当前位置:文档之家› 第七章--线性变换

第七章--线性变换

第七章--线性变换
第七章--线性变换

MATLAB软件应用第七章线性变换

例1:求矩阵

122

212

221

A

??

??

=??

??

??

的特征值与特征向量,并将其对角化.

解1:建立m文件v1.m如下:

clc

A= [1 2 2;2 1 2; 2 2 1];

E=eye(3);

syms x

f=det(x*E-A) %矩阵A的特征多项式

solve(f) %矩阵A的特征多项式的根,即A的特征值

%所以A的特征值为x1=5,x2=x3=-1.

%(1)当x1=5时,求解(x1*E—A)X=0,得基础解系syms y

y=5;

B=y*E-A;

b1=sym(null(B)) %b1为(x1*E—A)X=0基础解系

%(2)当x2=-1时,求解(x2*E—A)X=0,得基础解系y=-1;

B=y*E-A;

b2=sym(null(B)) %b2为(x2*E—A)X=0基础解系

T=[b1,b2] %所有特征向量在基下的坐标所组成的矩阵

D=T^-1*A*T %将矩阵A对角化,得对角矩阵D

运行结果如下:

f =

x^3-3*x^2-9*x-5

ans =

5

-1

-1

b1 =

sqrt(1/3)

sqrt(1/3)

sqrt(1/3)

b2 =

[ sqrt(2/3), 0]

[ -sqrt(1/6), -sqrt(1/2)]

[ -sqrt(1/6), sqrt(1/2)]

T =

[ sqrt(1/3), sqrt(2/3), 0]

[ sqrt(1/3), -sqrt(1/6), -sqrt(1/2)]

[ sqrt(1/3), -sqrt(1/6), sqrt(1/2)]

D =

[ 5, 0, 0]

[ 0, -1, 0]

[ 0, 0, -1]

解2:建立m文件v2.m如下:

clc

A= [1 2 2;2 1 2; 2 2 1];

d=eig(A) %求全部特征值所组成的向量

[V,D]=eig(A) %求特征值及特征向量所组成的矩阵inv(V)*A*V %A可对角化,且对角矩阵为D

运行结果如下:

d =

-1

-1

5

V =

247/398 1145/2158 780/1351 279/1870 -1343/1673 780/1351 -1040/1351 1013/3722 780/1351 D =

-1 0 0 0 -1 0 0 0 5 ans =

-1 * * * -1 * * * 5

例2:求矩阵

110

430

102

A

-??

??

=-??

??

??

的特征值与特征向量,并判别A

是否可以对角化.

解:建立m文件v3.m如下:clc

a=[-1 1 0;-4 3 0;1 0 2];

[V,D]=eig(a)

det(V)

运行结果如下:

V =

0 881/2158 881/2158

0 881/1079 881/1079

1 -881/2158 -881/2158

D =

2 0 0

0 1 0

0 0 1

ans =

所以矩阵A 不能对角化。

例3:求例1中矩阵A 的迹,并验证11,()n n

i i i i A tr A λλ====∑∏.

解:建立m 文件v4.m 如下:

clc

A= [1 2 2;2 1 2; 2 2 1];

fprintf('矩阵A 的迹=%d\n',trace(A)) %求矩阵A 的迹

d=eig(A) %求矩阵A 的特征值

b=sum(d,1); %矩阵d 元素求和

fprintf('矩阵A 特征根的和=%d',b)

fprintf('\n 矩阵A 的行列式=%d',det(A))

f=prod(d,1); %矩阵d 元素求积,即特征值求积 fprintf('\n 矩阵A 特征根的积=%d',f)

运行结果如下:

矩阵A 的迹=3

d =

-1

-1

5

矩阵A 特征根的和=3

矩阵A 的行列式=5

矩阵A 特征根的积=5>>

例4:对矩阵2121A ??= ?--??

,求矩阵B ,使得2B A = 解:建立m 文件v5.m 如下:

clc

A=[2 1;-2 -1];

[V,D]=eig(A)

B=V*sqrt(D)*inv(V)

B^2

运行结果如下:

V =

985/1393 -1292/2889 -985/1393 2584/2889

D =

1 0

0 0

B =

2 1 -2 -1 ans =

2 1 -2 -1

例5:对实对称矩阵

222

254

245

A

-

??

?

=-

?

?

--

??

,求正交矩阵U,使得T

U AU为

对角矩阵

解:建立m文件v6.m如下:

clc

A=[2 2 -2;2 5 -4;-2 -4 5]; %实对称矩阵A [P,D]=eig(A) %矩阵A的对角化P'*A*P

运行结果如下:

P =

-963/3230 2584/2889 1/3 -963/1615 -1292/2889 2/3 -963/1292 0 -2/3

D =

1 0 0 0 1 0 0 0 10 ans =

1 0 * * 1 * * 0 10

【练习与思考】

1、求下列矩阵的特征值与特征向量,判别能否对角化,若能,将其

对角化

(1)

01

10

A

??

=??

??

(2)

100

213

111

A

??

??

=-??

??

-

??

2、对矩阵

953

043

001

A

-

??

?

= ?

?

??

,求矩阵B,使得2B A

=

数字信号处理期末试卷(含答案)

一、 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ω j e X n x FT =,用)(n x 求出)](Re[ω j e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 二、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列 )1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A. a Z < B. a Z ≤ C. a Z > D. a Z ≥ 3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()(Λ=?=k k Y k X k F ,19,1,0)],([)(Λ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,) ()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

DLT 直接线性变换解法程序

DLT 直接线性变换解法程序介绍 一、程序综合介绍:DLT结算程序 程序功能介绍:应用6个已知点计算左右片l 系数;然后应用已经求得的l系数求解物方空间坐标系坐标 程序名:SuYGDLT 程序界面: 程序界面有四个按钮,分别为读取文件,左片l系数计算,右片系数计算,物放坐标解算程序界面有四个编辑框,分别用来输出文件信息,左片l系数、右片l系数、以及无妨坐标结果 截图如下 程序使用介绍: 必须先点击导入文件按钮,导入文件方可进行正确的计算,如果未导入文件就点击左片平差或右片平差或无妨坐标解算就会弹出如下对话框:

读取数据后点击其它按钮进行其它计算。 程序文件格式: 数据文件分为两部分,KnownPoint,UNKnownPoint,分别代表已知点信息和待求点信息当文件读取程序读到“KnownPoint”时开始读取已知点信息,已知点信息格式如下 GCP1,1214.0000,1032.0000,1046.5180,1071.6652,9.201742,-9.672384,-2.726064 分别代表点名、左片相片X坐标、左片相片y坐标、右片相片x坐标、右片相片y坐标物方坐标X、Y、Z; 当文件读取到“END KnownPoint”时结束已知坐标的读取 待求点信息类似:文件格式截图如下: 程序运行结果与评估: 本程序区1-10号点作为已知点计算l近似值11-20号点作为未知点解求其物方三维坐标;

程序运行结果与所给参考值相似,应该可以证明其运算是正确的,运行结果截图如下: 二、程序编程思想及相关代码 程序编程思想及相关函数: 本程序设计DLTCalculation类作为l系数结算主程序,其成员变量及成员函数与作用介绍如下: CSuLMatrix LL;//左片L系数矩阵 CSuLMatrix RL;//右片L系数矩阵 int m_iKnownPointCount;//已知点个数 CControlPoint *m_pKnownPoint;//已知点 int m_iUnKnownPointCount;//未知点个数 CControlPoint *m_pUnKnownPoint;//未知点 public: CString LoadData(const CString& strFileName);//读取文件函数 int ifLoda;//判断是否导入数据 CString Datainfor;//文件信息存储 CString *SplitString(CString str,char split, int& iSubStrs); //分割函数 void LFormApproL(CSuLMatrix &LL);//计算左片L系数近似值 void RFormApproL(CSuLMatrix &RL);//计算右片L系数近似值 void FormLErrorEquations(CSuLMatrix LL,CMatrix &LM,CMatrix &LW);//组成左片系数矩阵和常数项矩阵 void LAdjust();//左片平差主函数 void FormRErrorEquations(CSuLMatrix RL,CMatrix &RM,CMatrix &RW);//组成右片系数矩阵和常数项矩阵 void RAdjust();//右片平差主函数 void Output(const CString& strFileName);//输出结果主程序

第六章_线性变换_68180769

第六章 线性变换 映射:,X Y ≠?≠?,如果有一个法则σ,它使得X 中每个元素α,在Y 中有唯一确定的元素β与之对应,则称σ为X 到Y 的一个映射,记作:X Y σ→,()σαβ=,β称为α在σ下的象,α称为β在σ下的原象。 注:()(),X στασατα=??∈=对。 变换:一个集合到自身的映射。 线性变换的定义与性质 定义 设V 是数域F 上的线性空间,σ是V 的一个变换,如果满足条件: (1)()()()βσασβασV,α,β+=+∈?; (2)()()k F,αV,k αk σασ?∈?∈=, 则称σ是V 上的线性变换或线性算子。 (1), (2)等价于条件:,,,k l F V αβ?∈∈ ()()()σk αl βk σαl σβ+=+。 例:设σ:n n R R →,定义为()c αασ=,c 为常数。-----数乘 变换或位似变换。 c =0-----零变换,记为o 。 c =1-----恒等变换,记为ε。 例:设σ是把平面上的向量绕坐标原点逆时针旋转θ角的变换 设()()(),,,T T x y x y ασα''==,则

cos sin sin cos x x y y x y θθ θθ'=-??'=+? 记cos sin sin cos A θθθ θ-?? =??? ? ,则()A σαα=是一个线性变换。 例:判断下列变换是否是线性变换 (1) ()()12323,,1,,T T a a a a a σ=; (2) ()()12323,,0,,T T a a a a a σ=; (3) ()()12312231,,2,,T T a a a a a a a a σ=-+; (4) ()()212312 3,,,,3T T a a a a a a σ=. 线性变换的基本性质 (1)()θθσ=; (2)()()ασασ-=-; (3)线性变换保持向量的线性组合关系不变,即若s s αk αk αk β+++=Λ2211,则1122s s βk αk αk ασσσσ=+++L ; 若θ=+++s s αk αk αk Λ2211,则θσσσ=+++s s αk αk αk Λ2211。 (4)线性变换将线性相关的向量组映成线性相关的向量组。 线性变换的运算 ()V L ----线性空间V 上所有线性变换的集合。

Matlab+实现直接线性变换

直接线性变换Matlab实现的程序源代码 function re=DLT(A,B) %imco为像方坐标,输入单位是像素 imco=A; %此处为控制点像方坐标,格式为2×n,单位:像素 %obco为物方坐标,输入单位是毫米 obco=B; %此处为控制点物方坐标,格式为n×3单位:毫米 imco_be=[];B=[];M=[]; for i=1:size(imco,2) imco_be=[imco_be;imco(:,i)]; end for i=1:size(imco,2) A1=[obco(i,:),1,0,0,0,0]; A2=[0,0,0,0,obco(i,:),1]; M=[M;A1;A2]; B1=obco(i,:).*imco_be(2*i-1); B2=obco(i,:).*imco_be(2*i); B=[B;B1;B2]; end M=[M,B]; N=M(1:11,:); L=N\(-imco_be(1:11,:)); X0=-((L(1)*L(9)+L(2)*L(10)+L(3)*L(11))/(L(9)*L(9)+L(10)*L(10)+L(11)*L(11))); Y0=-((L(5)*L(9)+L(6)*L(10)+L(7)*L(11))/(L(9)*L(9)+L(10)*L(10)+L(11)*L(11))); L=[L;0];M3=[];W=[]; for i=1:size(imco,2) xyz=obco(i,:); A=xyz(1)*L(9)+xyz(2)*L(10)+xyz(3)*L(11)+1; r2=(imco_be(2*i-1)-X0)*(imco_be(2*i-1)-X0)+(imco_be(2*i)-Y0)*(imco_be(2*i)-Y 0); M1=[A*(imco_be(2*i-1)-X0)*r2;A*(imco_be(2*i)-Y0)*r2]; M2=-[M(2*i-1:2*i,:),M1]/A; M3=[M3;M2]; W=[W;-[imco_be(2*i-1);imco_be(2*i)]/A]; end WP=M3'*W; NBBN=inv(M3'*M3); LP=-NBBN*WP; v=M3*LP+W; imco_be=imco_be+v; X0=-(LP(1)*LP(9)+LP(2)*LP(10)+LP(3)*LP(11))/(LP(9)*LP(9)+LP(10)*LP(10)+LP (11)*LP(11)); Y0=-(LP(5)*LP(9)+LP(6)*LP(10)+LP(7)*LP(11))/(LP(9)*LP(9)+LP(10)*LP(10)+LP (11)*LP(11)); 1

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

基于直接线性变换算法的普通数码相机检校的应用研究

基于直接线性变换算法的普通数码相机检校的应用研究 孔 建 黄建魏 沈 周 (西南交通大学 四川成都 610031 中铁十局 山东济南 520000) 摘要:本文采用直接线性变换(DLT )算法,完成了普通数码相机检校的应用研究。通过编程实验,解算普通数码相机在不同焦距情况下内方位元素(00,x y ,f )以及畸变参数(径向畸变系数1k ,2k 、偏心畸变系数1p ,2p ),同时对直接线性变换方法中l 初值的问题给出解决方案。提出了解决控制点布设在一个近似平面上解算l 系数初始值的方法,并且依据实验数据分析了在不同焦距下,相机内方位元素和光学畸变参数的变化情况。 关键字:直接线性变换;相机检校;径向畸变;偏心畸变 Abstract In this paper, to complete a common application of digital camera calibration by using the direct linear transformation algorithm. This paper have solved different elements of interior orientation (00,x y ,f )and distortion parameters (Radinal Distortion 1k , 2k ,Decentering Distortion 1p ,2p )of ordinary digital camera focal length by the programming experiments and meanwhile, put forward the solutions of the initial value problem in the direct linear transformation method. Proposed a solution in an approximate control points for solving plane initial value coefficient method, and analyzed the changes of the camera orientation elements and optical distortion parameters in the base of experimental data at different focal lengths. 1 概述 在数字摄影测量中,数字影像的获取,通常采用的是专业的摄影设备。这些专业设备的价格昂贵,对非专业部门是无法应用的。随着数码相机技术的发展与进步,普通数码相机在数字摄影测量领域中得到了广泛的应用,尤其是在近景数字摄影测量、无人机低空摄影测量的应用中,表现出了巨大的优势。普通数码相机不仅价格便宜,且操作方便,是专业摄影机不能比拟的。随着数码相机技术的

35 直接线性变化的基本原理和解算方法.

立体摄影测量的基本原理 421 0011 0010 1010 1101 0001 0100 1011 3.5 直接线性变化的基本原理和解算方法

4 2 1 0011 0010 1010 1101 0001 0100 1011 一、直接线性变化的关系式 111333222333s s s i i i ()()()0()()()()()()0()()(),,,,s a b c i f s s s s s s s s s s s s a X X b Y Y c Z Z x f a X X b Y Y c Z Z a X X b Y Y c Z Z y f a X X b Y Y c Z Z X Y Z X Y Z -+-+-?+=? -+-+-? ? -+-+-? +=?-+-+-? 中心构像方程: 其中:为物点的空间坐标 为光心的空间坐标 ,,(=1,2,3)旋转矩阵 所测x y 像片的主距 ,像点在摄影坐标系的坐标

4 2 1 0011 0010 1010 1101 0001 0100 1011 直接线性变化法 ?直接线性变换(DLT —Direct Linear Transformation )算法是直接建立像点坐标与物点空间坐标关系式的一种算法。 ?该算法在机算中,不需要内、外方位元素。而直接通过像点解算物点。

4 2 1 0011 0010 1010 1101 0001 0100 1011 二、线性误差的修正 1、线性误差: ?底片均匀变形、不均匀变形 ?畸变差 ?x ,y 坐标轴不垂直 2、线性修正?系数 假设主点坐标为(0,0)

利用双线性变换求其离散传递函数

1 设计背景 (1) 1.1 设计目的 (1) 1.2 设计内容和要求 (1) 1.3 设计工作任务及工作量的要求 (1) 2 双线性变换及其原理 (2) 2.1 双线性变换的定义 (2) 2.2 双线性变换的原理 (2) 2.2.1 公式的推导 (2) 2.2.2 公式的验证 (2) 2.2.2 设计步骤 (4) 2.3 双线性变换的主要特性 (6) 3 计算机实现程序框图 (7) 4 理论计算 (8) 5 程序验证 (10) 6 结果分析 (11) 参考文献 (13) 附表程序清单 (14)

1 设计背景 1.1 设计目的 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,利用双线性变换求连续系统对应的离散化的系统,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统的离散化的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的设计工具。 1.2 设计内容和要求 1 在理论上对连续系统采用双线性变换求离散化推导出算法和计算公式。 2 画出计算机实现算法的框图。 3 编写程序并调试和运行。 4 以下面的系统为例,进行计算。 已知系统闭环传递函数) 2)(1(4 )(++=s s s s G ,利用双线性变换求其离 散传递函数。 5 分析运算结果(离散化步长对系统性能的影响)。 6 程序应具有一定的通用性,对不同参数能有兼容性。 1.3 设计工作任务及工作量的要求 1 本次课程设计要求每周学生至少见指导教师4次,其中集中辅导答疑部不于3次。 2 设计说明书的格式按设计说明书格式要求,采用word 软件排版,计算机打印。(具体包括:封皮、目录、正文、参考文献等) 3 程序清单用A4纸打印后,作为附录订装在说明书后面。 4 框图和其他图表放在正文中。

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

混沌特性时间序列线性变换理论方法及其应用

文章编号:167422974(2009)022******* 混沌特性时间序列线性变换理论方法及其应用 Ξ 鄂加强,王春华 ,彭 雨,李 娟,龚金科,朱 浩 (湖南大学机械与运载工程学院,湖南长沙 410082) 摘 要:通过对时间序列的相空间的重构,用G-P 算法、Wolf 算法证明了混沌时间序列经过线性变换后其关联维数、Lyapunov 指数以及K olmogorov 熵大小不变,从而得出了线 性变换后混沌时间序列的混沌特性保持不变的结论.同时将这一理论和热力学中的相似实验相结合,验证了实验模型系统进入混沌则实际系统必也能够在相应时刻进入混沌状态.该结论被成功应用到对汽包水位晃荡幅值的测量当中,验证了汽包水位的晃荡幅值具有混沌特性,并成功地对该时间序列进行了预测. 关键词:时间序列;混沌;相空间重构;相似原理 中图分类号:O415.5;T K223.13 文献标识码:A Analysis and Application of the Chaos Character of Time Series after Linear Transformation E Jia 2qiang ,WAN G Chun 2hua ,PEN G Yu ,L I J uan ,GON G Jin 2ke ,ZHU Hao (College of Mechanical and Vehicle Engineering ,Hunan Univ ,Changsha ,Hunan 410082,China ) Abstract :Based on the phase space reconstruction ,the conclusion that the correlative dimension and the Lyapunov exponents of the time series remain unchanged has been proved with G-P algorithm and Wolf algo 2rithm.And this new theory has also proved the establishment of similar experiments for chaos system.Such conclusion has been successfully applied to the analysis of the amplitude of the sloshing of the water level of drum boiler with chaos character.Meanwhile ,the time series have been successfully forecasted. K ey w ords :time series ;chaos ;phase space reconstruction ;the similar principle 自Lorenz [1]1963年发现第一个混沌吸引子以来,混沌理论得到了飞速的发展.混沌理论研究复杂 系统对于初始状态的极度敏感依赖性[2]、拓扑传递性及其系统内部的复杂结构,已经在医学、电路分析、激光研究等领域取得了广泛的应用[3].系统混沌程度越强,系统越复杂.通常描述系统动力学行为是否具有混沌特性的方法主要有:准相图、poincare 截面、饱和关联维数(系统复杂程度的估计量)、Lya 2punov 指数(系统的特征指数)以及K olmogorov 熵(动力系统的混沌水平)等5种[4]. 以相似原理为基础的模型实验方法在流体力学 等各学科中有着广泛的应用,例如,通过飞机模型在风洞中的实验去探索飞机的气动特性;通过舰船模型在试验水池中的实验去研究舰船的阻力特性;通过推进器模型在水洞中的实验去研究推进器的动力特性[5].在许多情况下,由于各方面条件的限制,不可能对原系统进行混沌特性的分析,只能进行相似实验,然而相似实验中,系统的混沌特性参数是否会发生变化这一问题一直鲜有学者探究. 本文主要通过计算饱和关联维数、Lyapunov 指数以及K olmogorov 熵证明了混沌序列线性变换后混沌特性不变,并利用Lorenz 混沌系统方程进行了 Ξ收稿日期:2008-09-11 基金项目:湖南省自然科学基金资助项目(06JJ50103) 作者简介:鄂加强(1972-),男,湖南湘潭人,湖南大学副教授,硕士生导师 通讯联系人,E 2mail :wchhx1987@https://www.doczj.com/doc/b514297798.html, 第36卷 第2期2009年2月 湖南大学学报(自然科学版)Journal of Hunan University (Natural Sciences )Vol.36,No.2Feb 12009

线性代数之线性变换的解释

最近想知道特征值、特征值到底有什么物理意义,搜到了这篇文章,共享一下。。。 来源:孙哲的日志 [1. 特征的数学意义] 我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为 x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换。我们可以把原坐标系的(x,y)乘以一个矩阵,得到一个新的(x',y')的表示形式,写为算子的形式就是(x,y)*M=(x',y')。这里的矩阵M代表一种线性变换:拉伸,平移,旋转。那么,有没有什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(x,y)*b像是一个数b乘以了一个数字m*b? 换句话说,有没有这样的矢量b,使得矩阵A*b这样的线性变换相当于A在矢量b上面的投影m*b? 如果有,那么b就是A的一个特征向量,m就是对应的一个特征值。一个矩阵的特征向量可以有很多个。特征值可以用特征方程求出,特征向量可以有特征值对应的方程组通解求出,反过来也一样。例如,设A为3阶实对称矩阵,a1=(a,-a,1)T是Ax=0的解, a2=(a,1,-a)T是(A+E)x=0的解,a≠2,则常数a=? 因为a1=(a,-a,1)T 是Ax=0的解,说明a1=(a,-a,1)T是A的属于0的特征向量, a2=(a,1,-a)T是(A+E)x=0的解,说明a2=(a,1,-a)T是A的属于-1 的特征向量。实对称矩阵属于不同特征值的特征向量式正交的,所以a^2-a-a=0,a≠2,所以a=0。

还是太抽象了,具体的说,求特征向量的关系,就是把矩阵A所代表的空间,进行正交分解,使得A的向量集合可以表示为每个向量a 在各个特征向量上面的投影长度。例如A是m*n的矩阵,n>m,那么特征向量就是m个(因为秩最大是m),n个行向量在每个特征向量E 上面有投影,其特征值v就是权重。那么每个行向量现在就可以写为Vn=(E1*v1n,E2*v2n...Em*vmn),矩阵变成了方阵。如果矩阵的秩更小,矩阵的存储还可以压缩。再: 由于这些投影的大小代表了A在特征空间各个分量的投影,那么我们可以使用最小2乘法,求出投影能量最大的那些分量,而把剩下的分量去掉,这样最大限度地保存了矩阵代表的信息,同时可以大大降低矩阵需要存储的维度,简称PCA 方法。 举个例子,对于x,y平面上的一个点(x,y),我对它作线性变换,(x,y)*[1,0;0,-1],分号代表矩阵的换行,那么得到的结果就是(x,-y),这个线性变换相当于关于横轴x做镜像。我们可以求出矩阵[1,0;0,-1]的特征向量有两个,[1,0]和[0,1],也就是x轴和y轴。什么意思呢? 在x轴上的投影,经过这个线性变换,没有改变。在y轴上的投影,乘以了幅度系数-1,并没有发生旋转。两个特征向量说明了这个线性变换矩阵对于x轴和y轴这两个正交基是线性不变的。对于其他的线性变换矩阵,我们也可以找到类似的,N个对称轴,变换后的结果,关于这N个对称轴线性不变。这N个对称轴就是线性变换A的N个特征向量。这就是特征向量的物理含义所在。所以,矩阵A等价于线性变换A。

论文-第二章近景摄影测量的理论-2.3直接线性变换解法

2.3直接线性变换解法 直接线性变换 (Direct Linear Transformation)解法是建立像点坐标仪坐标和相应物点物方空间坐标之间直接的线性关系的算法。这里,坐标仪坐标是指坐标仪上坐标的直接读数,是指无需化算到以像主点为原点的坐标仪上的坐标读数。直接线性变换解法,因无需内方位元素值和外方位元素的初始近似值,故特别适用于非量测相机所摄影像的摄影测量处理。直接线性变换解法具有两个显著的特点:一是由像空间坐标直接变换到物空间坐标,因此不需要任何内、外方位元素的初值;二是直接使用原始的影像坐标作为观测值,因此可以进行有效的系统误差的补偿。 2.3.1直接线性变换解法的基本关系式 直接线性变换解法于1971年提出,现将几何概念清晰且便于深入分析的一种方法介绍如下。 直接线性变换(DLT)解法,原则上也是从共线条件方程式演绎而来的。按共线 条件方程式: ()()()()()()()()() ()()()S A S A S A S A S A S A S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a f y y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x x x -+-+--+-+--=?+--+-+--+-+--=?+-333222 03331110 把非量测相机所摄像片安置在某坐标仪上,如图2.1所示,假设上式中的系统误差改正数(,x y ??)暂时仅包含坐标轴不垂直性误差d β和比例尺不一误差ds 引起的线性误差改正数部分。坐标仪坐标系c xy -是非直角坐标系,其两坐标轴之间的不垂直度为d β。以像主点o 为原点有两个坐标系,分别是直角坐标系 o xy -和非直角坐标系o xy -。像主点o 在c xy -内的坐标为(00,x y )。某像点'p 的坐标仪坐标为(,x y ),点'p 在非直角坐标系o xy -中的坐标为(21,'om om ),此坐标受d β和ds 的影响而包含线性误差。与点'p 相应的点p 是理想位置,它在直角坐标系o xy -中的坐标(,x y )不含误差。这里21,x on y on ==。 假设x 向无比例尺误差(x 方向比例尺归化系数为1),而y 方向比例尺归化系数为 1ds +。此时x 向像片主距若为x f ,则y 向像片主距y f 为: 1x y f f ds = +

利用双线性变换求其离散传递函数

课程设计报告 学生姓名:学号: 学院: 班级: 题目: 专业方向课程设计 仿真组-利用双线性变换求其离散传 递函数 指导教师:孟杰姜文娟职称: 副教授讲师 2017年 1月 13日

目录 1.题目背景与意义 (1) 2.设计题目介绍 (1) 2.1 设计内容和要求 (1) 2.2设计工作任务及工作量的要求 (1) 3 双线性变换法 (1) 3.1 双线性变换的定义 (1) 3.2 双线性变换法的优缺点 (2) 3.2.1 双线性变换法的优点 (2) 3.2.2 双线性变换法的缺点 (2) 3.2 双线性变换的原理 (2) 3.3双线性变换的主要特性 (2) 4 设计步骤 (3) 5 理论计算 (5) 6 结果分析 (6) 参考文献 (10) 附录1 程序清单 (11) 附录2 计算机实现程序框图 (17)

1.题目背景与意义 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,利用双线性变换求连续系统对应的离散化的系统,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统的离散化的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的设计工具。 2.设计题目介绍 2.1 设计内容和要求 1 在理论上对连续系统采用双线性变换求离散化推导出算法和计算公式 2 画出计算机实现算法的框图 3 编写程序并调试和运行 4 以下面的系统为例,进行计算 已知系统闭环传递函数) 2)(1(4 )(++=s s s s G ,利用双线性变换求其离 散传递函数。 5 分析运算结果(离散化步长对系统性能的影响) 6 程序应具有一定的通用性,对不同参数能有兼容性。 2.2设计工作任务及工作量的要求 1 本次课程设计要求每周学生至少见指导教师2次,其中集中辅导答疑部不于3次。 2 设计说明书的格式按设计说明书格式要求,采用word 软件排版,计算机打印。(具体包括:封皮、目录、正文、参考文献等) 3 程序清单用A4纸打印后,作为附录订装在说明书后面。 4 框图和其他图表放在正文中。 3 双线性变换法 3.1 双线性变换的定义 双线性变换法又称突斯汀(Tustin )法,是一种基于梯形积分规则的数字积分变换方法。

1.什么是线性空间什么是线性变换线性变换

1. 什么是线性空间?什么是线性变换?线性变换的秩如果小于空间的维数将会怎样?平方的秩? 2. 描述一下密度矩阵的特征,纯态和混合态的区别(表现在密度矩阵的秩) 3. 什么是U 变换,U 变换对应的矩阵满足什么样的特点。U 矩阵一定是可对角化的吗?对应欧氏空 间的正交变换有什么特点?正交变换对应的矩阵的矩阵元一定是实的吗? 4. 什么是厄米算符,厄米算符的物理意义?对应的矩阵具有什么样的特点?厄米算符的本征值具有 什么样的特征?厄米算符对应的矩阵的矩阵元是实的吗?厄米算符是否可以表示成实矩阵,特点是什么?互相对易的厄米算符具有共同的本征态,具有共同本征态的算符一定是对易的吗?具有共同本征值的呢?厄米算符的和是厄米算符吗?厄米算符的乘积呢?直积呢?不对易的厄米算符一定不可交换吗? 5. exp (A )exp (B )=exp (A+B )?LnA 怎么计算? 6. 简单介绍一下三种picture 的物理意义,态的特征,算符的特征。为什么采用这三种picture ,只有 这三种picture 吗?你觉得相互作用picture 可以用在什么地方?Heisenberg picture 的波函数不随时间演化,本征态呢?与哈密顿量对易算符的本征态呢?本征值怎么样? 7. 传播子的物理意义?路径积分与惠更斯原理有什么联系吗?两个光子能够叠加吗?最小作用原 理和路径积分的联系。 8. 什么是态的纠缠?什么是直积态? 9. 量子力学的五大假设是什么?什么是测量假设?测量假设可以从量子力学的其它假设推导出来 吗?能够从态演化过程推导出来吗?它是一个物理过程吗? 10. EPR 佯谬讲了一些什么内容?说明了什么物理本质? 11. Bell 不等式怎么写?它有什么作用?2),(),(),(),(≤-++=''''b a b a b a b a u u E u u E u u E u u E S 12. 在quantum teleportation 中,对于粒子1的初态10βαψ+=,如果根据粒子1和2的Bell 基测 量结果推知粒子3的量子态为10βαψ-=,10αβψ+=以及10αβψ-=,怎么样才能是粒子3的态恢复到粒子1原来的量子态? 13. 什么是定态? 第二次作业中的2.2题中的(e)小问, 为什么在上一次测量x μ得到0μ+之后隔一个时间间隔t ?再测量x μ,得到0μ+的几率并不完全等于1? 1). 若体系的H 不显含时间t ,在初始时刻(t=0)体系处于某一个能量本征态)()0,(E ψψ=,其中),(),(t r E t r H E E ψψ=,则 ]/exp[)(),( iEt t E -=ψψ

线性变换的定义

第七章 线 性 变 换 § 1 线性变换的定义 上一章我们看到,数域 P 上任意一个 n 维线性空间都与n P 同构,因之,有限维线性空间的同构可以认为是完全清楚了.线性空间是某一类事物从量的方面的一个抽象.我们认识客观事物,固然要弄清它们单个的和总体的性质,但是更重要的是研究它们之间的各种各样的联系.在线性空间中,事物之间的联系就反映为线性空间的映射.线性空间到自身的映射通常称为的一个变换.这一章中要讨论的线性变换就是最简单的,同时也可以认为是最基本的一种变换,正如线性函数是最简单的和最基本的函数一样. 线性变换是代数的一个主要研究对象. 下面如果不特别声明,所考虑的都是某一固定的数域P 上的线性空间. 定义 1 线性空间 V 的一个变换 A 称为线性变换,如果对于V 中的任意的元素αβ,和数域中任意数k ,都有 ()()A A αβαβ+=+ ()()A k kA αα= (1) 以后我们一般用黑体答谢拉丁字 A , B ,…代表 V 的变换,()A k α或()A α代表 元素α在变换下的象. 定义中等式(1)所表示的性质,有时也说成线性变换保持向量的加法与数量乘法. 问题1: 线性变换与线性同构有什么异同? 下面我们来看几个简单的例子 ,它们表明线性变换这个概念是有丰富的内容的. 例 1 平面上的向量构成实数域上的二维线性空间 . 把平面围绕坐标原点按反时针方向旋转θ角,就是一个线性变换,我们用I θ表示。如果平面上一个向量α在直角坐标系下的坐标是(,)x y ,那么象I θα()的坐标,即旋转θ角之后的坐标是(,)x y ''按照公式 cos sin sin cos x x y y θθθ θ'-??????= ? ???'?????? 来计算的.同样地,空间中绕轴的旋转也是一个线性变换. 例 2 设α是几何空间中一固定的非零向量,把每个向量ξ变到它在α上的内映射的变换也是一个线性变换,以α∏表示它.用公式表示就是 (,)()(,) ααξξααα∏= 这里(,)αξ表示内积. 例 3 线性空间 V 中的恒等变换或称单位变换 E ,即 ()E αα= ()V α∈ 以及零变换0,即 0()0α= ()V α∈ 都是线性变换. 例 4 设V 是数域P 上的线性空间,k 是P 中某个数 ,定义V 的变换如下: ,k αα→ ()V α∈ 不难证明,这是一个线性变换,称为由数 k 决定的数乘变换,可用k 表示.显然,当k=1时,我们便得恒等变换,当k=0时,便得零变换. 例 5 在线性空间[]P x 或者[]n P x 中,求微商是一个线性变换.这个变换通常用D 代表,即11220r r k k k ααα+++=, (())()D f x f x '= 例 6 定义在闭区间[a,b ]上的全体连续函数组成实数域上一线性空间,以C (a,b )代表.在这个空间中,变换

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出: ?? ? ?? ? ?+++=+++=+++=. , , 22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ??? ??? ? ??=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ?? ?+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

DLT算法

DLT 算法 1. DLT 的基本公式 由空间射影定理所知:坐标变换时点的齐次坐标的变换是以线性齐次关系表示的,即为:?? ? ???? +++=+++=+++=+++=443424141433323131423222122413121111''''x D x C x B x A x x D x C x B x A x x D x C x B x A x x D x C x B x A x (2-1) 如用非齐次坐标来表示射线变换公式,则可用式(2-1)中的第四个式子逐项去除前三个式子,并令 ' '',''',''',,,434241434241x x z x x y x x x x x Z x x Y x x X ======(2-2) 将式(2-2)代入式(2-1),可得: ??? ?????? ++++++=++++++=++++++= 444433334444222244441111'''D Z C Y B X A D Z C Y B X A z D Z C Y B X A D Z C Y B X A y D Z C Y B X A D Z C Y B X A x (2-3) (2-3)式为射影测量中表示三维的射影变换,如若表示二维的射影变换,即点)',','(z y x 满足某一平面方程,设这一平面方程为0'''=+++d cz by ax ,即'z 能由'x 、'y 表示,即(2-3)式中前两式与(2-3)式中三式等价。 当(2-3)式中前两式分子、分母同除以4D ,即有下式成立: ??? ???? ++++++=++++++=1'1'111098765 111094321Z L Y L X L L Z L Y L X L y Z L Y L X L L Z L Y L X L x (2-4) 式(2-4)即为直接线性变换的基本公式,形式上与由共线条件方程导出的完全一样,但它比惯用的共线条件方程式具有一般的意义。 从整个推导过程可知,式中包含有11个L 系数是客观存在且相互独立的。要解求11个L 系数,至少需6个控制点。 2、内方位元素的意义 1)0x 、0y 的解算 在式(2-4)中,当0111109=+++Z L Y L X L 时,所有满足此方程的点成像在无穷远点,可见这是一个通过透视中心且与像平面平行的平面。 当04321=+++L Z L Y L X L ,08765≠+++L Z L Y L X L ,0111109≠+++Z L Y L X L ,

相关主题
文本预览
相关文档 最新文档