当前位置:文档之家› 空间向量计算距离与角度

空间向量计算距离与角度

空间向量计算距离与角度
空间向量计算距离与角度

【例1】 在正方体1111ABCD A B C D -中,1111111

44

A B B E D F ==

=,求1BE 与1DF 所成角的余弦值.

【例2】 直三棱柱111ABC A B C -中,1111BC AC BC AB ⊥⊥,.求证:11

AB AC =.

【例3】 如图所示,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥平面

ABCD ,1

12

SA AB BC AD ====

,.求面SCD 与面SBA 所成的二面角的正切值.

C 1

B 1

A 1

C

B

A D

C

B

A S

典例分析

板块四.用空间向量计算距离

与角度

【例4】 已知(023)A ,,,(216)B -,,,(115)C -,,,求方向向量为(001)j =,,直线与平

面ABC 所成角的余弦值.

【例5】 已知平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=,

60BAA DAA ''∠=∠=°,90BAD ∠=°,求AC '的长

【例6】 如图直角梯形OABC 中,π

2

COA OAB ∠=∠=

,2OC =,1OA AB ==,SO ⊥平面OABC ,1SO =,以OC 、OA 、OS 分别为x 轴、y 轴、z 轴建立直角坐标系O xyz -.

⑴求SC 与OB 的夹角α的大小(用反三角函数表示); ⑵设(1)n p q =,,,满足n ⊥平面SBC ,求 ①n 的坐标;

②OA 与平面SBC 的夹角β(用反三角函数表示); ③O 到平面SBC 的距离.

【例7】 如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,

G 在AD 上,且4PG =,1

3

AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点.

⑴求异面直线GE 与PC 所成的角的余弦值; ⑵求点D 到平面PBG 的距离;

⑶若F 点是棱PC 上一点,且DF GC ⊥,求

PF

FC

的值. D '

C '

B 'A 'D

C

B

A

C

B

A

O

S

【例8】 已知E F ,

分别是正方体1111ABCD A B C D -的棱BC 和CD 的中点,求 ⑴1A D 与EF 所成角的大小; ⑵1A F 与平面1B EB 所成角的大小; ⑶二面角11C D B B --的大小.

【例9】 长方体1111ABCD A B C D -中,4AB BC ==,E 为11

AC 与11B D 的交点,F 为1BC 与1B C 的交点,又AF BE ⊥,求⑴长方体的高1BB ;⑵二面角B AF C --的大小.

【例10】 如图:在空间四边形ABCD 中,AB 、BC 、BD 两两垂直,且2AB BC ==,E 是

AC 的中点,异面直线AD 和BE

所成的角为⑴BD 的长度;⑵二面角D AC B --的余弦值.

【例11】 如图,直三棱柱111ABC A B C -中,AB AC ⊥,D 、E 分别为1AA 、1B C 的中点,

DE ⊥平面1BCC

⑴证明:AB AC =.

⑵设二面角A BD C --为60?,求1B C 与平面BCD 所成角的大小.

P

G

F

E

D

C

B

A

E

D

C

B

A

【例12】 如图,在直三棱柱111ABC A B C -中,12AA BC AB ===,

AB BC ⊥,求二面角11

1B AC C --的大小.

【例13】 如图,直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=?,侧棱

12AA =,D 、E 分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD

?的垂心G .

⑴求1A B 与平面ABD 所成角的余弦值; ⑵求点1A 到平面AED 的距离.

【例14】 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD

,AD =,

2DC SD ==.点M 在侧棱SC 上,60ABM ∠=?.

⑴证明:M 是侧棱SC 的中点; ⑵求二面角S AM B --的大小.

E

D

C 1

B 1

A 1

C

B

A

C 1

B 1

A 1

C

B

A

1

A

【例15】 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂

直且DE ED AF ∥且90DAF ∠=?. ⑴求BD 和面BEF 所成的角的余弦;

⑵线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.

【例16】 如图,在空间四边形OABC 中,8645OA AB AC BC ====,

,,,45OAC ∠=°,60OAB ∠=°,求OA 与BC 的夹角的余弦值.

【例17】 如图,在三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,E 为棱1CC 上异于C 、1

C 的一点,1EA EB ⊥

,已知AB =12BB =,1BC =,1π

3

BCC ∠=

, 求:⑴异面直线AB 与1EB 的距离; ⑵二面角11A EB A --的平面角的正切值.

M

S

D C

B

A

P F

E D

C

B

A

C

B

A

O

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

全国高中数学优秀课评选:《9.6空间向量的夹角和距离公式》教学设计教案或说明

1 9.6空间向量的夹角和距离公式 三维目标: 知识与技能: ⒈使学生知道如何建立空间直角坐标系,掌握向量的长度公式、 夹角公式、两点间距离公式、中点坐标公式,并会用这些公式 解决有关问题; ⒉使学生经历对从生活中如何抽象出数学模型的过程,从而提高 分析问题、解决问题的能力. 过程与方法: 通过采用启发探究、讲练结合、分组讨论等教学方法使学生在 积极活跃的思维过程中,从“懂”到“会”到“悟”. 情感、态度和价值观:⒈通过自主探究与合作交流的教学环节的设置,激发学生的学习 热情和求知欲,充分体现学生的主体地位; ⒉通过数形结合的思想和方法的应用,让学生感受和体会数学的 魅力,培养学生“做数学”的习惯和热情. 教学重点:夹角公式、距离公式. 教学难点:数学模型的建立. 关键: 将生活中的问题转化为数学问题,建立恰当的空间直角坐标系,正确写出空 间向量的坐标. 教具准备:多媒体投影,实物投影仪. 教学过程: (一) 创设情境,新课导入 2008年5月16日,南昌可以说是万人空巷,大家都把自己的爱国热情聚集在圣火的传递上,让我们值得骄傲的是火炬传递中的一站就是我们的南昌大学,其中途经我市雄伟而壮观的生米大桥,为记录传递过程,我校派了小记者在船上进行全景拍摄,出现了这么一个问题. 引例:在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? C 1 A

2 (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 今天我们从另一个角度来分析这个问题. 分析:建立数学模型 问题(1)转化为:如何求空间中两点间的距离? 问题(2)转化为:如何求空间中两条直线所成角的余弦值? 1、空间两点间的距离公式 111222(,,)(,,),A x y z B x y z 已知:,则 ()212121,,AB x x y y z z =--- (AB AB AB x =?= ,A B d =2、夹角公式 设()()111222,,,,,a x y z b x y z ==, 则,a OA b OB = = cos ,a b a b a b ?<>== (二)例题示范,形成技能 例1: 在离江面高30米的大桥上,火炬手由东向西以2 m/s 的速度前进,小船以1 m/s 的速度由南向北匀速行驶,现在火炬手在桥上1D 点以东30米的1C 点处,小船在水平D 点以南方向30米的A 处(其中1D D ⊥水面) 求(1)6s 后火炬手与小船的距离? (2)此时的视线与开始时的视线所成角的余弦值? (不考虑火炬手与小船本身的大小). 解:建立如图空间直角坐标系, x y z O 111(,,) A x y z 222(,,) B x y z a a b

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

空间向量在立体几何中的应用——夹角的计算习题-详细答案

【巩固练习】 一、选择题 1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 湛江校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

(完整版)空间向量的夹角、距离计算同步练习题(教师版).doc

空间向量的夹角、距离计算同步练习题 一、选择题 1. 已知 (2 , -5,1) , (2 , -2,4) , (1 ,-4,1) ,则直线 与 AB 的夹角为( C ) A B C AC A.30 0 B.45 0 C.600 D.90 0 2. 已知向量 a = (0 ,2, 1) , b = ( - 1, 1,- 2) ,则 a 与 b 的夹角为 ( ) A . 0° B . 45° C .90° D . 180° 解析:选 C.已知 a =(0 , 2, 1) , b = ( -1, 1,- 2) ,则 cos 〈 a , b 〉= 0,从而得出 a 与 b 的夹角为 90° . 3. 如果平面外一条直线和它在这个平面上的投影的方向向量分别是 a =( 0,2,1 ),b =( , , ),那么这条 直线与平面的夹角为 ( D ) A.90 0 B. 60 0 C.45 0 D. 30 4. 边长为 a 的正六边形 ABCDEF 所在平面为 α, PA ⊥ α 且 PA = a ,则 PC 与 α 所成的角为 ( A ) A.30° B.60° C.45° D.90° 5.在棱长为 a 的正方体 -1111中,是 1 的中点,则点 1 到平面 的距离是 ( ) ABCD A B CD M AA A MBD 6 30 3 6 A. B. a C. D. a 6 a 6 4 a 3 D a A ( a, 0 a ) A ( a, 0,0) M 1 B ( a a, 0) 解析: 以 为原点建立空间直角坐标系, 正方体棱长为 a , 0, a , ,则1 , , , , , 2 → → → 0,- 1 → 1 D (0,0,0) ,设 n = ( x ,y ,z ) 为平面 BMD 的法向量,则 n · BM =0,且 n ·DM = 0,而 BM = a , ,DM = a , 0, 2a 2a . 1 1 - y + 2z = 0, y = 2z , 令 z = 2,则 n = ( - 1,1,2) → ,a ) ,则 A 到平面 所以 所以 ,DA =( a, 0 1 1 1 1 x +2z = 0, x =- 2z , 的距离是 → = 6 . 答案: A = | DA ·n | BDM d 1 6 a | n | 6. 已知向量 n =( 1,0 , -1 )与平面 α垂直,且 α经过点 A ( 2,3,1 ),则点 P (4,3,2 )到 α的距离为 ( B ) A. 1 B. C. D. 2 7. 正方体 ABCD — A 1B 1C 1D 1 的棱长为 1, O 是 A 1C 1 的中点,则 O 到平面 ABC 1D 1 的距离为( A ) A. B. C. D. 8.若直线 l 的方向向量与平面 α 的法向量的夹角等于 120°,则直线 l 与平面 α 所成的角等于 ( ) A .120° B .60° C .30° D .60°或 30° 解析:选 C. 由题意得直线 l 与平面 α 的法向量所在直线的夹角为 60°,∴直线 l 与平面 α 所成的角为 90°- 60°= 30°. 9.设 , 都是边长为 1 的正方形,⊥面 ,则异面直线 与 BF 所成的角等于 ( ) ABCD ABEF FA ABCD AC A .45° B .30° C .90° D .60° 解析:选 D.以 B 为原点, BA 所在直线为 x 轴, 所在直线为 y 轴, BE 所在直线为 z 轴建立空间直角坐标系 ( 图 BC → → → → 1 → → 略 ) ,则 A (1,0,0) ,C (0,1,0) ,F (1,0,1) ,∴ AC = ( - 1,1,0) ,BF = (1,0,1) .∴ cos 〈 AC ,BF 〉=- 2. ∴〈 AC ,BF 〉 1

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

空间向量的夹角、距离计算

空间向量的夹角、距离计算 1.已知A (2,-5,1),B (2,-2,4),C (1,-4,1),则直线AC 与AB 的夹角为( ) A.300 B.450 C.600 D.900 2.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为( ) A .0° B .45° C .90° D .180° 3. 如果平面外一条直线和它在这个平面上的投影的方向向量分别是a =(0,2,1),b =(, , ),那么这条直线与平面的夹角为( ) A. 900 B. 600 C.450 D. 300 4. 边长为a 的正六边形ABCDEF 所在平面为α,PA ⊥α且PA =a ,则PC 与α所成的角为 ( ) A. 30° B. 60° C. 45° D. 90° 5.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则点A 1到平面MBD 的距离是( ) A.66a B.306a C.34a D.63 a 6. 已知向量n =(1,0,-1)与平面α垂直,且α经过点A (2,3,1),则点P (4,3,2)到α的距离为( ) A. 1 B. C. D. 2 7.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .60°或30° 8.设ABCD ,ABEF 都是边长为1的正方形,FA ⊥面ABCD ,则异面直线AC 与BF 所成的角等于( ) A .45° B .30° C .90° D .60° 9.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =2,DD 1=3,则AC 与BD 1所成角的余弦值为( ) A .0 B.37070 C .-37070 D.7070 10.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成的角的正弦值为( ) A .-105 B.105 C .-155 D.155 11.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则sin 〈CM ,1D N 〉的值为 ( ) A.19 B.49 5 C.29 5 D.23 12. 已知a ,b 是直线,α,β是平面,a ⊥α,b ⊥β,向量a 1在a 上,向量b 1在b 上,a 1=(1,0,1), b 1=(-1,2,1),则α,β所成二面角的大小为________.

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

用向量法求空间距离

A B C D m n 1 图向量法求空间距离 向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。 1.异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在 n m 、上各取一个定点B A 、,则异面直线n m 、的距离 d 等于在上的射影长,即| |n d = 证明:如图1,设CD 为公垂线段,取b a ==, | |||)(?=?∴?++=?∴++= | |||||n n AB d ?= =∴ 2平面外一点P 到平面α的距离 如图2,先求出平面α的法向量,在平面内任取一定 点A ,则点p 到平面α的距离d 等于在上的射影长,即| |n d = 因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。再通过向量的代数运算,达到计算或证明的目的。一般情况下,选择共点且不共面的三个已知向量作为基向量。 [例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2, 底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。 图2 A B C M N 1 A 1 B 1 C 图3

几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 , 、)0,0,0(A )81 ,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则 )2,0,0(),0,4 3,43( ),8 1 ,41,43(1==- =AA AM MN , 设向量),,(z y x n =与平面AMN 垂直,则有 )0()1,1,3(8 ),81,83( 8183 0434********>-=-=∴?????? ?-==?=???????=+=++-??????⊥⊥z z z z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n 向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是 5 5 21)1()3(|)1,1,3()2,0,0(||||,cos |||2 2201011011= +-+-?= =>

空间向量与空间距离

空间向量与空间距离 1.了解点到直线、平面距离的概念. 2.会用空间向量 求点到直线、平面距离. 空间距离的向量求法 1.判断(正确的打“√”,错误的打“×”) (1)平面α外一点A到平面α的距离,就是点A与平面内一点B →的长度.() 所成向量AB (2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.() (3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条

直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( ) 答案:(1)× (2)√ (3)√ 2.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A.534 B.532 C.532 D.132 答案:C 3.已知直线l 过点A (1,-1,2),和l 垂直的一个向量为n =(-3,0,4),则P (3,5,0)到l 的距离为( ) A .5 B .14 C.145 D.45 答案:C 4.已知直线l 与平面α相交于点O ,A ∈l ,B 为线段OA 的中点,若点A 到平面α的距离为10,则点B 到平面α的距离为________. 答案:5 探究点一 点到直线的距离 如图,在空间直角坐标系中有长方体ABCD -A ′B ′C ′D ′,AB =1,BC =2,AA ′=3,求点B 到直线A ′C 的距离.

[解] 因为AB =1,BC =2,AA ′=3,所以A ′(0,0,3),C (1,2,0),B (1,0,0), 所以直线A ′C 的方向向量A ′C →=(1,2,-3). 又BC →=(0,2,0), 所以BC →在A ′C →上的射影长为|BC →·A ′C →||A ′C →|=414. 所以点B 到直线A ′C 的距离 d =|BC →|2-????????BC →·A ′ C →|A ′C →|2= 4-1614 =2357. 用向量法求点到直线的距离的一般步骤 (1)建立空间直角坐标系; (2)求直线的方向向量; (3)计算所求点与直线上某一点所构成的向量在直线的方向向量上的射影长; (4)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.

空间向量在立体几何中的应用——夹角的计算习题详细答案

【巩固练习】 一、选择题 1. 设平面两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( ) A. (-1,-2,5) B. (-1,1,-1) C. (1, 1,1) D. (1,-1,-1) 2. 如图,1111—ABCD A B C D 是正方体,11 11114 A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A . 1715 B . 2 1 C .17 8 D . 2 3 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=?,点11D F 、分别是1111A B AC 、的中点,若 1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( ) A . 1030 B . 2 1 C .15 30 D . 10 15 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为8 9 ,则λ=( ) A .2 B .2- C .2-或 255 D .2或255 - 5. 在三棱锥P ABC -中,AB BC ⊥,1 2 AB=BC=PA , 点O D 、分别是AC PC 、的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( ) A . 621 B . 33 8 C .60 210 D . 30210 6.(2015秋 校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( ) A .30° B .45° C .60° D .75° 7. 在三棱锥P ABC -中,AB BC ⊥,1 ==2 AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥ 底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )

向量法求空间距离n

向量法求空间距离 广州市第78中学数学科 黄涛 教学重点难点 重点:掌握由向量数量积推导距离公式 难点:空间向量的投影的理解,灵活运用数形结合的思想,空间直角坐标系的 建立,求法向量,向量的选取。 教学方法、教学手段 采用启发诱导式教学,并结合实践探索,互动教学。 因为要充分体现数形结合思想,有大量的图形对比引导,以多媒体展示作为黑板板书补充。 教学目标: (1) 知识目标:理解向量数量积与射影的关系,基本掌握用数量积公式的变形求空间距离的方法和步骤 (2) 能力训练目标:培养动手能力,计算表达能力,空间想象能力 (3) 创新素质目标:通过立体几何向量方法解题体会知识之间的内在联系,事物内在的本质联系,懂得通过思维的拓展从事物的广泛联系中寻找解决问题的方法 (4) 情感目标:化繁为简,化难为易,在师生共同探索中建立学生学习数学的信心和热情 教学过程: 一.复习引入 1.如右图中正方体ABCD-A 1B 1C 1D 1的棱长为1,则点D 1到平面BB 1C 1C 的距离是_______,直线B 1C 1与B 1C 的距离是_________. 2.点C 1到平面AB 1C 的距离又是______,体对角线BD 1与面对角线B 1C 的距离是__________. 分析:以第一题找具体线段方法求距离很困难,提出能否避开“作图”这一难点,不通过找具体的线段求解,而用“数”来求解? 3.我们已经学习了向量的数量积为0可证垂直,| |||,cos b a b a b a ??>=<可求夹角, 221221221)()()(||z z y y x x a a a -+-+-==? 可以求两点间的距离,射影公式>

1.4.2 用空间向量研究距离、夹角问题(2) -A基础练(解析版).docx

1.4.2 用空间向量研究距离、夹角问题(2) -A 基础练 一、选择题 1.若平面α的一个法向量为n 1=(1,0,1),平面β的一个法向量是n 2=(-3,1,3),则平面α与β所成的角等于 ( ) A.30° B.45° C.60° D.90° 【参考答案】D 【解析】因为n 1· n 2=(1,0,1)·(-3,1,3)=0,所以α⊥β,即平面α与β所成的角等于90°. 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 和直线CD 所成角的余弦值为( ) A. B.- C. D.- 【参考答案】A 【解析】=(2,-2,-1),=(-2,-3,-3),而cos =,故直线AB 和CD 所成角的余弦值为. 3.如图,在三棱柱ABC-A 1B 1C 1中,AA 1⊥底面ABC ,AA 1=3,AB=AC=BC=2,则AA 1与平面AB 1C 1所成角的大小为( ) A.30° B.45° C.60° D.90° 【参考答案】A 【解析】取AB 的中点D ,连接CD ,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系, 可得A (1,0,0),A 1(1,0,3),故=(0,0,3),而B 1(-1,0,3),C 1(0,,3),设平面AB 1C 1的法向量为m =(a ,b ,c ), 根据m·=0,m·=0,解得m =(3,-,2),cos =.故AA 1与平面AB 1C 1所成角的大小为30°,故选A. 4.(2020·浙江省高二期末)在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .2123,θθθθ<< B .2123,θθθθ>< C .2123,θθθθ<> D .2123,θθθθ>> 【参考答案】A 【解析】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

立体几何中的向量方法空间角的计算

立体几何中的向量方法——空间角的计算 环节一:导读课本,引入课题 师:解决立体几何中的问题有三种方法:综合方法、向量方法、坐标方法,而向量方法通常与坐标方法结合起来使用。请同学们看课本选修2—1第105页的这段文字,它的意思,有两个:第一,用向量的方法可以帮助我们解决立体几何中的位置关系证明以及空间角和距离的定量问题。今天我们主要研究用向量方法来解决立体几何中空间角的计算.。 板书课题:立体几何中的向量方法——空间角的计算 第二,从这段文字中可以看出使用向量方法的基本操作程序分为三步,哪三步呢? 生齐答 师:不错!即:1.向量表示;2.向量计算;3.回归几何. “三步曲”, 环节二:,梳理认知,再练课本 1、梳理认知 师: .立体几何中有线线角、线面角、二面角共三种,这三种空间角的计算都可以利用向量的数量积公式12 12cos n n n n ??=?来计算。 下面我们来一起分析两个向量1n ,2n 的夹角?与三种空间角的对应关系。 随着幻灯片的演示,教师讲解: 当1n 与2n 分别为两条直线1l 与2l 的方向向量时,1l 与2l 所成的角θ与?的关系是

(0)2()2 π??θππ??π?≤≤??=??-<≤??此时有:cos cos θ?= 当1n 为直线l 的方向向量,2n 为平面α的法向量时,l 与α所成的角θ与?的关系是 (0)22()22 ππ??θππ??π?-<

数学选修2-1 3.1空间向量及其运算教案

第三章空间向量与立体几何 §3.1空间向量及其运算 3.1.1 空间向量及其加减运算 师:这节课我们学习空间向量及其加减运算,请看学习目标。 学习目标:⒈理解空间向量的概念,掌握其表示方法; ⒉会用图形说明空间向量加法、减法、数乘向量及它们的运算律; ⒊能用空间向量的运算意义及运算律解决简单的立体几何中的问题. 师:在必修四第二章《平面向量》中,我们学习了平面向量的一些知识,现在我们一起来复习。(不要翻书) (在黑板或背投上呈现或边说边写) 1、在平面中,我们把具有__________________的量叫做平面向量; 2、平面向量的表示方法:

① 几何表示法:_________________________ ② 字母表示法:_________________________ (注意:向量手写体一定要带箭头) 3、平面向量的模表示_________________,记作____________ 4、一些特殊的平面向量: ① 零向量:__________________________,记作___(零向量的方向具有任意性) ② 单位向量:______________________________ (强调:都只限制了大小,不确定方向) ③ 相等向量:____________________________ ④ 相反向量:____________________________ 5、平面向量的加法: 6、平面向量的减法: 7、平面向量的数乘:实数λ与向量a 的积是一个向量,记作λa ,其长度和方向规定如下: (1)|λa |=|λ||a | (2)当λ>0时,λa 与a 同向; 当λ<0时,λa 与a 反向; 当λ=0时,λa =0. 8、向量加法和数乘向量满足以下运算律 加法交换律:a +b =b +a 加法结合律:(a +b )+c =a +(b +c ) 数乘分配律:λ(a +b )=λa +λb 数乘结合律:λ(a μ)=a )(λμ [师]:刚才我们复习了平面向量,那空间向量会是怎样,与平面向量有怎样的区别和联系呢?请同学们阅读书P84-P86.(5分钟) [师]:对比平面向量,我们得到空间向量的相关概念。(在刚复习的黑板或幻灯片上,只需将平面改成空间) [师]:空间向量与平面向量有什么联系? [生]:向量在空间中是可以平移的.空间任意两个向量都可以用同一平面内的两条有向线段表示.因此我们说空间任意两个向量是共面的.所以凡涉及 空间两个向量的问题,平面向量中有关结论仍适用于它们。

相关主题
文本预览
相关文档 最新文档