called attractor image coding, is a emergent method of image compression during the last decade. It codes images as contraction maps of which the fixed points approximate to the images. Redundancy in images are efficiently exploited via the self-transformability on the blockwise basis. Owing to its high compression ratio, good image quality, and resolution-independence of the decoded image, fractal image coding has been attracting much attention, and being considered to be promising in the realm of image compression This paper aims at giving a compreheresearch on the theory, methodology, and implementation techniques of fractal image coding under the iterated function systems, developing a set of efficient coding/decoding algorithms to support multimedia software applications. This paper expounds the basic principle of the application of fractal in the image compression field theory and key technology of this

图像处理指导书————数字图像压缩

实验四数字图像压缩 一.实验目的 1.理解有损压缩和无损压缩的概念; 2.理解图像压缩的主要原则和目的; 3.了解几种常用的图像压缩编码方式。 4.利用MATLAB程序进行图像压缩。 一.实验原理 1.图像压缩原理 图像压缩主要目的是为了节省存储空间,增加传输速度。图像压缩的理想标准是信息丢失最少,压缩比例最大。不损失图像质量的压缩称为无损压缩,无损压缩不可能达到很高的压缩比;损失图像质量的压缩称为有损压缩,高的压缩比是以牺牲图像质量为代价的。压缩的实现方法是对图像重新进行编码,希望用更少的数据表示图像。 信息的冗余量有许多种,如空间冗余,时间冗余,结构冗余,知识冗余,视觉冗余等,数据压缩实质上是减少这些冗余量。高效编码的主要方法是尽可能去除图像中的冗余成分,从而以最小的码元包含最大的图像信息。 编码压缩方法有许多种,从不同的角度出发有不同的分类方法,从信息论角度出发可分为两大类。 (1)冗余度压缩方法,也称无损压缩、信息保持编码或嫡编码。具体说就是解码图像和压缩编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。 (2)信息量压缩方法,也称有损压缩、失真度编码或烟压缩编码。也就是说解码图像和原始图像是有差别的,允许有一定的失真。 应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分为以下3类:(1)无损压缩编码种类 哈夫曼(Huffman)编码,算术编码,行程(RLE)编码,Lempel zev编码。 (2)有损压缩编码种类 预测编码,DPCM,运动补偿; 频率域方法:正交变换编码(如DCT),子带编码; 空间域方法:统计分块编码; 模型方法:分形编码,模型基编码; 基于重要性:滤波,子采样,比特分配,向量量化;

分形图像压缩的应用与方法1

分形图像压缩的应用与方法 摘要:本文首先大体上介绍了分形的概念和发展历史,然后着重开始讨论分形的图像压缩技术,给出了图像压缩的一些概念包括了优缺点,因为要查找图形内自相似部分而导致压缩时间过长, 但是解压缩过程却非常快,过长的压缩时间使得分形压缩不可能应用于实时压缩。其次从多个角度讨论了分形图像压缩的方法,比如采用迭代函数系统的图像压缩方法。 关键字:分形;图像压缩;迭代函数系统; 正文: 1.分形的概念和发展 1.1分形的概念[1] 分形理论是当今世界十分活跃的新理论。作为前沿学科的分形理论认为,大自然是分形构成的。大千世界,对称、均衡的对象和状态是少数和暂时的,而不对称、不均衡的对象和状态才是多数和长期的,分形几何是描述大自然的几何学。作为人类探索复杂事物的新的认知方法,分形对于一切涉及组织结构和形态发生的领域,均有实际应用意义,并在石油勘探、地震预测、城市建设、癌症研究、经济分析等方面取得了不少突破性的进展。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbrot)率先提出的。1967年他在美国《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。 分形,是以非整数维形式充填空间的形态特征。分形可以说是来自于一种思维上的理论存在。1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。 曼德勃罗曾经为分形下过两个定义: 1.满足下式条件 Dim(A)>dim(A)的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。 2.部分与整体以某种形式相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命” 也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。 数学上的分形有以下几个特点: (1)具有无限精细的结构; (2)比例自相似性; (3)一般它的分数维大于它的拓扑维数; (4)可以由非常简单的方法定义,并由递归、迭代产生等。

相关主题
文本预览