当前位置:文档之家› 喷丸强化工艺

喷丸强化工艺

喷丸强化工艺
喷丸强化工艺

喷丸强化工艺与应用

喷丸强化基本概念

1.什么叫强化喷丸呢?下面说说它的概念.

在了解喷丸强化技术之前,我们有必要将抛丸、喷砂、喷丸的三个容易混淆的概念解释一下。这三个概念其实就四个字:喷、抛、丸、砂,其中,喷抛是工艺方法,丸砂是使用的材料。喷,是用高压空气将丸、砂吹到工件的表面,抛是用高速旋转的叶片抛射到工件表面,丸用的是钢丸,砂用的是石英砂等。

喷丸过程就是将大量弹丸喷射到零件表面上的过程,有如无数小锤对表面锤击,因此,金属零件表面产生极为强烈的塑性形变,使零件表面产生一定厚度的冷作硬化层,称为表面强化层,此强化层会显著地提高零件的疲劳强度。测评强化丸质量有三个基本参数:强度、覆盖率、表面粗糙度。

2.喷丸强度

影响喷丸强度的工艺参数主要有:弹丸直径、弹流速度、弹丸流量、喷丸时间等。弹丸直径越大,速度越快,弹丸与工件碰撞的动量越大,喷丸的强度就越大。喷丸形成的残余压应力可以达到零件材料抗拉强度的60%,残余压应力层的深度通常可达0.25mm,最大极限值为1mm左右。喷丸强度需要一定的喷丸时间来保证,经过一定时间,喷丸强度达到饱和后,再延长喷丸时间,强度不再明显增加。在喷丸强度的阿尔门试验中,喷丸强度的表征为试片变形的拱高。

3.阿尔门(Almen)试验

喷丸强度常用N试片(用于有色金属试验)、A试片(最常用)、C试片(更高强度)来进行测量, A试片和C试片之间关系为近似3倍关系。如用C试片测得强度为0.15-0.20C mm 就相当于0.45-0.60A mm。图中厚的为C试片,薄的为A试片。

试验过程中,先测量试片原有变形,然后将卡好该试片的工装置于喷丸箱内,采用与工件相同的工艺进行喷射。喷丸结束,取下试片,测量变形拱高。

4.喷丸覆盖率

覆盖率是指工件上每一个点被钢丸打到的次数,有人对喷丸覆盖率常这样认为:我的喷嘴1上1下喷工件2遍,不就可以满足200%的覆盖率了吗?乍一听觉得有道理,其实不是这样的。

覆盖率的测量是这样的:先在工件表面涂上一层彩釉或萤光釉,然后按工艺参数对工件进行喷丸,每喷表面一遍将工件取出,在显微镜(放大镜)下观察所残留的涂层在表面所占的比例,如还有20%残留,则覆盖率为80%。当残留只有2%,即覆盖率为98%时,可视为全部清除,即覆盖率为100%,此时就有一个时间。若达到400%的覆盖率,就是4倍的该时间。

5.覆盖率的影响因素

影响覆盖率的因素有零件材料硬度、弹丸直径、喷射角度和距离、喷丸时间等。在规定的喷丸强度条件下,零件的硬度低于或等于标准试片硬度时,覆盖率能达到100%;反之,覆盖率会下降。在相同的弹丸流量下,喷嘴与工件的距离越长、喷射的角度越小、弹丸直径越小,达到覆盖率要求的时间就越短。喷丸强化时,应选择大小合适的弹丸、喷射角度及距离,使喷丸强度和覆盖率同时达到要求值。来源于材料网https://www.doczj.com/doc/b514765584.html,

6.表面粗糙度

由于钢丸的喷射,对工件表面的粗糙度产生一定的变化。影响表面粗糙度的因素有零件材料的强度和硬度、弹丸直径、喷射的角度和速度、零件的原始表面粗糙度。在其他条件相同的情况下,零件材料的强度和表面硬度值越高,塑性变形越困难,弹坑越浅,表面粗糙度值越小;弹丸的直径越小,速度越慢,弹坑就越浅,表面粗糙度值就变小;喷射的角度大,弹丸速度的法向分量越小,冲击力越小,弹坑越浅,弹丸的切向速度越大,弹丸对表面的研磨作用就越大,表面粗糙度值就越小;零件的原始表面粗糙度也是影响因素之一,原始表面越粗糙,喷丸后表面粗糙度值降低越小;相反,表面越光滑,喷丸后表面变得粗糙。当对零件进行高强度的喷丸后,深的弹坑不但加大表面粗糙度值,还会形成较大的应力集中,严重削弱喷丸强化的效果。

喷丸强化的效果和质量的表征指标主要有喷丸的强度、覆盖率和喷丸后零件的表面粗糙度值,每一项指标都受多项工艺参数的影响。

影响喷丸强度的工艺参数主要有:弹丸直径、弹流速度、弹丸流量、喷丸时间等。弹丸直径越大,速度越快,弹丸与工件碰撞的动量越大,喷丸的强度就越大。喷丸形成的残余压应力可以达到零件材料抗拉强度的60%,残余压应力层的深度通常可达0.25mm,最大极限值为1mm左右。喷丸强度需要一定的喷丸时间来保证,经过一定时间,喷丸强度达到饱和后,再延长喷丸时间,强度不再明显增加。在喷丸强度的阿尔曼试验中,喷丸强度的表征为试片变形的拱高。

影响覆盖率的因素有零件材料硬度、弹丸直径、喷射角度和距离、喷丸时间等。在规定的喷丸强度条件下,零件的硬度低于或等于标准试片硬度时,覆盖率能达到100%;反之,覆盖率会下降。在相同的弹丸流量下,喷嘴与工件的距离越长、喷射的角度越小、弹丸直径越小,达到覆盖率要求的时间就越短。喷丸强化时,应选择大小合适的弹丸、喷射角度及距离,使喷丸强度和覆盖率同时达到要求值。

影响表面粗糙度的因素有零件材料的强度和硬度、弹丸直径、喷射的角度和速度、零件的原始表面粗糙度。在其他条件相同的情况下,零件材料的强度和表面硬度值越高,塑性变形越困难,弹坑越浅,表面粗糙度值越小;弹丸的直径越小,速度越慢,弹坑就越浅,表面粗糙度值就变小;喷射的角度大,弹丸速度的法向分量越小,冲击力越小,弹坑越浅,弹丸的切向速度越大,弹丸对表面的研磨作用就越大,表面粗糙度值就越小;零件的原始表面粗糙度也是影响因素之一,原始表面越粗糙,喷丸后表面粗糙度值降低越小;相反,表面越光滑,喷丸后表面变得粗糙。当对零件进行高强度的喷丸后,深的弹坑不但加大表面粗糙度值,还会形成较大的应力集中,严重削弱喷丸强化的效果。

喷丸强化的工业应用

喷丸强化工艺适应性较广;工艺简单、操作方便;生产成本低,经济效益好,强化效果明显。近年来,随着计算机技术发展,带有信息反馈监控的喷丸技术已在实际生产中得到应用,使强化的质量得到了进一步提高。

目前喷丸强化不仅用于汽车工业领域的弹簧、连杆、曲轴、齿轮、摇臂、凸轮轴等承受交变载荷的部件,还广泛用于其他工业领域。如喷丸强化可以提高电镀零件的疲劳强度和结合力;各种合金钢经过任何一种电镀处理后,一般均会导致疲劳强度下降10%~60%,而喷丸强化则可有效提高疲劳强度,同时还可以增加电镀层的结合力,防止起泡。

表面喷丸可提高紧固件品质

根据统计,紧固件断裂失效模式中,疲劳失效约占总数的 60%~90% ,所以在历史上已广为采用的调质、渗碳、表面处理,通过改变材料的组织来达到改善疲劳性能(包括应力腐蚀性能)的目的。当今,表面喷丸强化工艺,已经采用在螺栓、螺钉的杆部,使用最多、适应性也广,成本也低廉。

喷丸是弹丸流不断撞击紧固件表面材料,由此使表层(深度约 0.05~0.20mm )材料发生循环塑性变形的过程。经受循环塑性变形的表层随材料的不同将发生以下一种或几种变化:

表层内形成残余压应力场;

表层材料的亚结构(亚晶粒)尺寸和点阵畸变的变化;

塑变诱导相变;

塑变层内材料密度的变化。

喷丸循环塑性变形引入材料表层的残余压应力场,与外施交变应力的拉应力在同一截面叠加后,使材料承受的最大拉应力由表面移至亚表面位置。

表面未喷丸强化试样的疲劳裂纹萌生于外表面,而经过喷丸表面形变强化的疲劳裂纹萌生于次表层。理论分析证实,形变残余应力使疲劳裂纹萌生于材料次表面之后,即可获得比表面疲劳极限高 1.05~1.35 倍的内部疲劳极限。

表面喷丸强化是提高紧固件抗疲劳断裂的应力腐蚀、氢脆断裂的一种行之有效的表面强化工艺。弹丸有铸钢丸、玻璃丸、陶瓷丸等,被强化紧固件表面粗糙度 0.65μm~2μm ,可达到的表面粗糙度 0.63~2.5μm ,工件的使用可靠性、耐久性均可获得明显的改善和提高。

模具表面喷丸强化

模具表面喷丸强化 随着现代工业技术的发展,对于模具使用性能提出了更高的要求。努力缩短模具的生产周期提高模具的质量,延长模具寿命,直接或间接带来的社会效益和经济效益是难以估量的。材料和热处理是影响模具质量、性能和使用寿命最重要的内在因素。60%模具的早期失效,是由材料和热处理的因素造成的。为了提高模的强度及模具的耐磨性,充分挖掘模具材料的性能潜力,延长模具服役寿命,采取了许多有效的措施,从省能源、省资源、充分发挥材料的性能潜力,获得特殊性能和最大技术经济效益出发,发展和应用表面强化工艺技术是提高模具使用性能和寿命的极重要的发展方向,喷丸强化就是其中的一项经济、简便而有效的模具表面处理工艺方法,值得大力推广。 喷丸强化是借助于硬丸粒,高速、连续锤击金属表面,使其产生强烈的冷作硬化。通过喷丸可以明显改变金属表面的应力状态、显微硬度、表层的微观形貌和相成分,从而提高模具的疲劳强度、抗冲击磨损及抗应力腐蚀性能。喷丸还可改变模具的表面粗糙度,并有效地去除电火花加工而产生的表面变质层。 喷丸强化方法简单易行,节约能源,适用于落料模、冷作模、冷镦模和热锻模等以疲劳失效形式为主的模具,如锻模服役时,要经受弯曲和热膨胀,常发生因局部屈服而导致显微裂纹,喷丸处理产生压应力能推迟显微裂纹的形成,从而延迟模具龟裂发生,模具经喷丸强化后使用寿命情况如表1所示。

喷丸强化原理 喷丸过程就是大量弹丸喷射到零件表面上的过程,而弹丸喷射到零件表面上有如无数小锤对表面锤击,因此,金属零件表面产生极为强烈的塑性形变,使零件表面产生一定厚度的冷作硬化层,称为表面强化层,此强化层会显著地提高零件在高温和高湿工作下的疲劳强度。 零件表面形成的强化层之所以会改善其疲劳性能,其原因是在此层内有着完全不同于基体(即零件心部)的应力状态及组织结构,一般地说零件疲劳强度的提高与表面强化层内以下三个因素有关: (1)表面层的宏观残余应力; (2)表面层的微观应力; (3)表面层的微细嵌镶组织。适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失却尺寸精度,甚至导致变形、开裂等早期失效事故,所以机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。喷丸可改变了应力分布状态,使零件表面形成一条很宽的压应力分布带,从而可极大地提高疲劳强度和零件的实际承载能力。 喷丸强化是行之有效、应用广泛的强化模具表面的手段,模具喷丸的强化机理是弹丸流的撞击形成模具材料塑性变形而导致冷作硬化;第二个因素是弹丸流的撞击改变了表面残余应力状态和分布,使模具材料表层和次表层造成很大的残余压应力,而喷丸产生的残余压应力又是强化机理中的重要因素。喷丸处理后模具的表面硬度增加,距表面愈近,效果愈明显,喷丸造成的模具表面硬度增加是由于表层组织形变强化及残余压应力值增大的综合结果。此外,喷丸还能促使模具表层的组织发生转变,即残余奥氏体诱发转变为马氏体,并且能够细化马氏体的亚结构,进一步提高了模具表面硬度和耐磨性,从而延长模具的使用寿命。

喷丸强化GE标准 (2)

TASK 70-47-01-380-016 1. 概述。 A. 喷丸是利用金属丸,玻璃丸,陶瓷丸来达到工件表面强化的 工艺。实质上,它在表面形成残余压应力,从而提高了抗压 力腐蚀和和抗击循环疲劳的能力。特定零件表面修整所需的 介质的成分,尺寸,强度和覆盖率都在发动机/车间手册中有 具体规定。 B. 喷丸介质通过高压风冲击工作表面。喷丸射流有直接冲击和 反射冲击两种方法。直接冲击是使用标准喷嘴,偏转喷嘴或 者长矛枪喷嘴与零件表面成35度角冲击而成的线状气流。反 射冲击是非线状冲击,工件表面通过另一表面反射的喷丸射 流而完成喷丸。 C. 喷丸主要使用干介质。然而,湿玻璃丸喷丸法可以用作干玻 璃丸喷丸法的替代方法。不同的介质用不同的范围来表征喷 丸强度。金属丸主要用来表征阿尔门A范围的喷丸强度。陶 瓷丸和玻璃丸介质用阿尔门N范围指定的强度来喷射零件。 注意:低强度喷丸可以使用金属喷丸,用阿尔门N试片来测量。 D. 在喷丸操作的阿尔门N范围内,陶瓷丸可以用作玻璃丸的替 代品。因为质量和尺寸上的差别,陶瓷丸和玻璃丸介质在喷 丸时的参数也不一样。当使用陶瓷介质时,喷丸机的参数需

要重新设定。对于指定的阿尔门强度,陶瓷丸比起玻璃丸能 产生更深的应力层。因此,当在含有薄片状(比如叶片前缘) 的工件上进行喷丸程序时,喷丸强度最好定在允许强度范围 的前半部分。 E. 喷丸操作通常由计算机控制,自动控制或人工设备控制以及 加工来完成。参考,设备。 F. 替代喷丸介质的使用,参考,,和,材料。 G. 不同种类,硬度,尺寸的喷丸介质不能混合在一起。 2. 设备。 Subtask 70-47-01-380-161 A. 喷丸机包括使喷丸射流受控的可移动喷嘴,使工件通过喷丸 射流的的转动和回转工作台,使喷丸介质输送至喷嘴的机构, 去除设备运转过程中产生的破损丸粒的筛分装置和控制喷丸 时间的记时装置。一些特殊设备,比如在孔里、槽里或凹陷 工件上喷丸的矛枪和偏转仪需要具备。同样也需要提供一个 延伸喷嘴来达到这些难以达到的区域。 (1) 通用喷丸设备。所有的喷丸设备应满足以下基本要求: (a) 喷丸机通过空气压力驱动喷丸介质。轮式喷丸是不 允许的。 (b) 当喷丸机将工件以平移或者旋转(或者两者兼有)的

生物化学题目

问答题: 1、机体通过哪些因素调节糖的氧化途径与糖异生途径。 糖的氧化途径与糖异生具有协调作用,一条代谢途径活跃时,另一条代谢途径必然减弱,这样才能有效地进行糖的氧化或糖异生。这种协调作用依赖于变构效应剂对两条途径中的关键酶相反的调节作用以及激素的调节. (1)变构效应剂的调节作用;(2)激素调节 2、机体如何调节糖原的合成与分解,使其有条不紊地进行 糖原的合成与分解是通过两条不同的代谢途径,这样有利于机体进行精细调节。糖原的合成与分解的关键酶分别是糖原合酶与糖原磷酸化酶。机体的调节方式是通过同一信号,使一个酶呈活性状态,另一个酶则呈非活性状态,可以避免由于糖原分解、合成两个途径同时进行,造成ATP的浪费。(1)糖原磷酸化酶:(2)糖原合酶:胰高血糖素和肾上腺素能激活腺苷酸环化酶,使ATP转变成cAMP,后者激活蛋白激酶A,使糖原合酶a磷酸化而活性降低。蛋白激酶A还使糖原磷酸化酶b激酶磷酸化,从而催化糖原磷酸化酶b 磷酸化,导致糖原分解加强,糖原合成受到抑制,血糖增高。 3、简述血糖的来源和去路 血糖的来源:1、食物经消化吸收的葡萄糖;2、肝糖原分解3、糖异生 血糖的去路:1、氧化供能2、合成糖原3、转变为脂肪及某些非必需氨基酸4、转变为其他糖类物质。 4、简述6-磷酸葡萄糖的代谢途径 (1)6-磷酸葡萄糖的来源:1、己糖激酶或葡萄糖激酶催化葡萄糖磷酸化生成6-磷酸葡萄糖;2、糖原分解产生的1-磷酸葡萄糖转变为6-磷酸葡萄糖;3、非糖物质经糖异生由6-磷酸果糖异构成6-磷酸葡萄糖。(2)6-磷酸葡萄糖的去路:1、经糖酵解生成乳酸;2、经糖有氧氧化生成CO2、H2O、A TP;3、通过变位酶催化生成1-磷酸葡萄糖,合成糖原;4、在6-磷酸葡萄糖脱氢酶催化下进入磷酸戊糖途经;5、在葡萄糖-6-磷酸酶催化下生成游离葡萄糖。 5、在糖代谢过程中生成的丙酮酸可以进入哪些代谢途径 在糖代谢过程中生成的丙酮酸具有多条代谢途径。 (1)供氧不足时,丙酮酸在乳酸脱氢酶的催化下,NADH + H+供氢,还原生成乳酸。 (2)供氧充足时,丙酮酸进入线粒体,在丙酮酸脱氢酶复合体的催化下,氧化脱羧生成乙酰CoA,再经过三羧酸循环和氧化磷酸化,彻底氧化生成CO2、H2O和ATP。 (3)丙酮酸进入线粒体,在丙酮酸羧化酶的催化下生成草酰乙酸,后者经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸,再异生为糖。 (4)丙酮酸进入线粒体,在丙酮酸羧化酶的催化下生成草酰乙酸,后者与乙酰CoA缩合成柠檬酸;可促进乙酰CoA进入三羧酸循环彻底氧化。 (5)丙酮酸进入线粒体在丙酮酸羧化酶的催化下生成草酰乙酸,后者与乙酰CoA缩合成柠檬酸;柠檬酸出线粒体在细胞浆中经柠檬裂解酶催化生成乙酰CoA,后者可作为脂酸、胆固醇等的合成原料。(6)丙酮酸可经还原性氨基化生成丙氨酸等非必需氨基酸。 决定丙酮酸代谢的方向是各条代谢途径中关键酶的活性,这些酶受到变构效应剂与激素的调节。 6、百米短跑时,肌肉收缩产生大量乳酸,试述乳酸的主要代谢去向 1、进入血液,肝脏内糖异生合成糖 2、心肌中LDH1催化生成丙酮酸氧化供能。 3、肾脏异生为糖,或随尿排出 4、肌肉内脱氢生成丙酮酸进入有氧氧化。 7、说明动物机体糖代谢的主要途径。 糖代谢分为糖的分解和糖的合成。①糖酵解;②三羧酸循环;③磷酸戊糖途径;④糖醛酸途径;⑤糖异生作用;⑥糖原的合成和分解。

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

喷砂喷丸标准

一、前处理—— 对于工件在被喷涂、喷镀保护层(油漆或其它防腐物料)之前,工件表面均应进行认真的处理,称之为前处理。 前处理质量好坏,影响着涂层的附着力、外观、涂层的耐潮湿及耐腐蚀等方面,因最好的涂膜(层)都是粘附到被认真清理的表面。前处理工作做的不好,锈蚀仍会在涂层下继续蔓延,使涂层成片脱落。经过认真清理的表面和一般简单(手工用砂纸或刷子)清理的工件,用暴晒法进行涂层比较,寿命可相差4-5倍。表面清理的方法很多,但被接受最普遍的方法是:A.溶剂清理 B.酸洗 C.手动工具D.动力工具。 在这几种方式中,每种方式都有各自的适用范围,但在所有表面清理方法中,喷砂方法是最彻底、最通用、最广泛的方式,原因是: A喷砂比其它方式对工件表面清理的速度和彻底最佳。 B没有其它哪种工艺方法允许你在四种公认的、普遍接受的清洁度之间进行任意选择。 二、喷砂—— 是采用压缩空气为动力形成高速喷射束,将喷料(铜矿砂、石英砂、铁砂、海砂、金刚砂等)等高速喷射到需处理工件表面,使工件外表面的外表发生变化,由于磨料对工件表面的冲击和切削作用,使工件表面获得一定的清洁度和不同的粗糙度,使工件表面的机械性能得到改善,因此提高了工件的搞疲劳性,增加了它和涂层之间的附着力,延长了涂膜的耐久性,也有利于涂料的流平和装饰。 三、与其它前处理工艺(如酸洗、工具清理)对比—— 1) 喷砂处理是最彻底、最通用、最迅速、效率最高的清理方法。 2) 喷砂处理可以在不同粗糙度之间任意选择,而其它工艺是没办法实现这一点的,手工打磨可以打出毛面但速度太慢动作,化学溶剂清理则清理表面过于光滑不利于涂层粘接。 (一)工件涂镀、工件粘接前处理 喷砂能把工件表面的锈皮等一切污物清除,并在工件表面建立起十分重要的基础图式(即通常所谓的毛面),而且可以通过调换不同粒度的磨料,达到不同程度的粗糙度,大大提高工件与涂料、镀料的结合力。或使粘接件粘接更牢固,质量更好。 (二)铸锻件毛面、热处理后工件的清理与抛光 喷砂能清理铸锻件、热处理后工件表面的一切污物(如氧化皮、油污等残留物),并将工件表面抛光提高工件的光洁度,起到美化工件的作用。 喷砂清理能使工件露出均匀一致的金属本色,使工件外表更美观,达到美化装饰的作用。 (三)机加工件毛刺清理与表面美化 喷砂能清理工件表面的微小毛刺,并使工件表面更加平整,消除了毛刺的危害,提高了工件的档次。并且喷砂能在工件表面交界处打出很小的圆角,使工件显得更加美观、更加精密。 (四)改善零件的机械性能 机械零件经喷砂后,能在零件表面产生均匀细微的凹凸面(基础图式),使润滑油得到存储,从而使润滑条件改善,并减少噪声提高机械使用寿命。 (五)光饰作用 1、对各种工件表面抛光,使工件表面更美观。

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

表面形变强化技术研究现状

表面形变强化技术的研究现状 摘要:表面强化是近年来国内外广泛研究应用的工艺之一。常用的金属表面形变强化方法主要有滚压、内挤压和喷丸等工艺,其强化效果显著,成本低廉。笔者主要概括了表面强化技术的分类、目的和作用,分析了形变强化方法的特点以及目前表面强化主要研究方法的现状和发展趋势。 关键词:表面形变;滚压;内挤压;喷丸 材料表面处理技术简称材料表面技术,是材料科学的一个重要分支,是在不改变基体材料的成分和性能(或虽有改变而不影响其使用)的条件下,通过某些物理手段 (包括机械手段)或化学手段来赋予材料表面特殊性能,以满足产品或零件使用需要的技术和工艺。材料表面技术在工业中的应用,大幅度提高了产品 (尤其是金属零件)的性能、质量和寿命,并产生了巨大的经济效益,因而深受各国政府和科技界的重视。 1表面形变强化原理 通过机械手段(滚压、内挤压和喷丸等)在金属表面产生压缩变形,使表面形成形变硬化层(此形变硬化层的深度可达0.5~1.5mm),从而使表面层硬度、 强度提高。 2表面形变强化工艺分类 主要有喷(抛)丸、滚压和孔挤压等三种工艺。 2.1喷丸强化工艺 喷丸是广泛使用的一种在再结晶温度以下的表面强化方法,可显著提高抗弯曲疲劳、 抗腐蚀疲劳、抗应力腐蚀疲劳、抗微动磨损、耐蚀点(孔蚀)能力,具有操作简单、耗能少、效率高、适应面广等优点,是金属材料表面改性的有效方法。 2.1.1喷丸强化工艺的工作原理 喷丸处理是一种严格控制的冷加工表面强化处理工艺,其工作原理是:利用球形弹丸高速撞击金属工件表面,使之产生屈服,形成残余压缩应力层。形成压缩应力层的目的是预防工件疲劳破坏,把易产生疲劳破坏裂纹部位的抗应力转为压应力,从而有效地控制裂纹扩展。2.1.2喷丸强化的发展状况 1908年,美国制造出激冷钢丸,金属弹丸的出现不仅使喷砂工艺获得迅速发展,而且导致了金属表面喷丸强化技术的产生。1929年,在美国由Zimmerli等人首先将喷丸强化技术应用于弹簧的表面强化,取得了良好的效果[1]。20世纪40年代,人们就发现了喷丸处理可在金属材料表面上产生一种压缩应力层,可以起到强化金属材料、阻止裂纹在受压区扩展的作用。到了60年代,该工艺逐步应用于机械零件的强化处理上。70年代以来,该工艺已广泛应用于汽车工业,并获得了较大的经济技术效益,如机车用变速器齿轮、发动机及其他齿轮均采用了喷丸强化工艺,大幅度提高了抗疲劳强度。 进入80年代后,喷丸处理技术在大多数工业部门,如飞机制造、铁道机车车辆、化工、石油开发及塑料模具、工程机械、农业部门等推广应用,到了90年代其应用范围进一步扩大,如电镀前进行喷丸处理可防止镀层裂纹的发生[2]。 最近几年,随着工业技术的迅猛发展和需求,人们对这一操作简单、效果显著的表面处理技术给予了极大的关注,开发了多种新工艺,下面将包括机械喷丸在内的多种新喷丸工艺原理和特点逐一介绍。 2.1.2.1机械喷丸

生物化学知识点总结

两性化合物:在同一分子中带有性质相反的酸、碱两种解离基团的化合物。 等电点:当溶液pH为某一pH值时,氨基酸分子中所含的正负数目正好相等,净电荷为0。这一pH值即为氨基酸的等电点,简称p I。 在等电点时,氨基酸既不向正极也不向负极移动,即氨基酸处于两性离子状态。 ①pI 〉pH:分子显正电性。 氨基酸在等电点时溶解度最小,易发生沉淀 在等电点pH条件下,蛋白质为电中性,比较稳定。其物理性质如导电性、溶解度、粘度和渗透压等都表现为最低值,易发生絮结沉淀。 在近紫外区(200-400nm)只有酪氨酸、苯丙氨酸和色氨酸有吸收光的能力。 通过离子交换、电泳、或等电沉淀等技术进行氨基酸的分离、制备或分析鉴定。 除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外,所有α-氨基酸和蛋白质都能和茚三酮反应生成紫色物质。但能与茚三酮发生紫色反应的不一定是氨基酸和蛋白质, 2、4-二硝基氟苯反应、丹磺酰氯反应、苯异硫氰酸酯反应亦称Edman反应用来鉴定蛋白质或多肽的N-末端氨基酸残基。 层析法是生化最为有效的常用分离氨基酸的方法 层析法由三个基本条件构成: ⊙水不溶性惰性支持物 ⊙流动相能携带溶质沿支持物流动 ⊙固定相是附着在支持物上的水或离子基团。能对各种溶质的流 动产生不同的阻滞作用。 蛋白质的一级结构指蛋白质多肽连中氨基酸的排列顺序,包括二硫键的位置。它是蛋白质生物功能的基础。 组成肽链的氨基酸单元称为氨基酸残基 肽键中的C-N键具有部分双键性质,不能自由旋转 组成肽键的四个原子和与之相连的两个 碳原子都处于同一个平面内,此刚性结构的平面叫肽平面或酰胺平面 氨基酸的顺序是从N-端的氨基酸残基开始,以C-端氨基酸残基为终点的排列顺序。 肽链N-末端和C-末端氨基酸残基的确定 2,4-二硝基氟苯(DNFB)法 丹磺酰氯(DNS)法 羧肽酶法:从多肽链的C-端逐个的水解氨基酸 肼解法:多肽与肼在无水条件下加热,C-端氨基酸即从肽链上解离出来,其余的氨基酸则变成肼化物。 氨基酸序列测定—Edman降解 几条多肽链借助非共价键连接在一起,称为寡聚蛋白质

表面形变强化技术的研究现状

表面形变强化技术的研究现状 许正功,陈宗帖,黄龙发(1. 广西大学机械工程学院,广西南宁350004;2 贵州大学机械工程学院,贵州贵阳550003) 摘要:表面强化是近年来国内外广泛研究应用的工艺之一。常用的金属表面形变强化方法主要有滚压、内挤压和喷丸等工艺,其强化效果显著,成本低廉。笔者主要概括了表面强化技术的分类、目的和作用,分析了形变强化方法的特点以及目前表面强化主要研究方法的现状和发展趋势。 关键词:表面形变;滚压;内挤压;喷丸 分类号:TG178[著作标引] 文献表识码:A 引言 材料表面处理技术简称材料表面技术,是材料科学的一个重要分支,是在不改变基体材料的成分和性能(或虽有改变而不影响其使用)的条件下,通过某些物理手段(包括机械手段)或化学手段来赋予材料表面特殊性能,以满足产品或零件使用需要的技术和工艺。材料表面技术在工业中的应用,大幅度提高了产品(尤其是金属零件)的性能、质量和寿命,并产生了巨大的经济效益,因而深受各国政府和科技界的重视。 1 表面形变强化原理 通过机械手段(滚压、内挤压和喷丸等)在金属表面产生压缩变形,使表面形成形变硬化层(此形变硬化层的深度可达0.5~1.5mm),从而使表面层硬度、强度提高。 2 表面形变强化工艺分类 表面形变强化主要有喷(抛)丸、滚压和孔挤压等三种工艺。 2.1喷丸强化工艺

喷丸是国内外广泛使用的一种在再结晶温度以下的表面强化方法,可显著提高抗弯曲疲劳、抗腐蚀疲劳、抗应力腐蚀疲劳、抗微动磨损、耐蚀点(孔蚀)能力,它具有操作简单、耗能少、效率高、适应面广等优点,是金属材料表面改性的有效方法。 2.1.1喷丸强化工艺的工作原理 喷丸处理是一种严格控制的冷加工表面强化处理工艺,其工作原理是:利用球形弹丸高速撞击金属工件表面,使之产生屈服,形成残余压缩应力层。形成压缩应力层的目的是预防工件疲劳破坏,把易产生疲劳破坏裂纹部位的抗应力转为压应力,从而有效地控制裂纹扩展。 2.1.2喷丸强化的发展状况 1908年,美国制造出激冷钢丸,金属弹丸的出现不仅使喷砂工艺获得迅速发展,而且导致了金属表面喷丸强化技术的产生。1929年,在美国由Zimmerli等人首先将喷丸强化技术应用于弹簧的表面强化,取得了良好的效果[1]。20世纪40年代,人们就发现了喷丸处理可在金属材料表面上产生一种压缩应力层,可以起到强化金属材料、阻止裂纹在受压区扩展的作用。到了20世纪60年代,该工艺逐步应用于机械零件的强化处理上。20世纪70年代以来,该工艺已广泛应用于汽车工业,并获得了较大的经济技术效益,如机车用变速器齿轮、发动机及其他齿轮均采用了喷丸强化工艺,大幅度提高了抗疲劳强度。 进入20世纪80年代后,喷丸处理技术在大多数工业部门,如飞机制造、铁道机车车辆、化工、石油开发及塑料模具、工程机械、农业部门等推广应用,到了20世纪90年代其应用范围进一步扩大,如电镀前进行喷丸处理可防止镀层裂纹的发生[2]。 最近几年,随着工业技术的迅猛发展和需求,人们对这一操作简单,效果显著的表面处理技术给予了极大的关注,开发了多种新工艺,下面将介绍包括机械喷丸在内的多种新喷丸工艺的原理和特点逐一介绍。 2.1.2.1机械喷丸 大量弹丸在压缩空气的推动下,形成高速运动的弹丸流不断地向零件表面喷射,使金属晶体发生晶粒破碎、晶格扭曲和高密度错位,足够长的时间后,以冷加工的形式使工件表面金属材料发生塑性流动,造成重叠凹坑的塑性变形,在生成凹

生物化学题库及答案

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有 20 种,一般可根据氨基酸侧链(R)的 大小分为非极性侧链氨基酸和极性侧 链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有 疏水性;而后一类氨基酸侧链(或基团)共有的特征是具有亲水 性。碱性氨基酸(pH6~7时荷正电)有两3种,它们分别是赖氨 基酸和精。组氨基酸;酸性氨基酸也有两种,分别是天冬 氨基酸和谷氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋 白质分子中含有苯丙氨基酸、酪氨基酸或 色氨基酸。 3.丝氨酸侧链特征基团是-OH ;半胱氨酸的侧链基团是-SH ;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是氨基,除脯氨酸以外反应产物 的颜色是蓝紫色;因为脯氨酸是 —亚氨基酸,它与水合印三酮的反 应则显示黄色。 5.蛋白质结构中主键称为肽键,次级键有、 、

氢键疏水键、范德华力、二硫键;次级键中属于共价键的是二硫键键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 谷氨酸被缬氨酸所替代,前一种氨基酸为极性侧链氨基酸,后者为非极性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是异硫氰酸苯酯;在寡肽或多肽序列测定中,Edman反应的主要特点是从N-端依次对氨基酸进行分析鉴定。 8.蛋白质二级结构的基本类型有α-螺旋、、β-折叠β转角无规卷曲 和。其中维持前三种二级结构稳定键的次级键为氢 键。此外多肽链中决定这些结构的形成与存在的根本性因与氨基酸种类数目排列次序、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的αa-螺旋往往会中断。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是分子表面有水化膜同性电荷斥力 和。

表面处理标准对照表

附录A SSPC表面处理标准 ? SP-1 溶剂清洗 ? SP-2 手工工具处理 ? SP-3 机动工具处理 ? SP-4 燃烧处理 ? SP-5 彻底喷砂(白金属) ? SP-6 中度喷砂(商用) ? SP-7 轻度喷砂(普通) ? SP-8 浸酸(化学处理) ? SP-9 风化后再以钢丝刷打磨 ? SP-10 彻底喷砂(接白) ? SP-11 机动工具处理至金属表层完全光泽暴露? SP-12 高压水喷射 ? SP-13 混凝土表面处理 ? SP-14 工业喷砂 附录B 表面处理等级 起始锈蚀程度:(图示从左至右分别为B、C、D)? 等级A 氧化层紧密附着于表面 ? 等级B 氧化层开始锈蚀 ? 等级C 氧化层已经锈蚀 ? 等级D 氧化层严重锈蚀,出现麻点

轻度喷砂: 商用喷砂: 近白喷砂: 白金属喷砂: 附录C 国际通用表面处理标准对比

钢结构油漆委员会Steel Structure Painting Council (SSPC) 国家防腐工程师协会National Association of Corrosion Engineers (NACE) 英国标准ISO 8501-1 / BSI BS 7079 瑞典标准Swedish Standard 国标GB-3092 / GB-8923-88

关于表面处理等级 1994年10月,NACE和SSPC发布了用于磨料清理的联合表面处理标准(这些标准大约相当于由最初的瑞典标准发展而来的ISO标准ISO8501-1SO-公布于1988年: NACE NO.I/SSPC-SP5“金属出白级喷砂” 相当于—Sa3“喷砂至可见清洁金属” NACE NO.2/SSPC-SP10“金属近于出白级喷砂” 相当于—Sa21/2“非常彻底的喷砂清理” NACE NO.3/SSPC-SP6“工业级喷砂” 相当于—Sa2“彻底的喷砂清理” NACE NO.4/SSPC-SP7“刷除锈级喷砂” 相当于—Sa1“轻喷砂清理” SSPC-SP1“溶剂清理” SSPC-SP2“手动工具清理” SSPC-SP11 “动力工具清理至裸钢” SSPC-SP8“酸洗” SSPC-SP3“动力工具清理” SSPC-SP11R “动力工具清理维修保养” 一、金属 (1) 新表面 A.钢铁 1.喷砂处理 实践证明,无论是在施工现场还是在装配车间,喷砂处理都是除去锻痕的最有效方法。这是成功使用各种高性能油漆系统的必要处理手段。喷砂处理的清洁程度必须规定一个通用标准,最好有标准图片参考,并且在操作过程中规定并控制表面粗糙度。表面粗糙度取决于几方面的因素,但主要受到所使用的磨料种类及其粒径和施力方法(如高压气流和离心力)的影响。对于高压气流,喷嘴的高压程及其对工件的角度是表面粗糙度的决定因素;而对于离心力或机械喷射方法来说,喷射操作中的速率是非常重要的。喷砂处理完成后必须立即上底漆。所有油脂及污染物必须在上漆前清除。 2.湿喷砂或砂洗 这种方法是使用砂浆及高压水来除去旧漆、锻痕及蚀物。使用这种方法,极大程度上克服了普通喷砂处理中粉尘对健康的危害。同样,表面粗糙度及清洁效率取决于水压及砂浆中磨料的浓度。 这种处理方法的一个主要缺点是清洁好的钢铁表面将立即开始生锈,因此与普通喷砂处理比较,表现出一种较次的表面。要在水中加入阻锈剂但必须十分小心,因为有些阻锈剂会影响随后漆膜的性能。 3.车间预上底钢结构 在车间经过自动喷砂处理并在装配前预上底漆的钢结构,在施以最后的保护性油漆系统前,通常需要进行特殊处理。所有损伤区域,会继续生锈,这些区域必须被重新喷砂处理,或用手工方法彻底清洁至可接受的标准。在施以高性能油漆体系前,通常需要重新喷砂处理,这需要在所有可能的场合做具体的规定。这种处理方法也通常用于焊接及焊接前无法上底漆的钢结构连接部分。 4.酸洗清洁酸洗清洁 是一种古老的车间处理方法,用于除去钢铁的锻痕。目前仍有几个步骤在被使用,通常为一个双重体系包括酸腐蚀及酸钝化。

生物化学 名词解释

四、名词解释 1.peptide unit—肽单元,是指一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水生成的酰胺键称为肽键。参与肽键形成的6个原子(Ca 1、C、O、N、H、Ca2)位于同一平面,Ca 1和C a 2在平面上所处的位置为反式构型,此同一平面上的6个原子构成所谓的肽单元。 2.motif—模体,是具有特殊功能的超二级结构,由两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模体总有其特征性的氨基酸序列,并发挥特殊的功能。 3.cooperativity—协同效应,指一个亚基与其配体(Hb中的配体为O2)结合后,能影响此寡聚体中另一亚基与配体的结合能力。如果能促进作用称为正协同效应;反之,则为负协同效应。 4.electrophoresis—电泳,指带电粒子在电场中向带相反电荷一极泳动的现象。 5.salt precipitation—盐析,指将中性盐加入蛋白质溶液中,使蛋白质水化膜脱去,电荷被中和,导致蛋白质在水溶液中的稳定因素去除而沉淀。 6.分子病—指蛋白质分子中起关键作用的氨基酸残基缺失或被替代,都会严重影响空间构象乃至生理功能,甚至导致疾病产生。这种蛋白质发生变异所导致的疾病,被称之为分子病。其病因为基因突变所致。 7.primary structure of protein—一级结构,是蛋白质分子中,从N-端到C-端的氨基酸排列顺序。 8.chromatography—层析,是蛋白质分离纯化的重要手段之一,待分离蛋白溶液(流动相)经过一种固态物质时,根据溶液中待分离的蛋白质颗粒大小、电荷多少及亲和力等,将待分离的蛋白质组分在两相中反复分配,并以不同的速度流经固定相而达到分离蛋白质的目的。 9.protein coagulation—蛋白质凝固作用,指蛋白质经强酸、强碱作用发生变性后,仍能溶解于强酸或强碱溶液中,若将pH调至等电点,则变性蛋白立即

生物化学知识点总结

生物化学复习题 1. 组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素? 组成生物体的元素共28种 第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素。第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素。 第二章蛋白质 1. 名词解释 (1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物 (2)氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点 (3)蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点 (4)N端与C端:N端(也称N末端)指多肽链中含有游离α-氨基的一端,C端(也称C末端)指多肽链中含有α-羧基的一端 (5)肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽 (6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基 (7)肽单元(肽单位):多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转 (8)结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域。结构域具有以下特点①空间上彼此分隔,具有一定的生物学功能②结构域与分子整体以共价键相连,一般难以分离(区别于蛋白质亚基)③不同蛋白质分子中结构域数目不同,同一蛋白质分子中的几个结构域彼此相似或很不相同 (9)分子病:由于基因突变等原因导致蛋白质的一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病 (10)蛋白质的变构效应:蛋白质(或亚基)因与某小分子物质相互作用而发生构象变化,导致蛋白质(或亚基)功能的变化,称为蛋白质的变构效应(酶的变构效应称为别构效应)(11)蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应,其中具有促进作用的称为正协同效应,具有抑制作用的称为负协同效应 (12)蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,变性的本质是非共价键和二硫键的破坏,但不改变蛋白质的一级结构。造成变性的因素有加热、乙醇等有机溶剂、强碱、强酸、重金属离子和生物碱等,变形后蛋白质的溶解度降低、粘度增加,结晶能力消失、生物活性丧失、易受蛋白酶水解 (14)蛋白质复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可部分恢复其原有的构象和功能,称为复性 2. 问答题 (1)组成生物体的氨基酸数量是多少?氨基酸的结构通式、氨基酸的等电点及计算公式? 组成人体和大多数生物的为20种,结构通式如右图。氨基酸的等电点 指当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相 等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH 即为该氨基酸的等电点,计算公式如下: 中性氨基酸) ' ' ( 2 1 2 1 pK pK pI+ = 一氨基二羧基氨基酸) ' ' ( 2 1 2 1 pK pK pI+ = 二氨基一羧基氨基酸) ' ' ( 2 1 3 2 pK pK pI+ = (2)氨基酸根据R基团的极性和在中性条件下带电荷的情况如何分类?并举例 -1-

材料表面强化技术及应用(毕业设计)

前言 作为古老又新颖的学科,表面强化技术为致力于改善材料表面化学性质、组织机构、应力状态的性质,在人们生活中被广泛应用。通过掺杂、扩散、离子注入、化学沉积、电镀以及电子束等技术改变材料表面性质的研究,使得我们能得到更多表面性质优良的金属,使金属得到叫高的抗腐蚀、抗耐磨性,使工业生产设备及产品使用范围更广[1]。这样,我们能得到更好的表面性质金属及非金属,节约了人类资源,保护和改善了我们的生活环境。材料表面强化技术已经成为了现在制造业最伟大的创造。 追溯至春秋晚期,我国已应用铜器热镀锡和鎏金技术,从工业革命开始到最近50年,材料表面强化技术得到飞速发展。本文吸取现代先进技术的优点,对表面技术的应用进行总结,取其精华,去其糟粕,进行综合陈述及比较。虽然创新很少,但对现有技术的归纳比较在一定程度上更好的促进了表面技术的发展和研究。本论文重点研究现有的表面强化技术以及这些技术的应用,意在归纳总结,学习传承。使得我们能更好的学习和了解这些先进的表面技术,为我们以后的研发和应用做好铺垫。 表面强化技术是表面工程的一个分支,是工程科学技术中一个涉及学科广泛、活力很强、成果突出并与生产实践紧密结合的领域,它渗透到航空航天、信息技术、新材料技术以及先进制造技术等前沿技术的各个方面。从高科技产品到人们日常生活都离不开材料表面强化技术。离子束、激光束、电子束、微波及超高真空技术的开发,引起了表面工程技术研究和应用的热潮,并成为了世界最关键的技术之一[2]。本文对材料表面强化技术及应用的研究进行了探讨。

1 表面强化技术概述 1.1表面强化技术概述 表面工程是一个既古老又新颖的学科,人们使用表面工程技术已有悠久的历史。追溯到几千年前,我国早在春秋战国时期就已经开始应用钢的淬火、铜器热镀锡、鎏金及油漆等古老技术[3]。但是,表面工程的迅速发展还是从19世纪工业革命开始,20世纪80年代成为世界上10大关键技术,进入20世纪90年代发展势头出现工程研究的热潮,几乎涉及了工业的各个领域,表面工程技术仍是将是主导21世纪的关键技术之一。 表面工程是经表面欲处理后,通过表面涂覆、表面改性或表面复合处理,改变固体金属表面或非金属表面的化学成分、组织结构、形态和应力状态等,以获得所需要表面性能的系统工程。它是近代技术与经典表面工艺相结合而繁衍、发展起来的,有着坚实的科学基础,具有明显的交叉、边缘学科的性质和极强的实用性。 1.2 表面技术的概念及意义 表面工程指利用各种物理的、化学的或机械的工艺规程使零件表面获得特殊的材料成分、组织结构和性能,以提高产品质量的工程。它概括了“表面处理”、“表面加工”、“表面涂层”、“表面改性”等内容。表面强化技术是表面工程的核心内容,是决定硬化层的成分、组织结构和性能的关键技术[4]。表面强化技术主要通过各种工艺来增强材料的表面强度、硬度、耐磨性、耐蚀性和物理性能等综合机械性能。应用各种表面强化技术可以充分发挥材料的潜力、节约能源川;制备特殊的表面强化层;提高经济效益。20世纪60~70年代由于电子束、离子束和激光束进入工业领域,进入表面处理领域,各国开始进行开发性研究,使表面处理技术有突破性进展。到90年代形成了新的系统的表面工程技术,出现了表面工程学,极大地推动了各行各业科学技术的进步,各行业的进步又加速了表面工程技术本身的发展。 分段

弹簧喷丸强化技术规范

弹簧喷丸强化技术规范 Revised as of 23 November 2020

弹簧喷丸强化技术规范 1. 范围 本标准适用于以提高和改善弹簧疲劳强度与应力腐蚀断裂强度为目的的喷丸强化工艺技术。包括:圆柱螺旋压缩弹簧和汽车钢板弹簧,其它弹簧的喷丸处理可参照使用。 本标准规定了圆柱螺旋压缩弹簧(简称圆簧)和汽车钢板弹簧(简称板簧)喷丸强化的适用范围、术语、喷丸介质的要求、试片、试片夹具和弧高度测具、技术要求、检验规则与试验方法 等。 2. 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或制定版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于 本标准。 GB/T 6481铸钢丸(标准中未出现) GB/T 1805弹簧术语 GB/T 金属洛氏硬度试验(标准中未出现) GB/T 金属维氏硬度试验第1部分:试验方法(标准中未出现) GSBA69001喷丸弧高度试片 3. 术语和定义 下列术语和定义适用于本标准,其余按GB/T 1805弹簧术语中的规定。 喷丸强化工艺参数 是指弹丸材料、弹丸尺寸、弹丸硬度、弹丸速度、弹丸流量、喷射角度、喷射时间、喷枪或离 心轮至零件表面的距离。 阿尔曼试片(Almen试片) 是用于综合度量喷丸强化工艺参数的一种专用的试片,以下简称试片。 试片夹具 是用于固定试片的工具。 弧高度 试片在弹丸的冲击下表面层发生塑性流变,导致试片向喷丸面呈球面状弯曲。取一平面作为基准面切入变形球面内,则由该基准面至球面最高点之间的距离称为弧高度。 弧高度测具 是用于测定试片经喷丸后在所规定长度范围内产生的弧高度值的一种专用测量工具。 弧高度曲线 在其他的喷丸强化工艺参数不变的条件下,同一类型的试片分别各自接受不同时间的喷丸,获得一组弧高度值f随喷丸时间t(或喷丸次数)变化的数据,由这组数据在弧高值-时间坐标上

生物化学简答题答案

生物化学简答题 1. 产生ATP的途径有哪些试举例说明。 答:产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径。 氧化磷酸化是需氧生物ATP生成的主要途径,是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程。例如三羧酸循环第4步,α-酮戊二酸在α-酮戊二酸脱氢酶系的催化下氧化脱羧生成琥珀酰CoA的反应,脱下来的氢给了NAD+而生成NADH+H+,1分子NADH+H+进入呼吸链,经过呼吸链递氢和递电子,可有个ADP磷酸化生成ATP的偶联部位,这就是通过氧化磷酸化产生了ATP。 底物水平磷酸化是指直接与代谢底物高能键水解相偶联使ADP磷酸化的过程。例如葡萄糖无氧氧化第7步,1,3-二磷酸-甘油酸在磷酸甘油酸激酶的催化下生成3-磷酸甘油酸,在该反应中由于底物1,3-二磷酸-甘油酸分子中的高能磷酸键水解断裂能释放出大量能量,可偶联推动ADP磷酸化生成ATP,这就是通过底物水平磷酸化产生了ATP。 2.简述酶作为生物催化剂与一般化学催化剂的共性及其特性。 (1)共性:用量少而催化效率高;仅能改变化学反应速度,不能改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的 活化能。 (2)特性:酶作为生物催化剂的特点是催化效率更高,具有高度专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。 3.什么是乙醛酸循环,有何生物学意义 乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组

织中尚未发现。乙醛酸循环反应分为五步(略)。总反应说明,循环每转1圈需要消耗两分子乙酰辅酶A,同时产生一分子琥珀酸。琥珀酸产生后,可进入三羧酸循环代谢,或者转变为葡萄糖。 乙醛酸循环的意义分为以下几点:(1)乙酰辅酶A经乙醛酸循环可生成琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。 4. 简述氨基酸代谢的途径。 答:氨基酸代谢的途径主要有三条,一是合成组织蛋白质进行补充和更新;二是经过脱羧后转变为胺类物质和转变为其他一些非蛋白含氮物,以及参与一碳单位代谢等;三是氨基酸脱氨基后生成相应的α-酮酸和氨。其中α-酮酸可以走合成代谢途径,转变为糖和脂肪,也可以走分解代谢途径,氧化为CO2和H2O,并产生能量;氨能进入尿素循环生成尿素排出体外或生成其他一些含氮物和Gln。 5. 简述尿素循环的反应场所、基本过程、原料、产物、能量情况和限速酶、生理意义。 答:尿素循环是在人体肝脏细胞的线粒体和胞液中进行的一条重要的代谢途径。在消耗ATP的情况下,在线粒体中利用CO2和游离NH3先缩合形成氨甲酰磷酸,再与鸟氨酸缩合形成瓜氨酸,瓜氨酸从线粒体中转移到胞液,与另一分子氨(贮存在天冬氨酸内)结合生成精氨酸,精氨酸再在精氨酸酶的催化下水解生成尿素和鸟氨酸,鸟氨酸又能再重复上述反应,组成一个循环途径。因此原料主要为氨(一分子游离氨和一分子结合氨)和二氧化碳;产物为尿素;每生成一分子尿素需要消耗4个ATP,限速酶为精氨酸代琥珀酸合成酶。尿素循环的生理意义是将有毒的氨转变为无毒的尿素,是机体对氨的一种解毒方式。

相关主题
文本预览
相关文档 最新文档