当前位置:文档之家› 浮选捕收剂(教案)

浮选捕收剂(教案)

浮选捕收剂(教案)
浮选捕收剂(教案)

浮选捕收剂的分类及应用

目录

1、目的和意义Purpose and Significance

2、捕收剂结构与分类Structure and Classification of collectors

3、阴离子捕收剂Anionic collectors

4、阳离子捕收剂Cationic collectors

5、非离子性捕收剂Non-ionizing collectors

1、目的意义Purpose and Significance

(1) 目的和意义:

Without reagents there would be no flotation, and without flotation the mining industry, as we know it today, would not exist [By SRDJAN M.BULATOVIC].

因此,学习和掌握浮选药剂的分类和应用非常重要,是学习浮选乃至选矿的基础,而浮选捕收剂又是浮选药剂中最重要的一种。

(2) 学习要求:

熟练掌握浮选捕收剂的分类方法和每一类捕收剂的浮选性能;掌握捕收剂适用的矿物类型;了解常用捕收剂的合成方法。

(3) 重难点:

同一类捕收剂结构、性质的异同点(尤其硫化矿捕收剂);捕收剂极性基按照结构的细分:中心核原子、亲固原子和连接原子。

(4) 参考书籍:

①浮选剂作用原理及应用[M].王淀佐,湖南:中南工业大学出版社.

②浮选药剂的化学原理[M].朱建光,湖南:中南工业大学出版社.

③Handbook of Flotation Reagents Chemistry, Theory and Practice: Flotation of Sulfide Ores [M].Srdjian B.bulatovic, Elesevier Science & Technology Books

2、捕收剂结构与分类Structure and Classification of collectors

(1) 捕收剂的结构

浮选捕收剂的目的是通过在被浮矿物(Given mineral)表面选择性吸附形成疏水层(Hydrophobic layer),从而使疏水性矿粒附着气泡(Air bubbles)上浮至泡沫产品(Forth product)中。

捕收剂结构(以油酸钠Sodium Oleate为例)见表1:

表1 油酸钠的分子结构图

Table 1 Molecular structure of sodium oleate

由上图知,捕收剂是具有异极性(Heteropolar )的有机化合物,分子结构(Molecular structure)可分为非极性基(Non-polar group)和极性基(Polar group )部分。非极性基为具有疏水亲气性(Water-repellent)的碳氢链,极性基具有亲水亲固性,又分为亲固原子、中心核原子和连接原子。

极性基决定药剂在矿物表面固着强度(Fixing strength)和选择性(Selectivity);

非极性基决定药剂在矿物表面疏水性(Hydrophobicity)。捕收剂的结构示意图见图1。

图1 捕收剂的结构示意图

Figure 1 Schematic structure of collector

浮选过程中,捕收剂极性基端的亲固原子与矿物表面发生作用,产生非极性基向外的定向排列结构,由于捕收剂的非极性端具有疏水亲气性,在矿浆中与气泡碰撞后会吸附都泡沫表面,非极性基在气泡表面的吸附,会导致气泡表面张力

的降低,从而增强了矿化气泡(Mineralize bubble)的机械强度(Mechanical strength),气泡在上升过程中将负载的矿物带至浮选泡沫层,成为精矿,捕收剂与矿物作用的原理图见图2。

图2 捕收剂与矿物作用的原理图

Figure 2 Reaction principles between collector and mineral

(2) 捕收剂的分类

捕收剂分类见图3 。

按照捕收剂在溶液中解不解离,将捕收剂分为离子型(Ionizing)捕收剂和非离子型(Non-ionizing)捕收剂。按照离子型捕收剂在溶液中解离之后起捕收作用基团的电性,可将离子型捕收剂分为阴离子捕收剂(Anionic collector)和阳离子捕收剂(Cationic collectors)。阳离子捕收剂主要是脂肪胺类捕收剂,用于氧化矿选矿;阴离子捕收剂根据亲固原子(Solidophilic atom)不同可分为氧化矿捕收剂(亲固原子主要为O、N)和硫化矿捕收剂(亲固原子主要为S)。

图3捕收剂分类图

Figure 3 Classification of flotation collectors

3、阴离子捕收剂Anionic collectors

阴离子捕收剂,是解离之后吸附于矿物表面使矿物疏水的活性基团为阴离子的捕收剂。具体可分为以下八类。

3.1 羧酸类捕收剂Carboxylates

这类捕收剂主要包括脂肪酸(Fatty acid)、妥尔油(Tall oils)及氧化石油产物(Oxidized petroleum derivatives)。

脂肪酸分饱和(saturated、通式C n H2n+1COOH)和不饱和(Unsaturated 、通式C n H2n-1COOH)脂肪酸。典型饱和脂肪酸有硬脂酸(Stearic acid 、C17H35COOH)和棕榈油(Palmitic acid 、C15H31COOH),不饱和主要有油酸(Oleic acid),作为捕收剂不饱和酸比饱和酸选择性强。脂肪酸主要由动植物油制备,过程如下:

上述反应中,脂肪酸皂化与甘油分离之后可作为捕收剂,植物油比动物油的捕收能力强。一般浮选使用的脂肪酸为油酸、亚油酸(Linoleic)、共轭亚油酸(Conjugated linoleic)、棕榈油及硬脂酸的混合物。

妥尔油还要含有10-50%的松香油(Rosin acid),这两类捕收剂主要作用于磷酸盐(Phosphates)、含锂矿物(Lithium)、硅酸盐(Silicates)和稀土矿物(如氟碳铈矿Bastnaesite和独居石Monazite) 。

3.2 烷基硫酸盐类捕收剂Alkyl sulfates

此类捕收剂包括磺酸(Sulfoacid或磺酸盐Sulfonate,通式R-CH2-SO3H)及烷基硫酸盐(Alkyl sulfate salt ,通式R-CH2-O-SO3H)。制备过程如下:

这类捕收剂主要作为重晶石(Barite, BaSO4)、天青石(Celestite, SrSO4)、钾盐

镁矾(Kainite, KCl.MgSO4.3H2O)、石膏(Gypsum, CaSO4.H2O)及硬石膏(Anhydrite, CaSO4)等含硫(Sulfur-containing)氧化矿物捕收剂。由于烷基硫酸盐具有乳化作用(Emulsifier),所以可以与羧酸类捕收剂混合使用以增强脂肪酸或妥尔油在矿浆中的分散作用,从而增强其捕收能力,并防止泡沫过量(Over frothing)。

3.3 异羟肟酸捕收剂Hydroxamates

异羟肟酸属于螯合类捕收剂(chelating collectors),异羟肟酸有以下三种不同成分。

其中R1为有机配体(Organic acid,如烷基Alkyl、乙酰基Acetyl和苯酰基Benzoyl),R2和R3为无机或有机基团。其中第三种为最常用异羟肟酸,典型结构如下。

异羟肟酸在稀土选矿(Rare earth)及难选氧化类有色矿(如孔雀石malachite, CuCO3·Cu(OH)2、钛酸盐矿Titanate、锡石Cassiterite,SnO2、钛铁矿Ilmenite , FeTiO3及烧绿石Pyrochlore, CaNb2O6F)选矿中得到广泛应用。

主要浮选特性:R=C7-C9的异羟肟酸浮选应用最为成功,在应用异羟肟酸浮选时,浮选效果与矿浆中矿泥(slime)含量关系较大。

3.4 有机磷酸盐类捕收剂Phosphoric acid

这类捕收剂主要应用于锡石(cassiterite, SnO2)和金红石(rutile, TiO2)的选矿,常用结构为苯乙烯磷酸(styrene phosphoric acid),结构如下:

3.5 有机磷酸酯类捕收剂Phosphoric acid esters

这类捕收剂主要有磷酸单酯(mono)和双酯(diesters of phosphoric acid)组成,分子的非极性基与极性基通过氧桥(oxygen bridge)连接,非极性碳氢基可能为脂肪烃(aliphatic)或芳香烃(aromatic),结构如下:

这类捕收剂捕收能力较强,在碱性介质(alkaline medium)中可用来捕收磷灰石(Apatite, Ca5 (PO4)3F)和白钨矿(Scheelite,CaWO3),在酸性介质中可用来捕收含钛矿物(钛铁矿、金红石和钙钛矿Perovskite,CaTiO3)。Mechanobre用25%的五价磷(pentavalent phosphorus)和75%的环烷酸(naphthenic acid)合成环烷磷酯(phosphoten),可在pH为4-6左右浮选锆石(Zircon,Zr[SiO4]),锡石和烧绿石。

3.6 硫醇捕收剂Mercaptans

这是含-SH基(thiol group)最简单的捕收剂,通式为R-SH,具有恶臭,与金属能形成不溶性化合物,可作为某些钼矿(Molybdenum),含金硫化矿(Gold-bearing sulfides)和硫砷铜矿(Enargite, Cu3AsS4 )的捕收剂。

3.7 碳酸的硫、氮衍生物Sulfur and nitrogen derivatives of carbonic acid

这类捕收剂是最重要硫化矿选矿的捕收剂,共同特征为都是碳酸衍生物,不同点是S、N对碳酸中的氧取代方式不同(或与中心C原子的连接方式不同)。以下逐类讲述。

3.7.1黄药Xanthates and xanthic acids

学名烃基黄原酸盐或烃基二硫代碳酸盐(Xanthates and xanthic acids),因色黄又称黄药,是硫化矿选矿最常用的捕收剂,1882年被瑞斯(Zeise)发明,1924年被首次用于浮选,距今已快百年历史,但仍未现今最常用硫化矿捕收剂。合成方法及结构式:

黄药特性:(1)在酸性介质中易分解;

(2)长烃链黄药比短烃链黄药捕收能力强,戊>丁>丙>乙>甲;

(3)烃链越长,合成越困难;

(4)带支链黄药由于支链烃基的正诱导效应(Inductive Effect),使得其捕收能力强于直链黄药。

3.7.2 硫氮捕收剂N,N-dialkyldithiocarbamate

硫氮捕收剂,学名为N,N二烷基二硫代氨基甲酸盐或酯(N,N-dialkyldithiocarbamate),结构式如:

当Me= Na, K时为硫氮盐,当Me=R3时为硫氮酯,R1、R2可不同或相同,其中之一可为H。

硫氮盐最常见的为二乙基二硫代氨基甲酸钠,即“铜试剂(Cupferron)”。

其浮选特性为:捕收能力强于黄药,浮选速度快,高碱度下可改善Pb、Zn 分离效果,不用或少用氰化物作为抑制剂。

常用的硫氮酯为酯105#为二乙基二硫代氨基甲酸丙腈酯,合成与结构式:

酯105为棕色液体,有微弱鱼腥味,比重为1.11,难溶于水,捕收能力强,兼具气泡性能。铜陵狮子山铜矿(现冬瓜山铜矿)、白银铜矿和德兴铜矿工业试验表明,该药剂可替代黄药和松醇油,用量比黄药少。

3.7.3 硫氨酯捕收剂O-alkyl-N-alkyldithiocarbamate

硫氨酯捕收剂,学名为O-烷基-N烷基二硫代氨基甲酸酯(O-alkyl-N-alkyldithiocarbamate),结构式如,式中R与R1、R2可为不同烃基,R1可为H:

最常用的为Z-200捕收剂,即(异丙基)乙硫氨酯,为美国Dow公司生产,合

成及结构式如下,催化剂为镍盐或钯盐:

Z-200为油状液体,具有特殊气味,比重略低于水,在水中溶解度小,浮选性能为:选择性极强,pH值10左右可以优先从黄铁矿中浮选出黄铜矿和闪锌矿,从而实现铜、锌优先浮选;由于硫氨酯对黄铁矿的捕收能力弱,所以在铜硫分离时可较大程度降低石灰用量,降低浮选碱度,从而降低浮选过程中高碱度对金、银、钼的抑制。

3.7.4 巯基苯骈噻唑Mercaptobenzothiazole

巯基苯骈噻唑(Mercaptobenzothiazole )由苯胺、二硫化碳和元素硫合成,合成及结构式如下:

巯基苯骈噻唑为微黄色细晶状(yellowish, fine crystalline)固体,水溶性较小,浮选特性为:捕收能力比黄药和硫氮酯强,可用于浮选黄铁矿(Pyrite, FeS2)、含金黄铁矿(Gold-bearing Pyrite),也可用于浮选氧化铜矿(tarnished and oxidized copper)和氧化铅矿(白铅矿, cerusite, PbCO3),氧化铜矿需要预先用Na2S硫化后浮选。

3.8 黑药Dialkyl dithiophosphate

黑药学名为二烃基二硫代磷酸(Dialkyl dithiophosphate),是含烷烃(alkyl)或芳香烃(aryl)的二烃基二硫代磷酸(盐),结构通式如下,式中Me可为H+、Na+、K+或NH4+,R为烷烃基或芳香烃:

最常用的为25#黑药和丁胺黑药(Ammonium dibutyl dithiophosphate)。25#黑药合成及结构式:

我国生产主要是使用的黑药丁胺黑药,由丁基黑药与氨在石油醚的催化下合成,其合成及结构式:

丁铵黑药的浮选特性为:

(1) 有起泡性,可减少松醇油的使用;

(2) 可在较低pH条件下浮选Cu、Pb,节省石灰用量;

(3) 与黄药相比,其捕收性弱,选择性强,故在铜铅分离和铜锌分离时,可少用氰化钠、硫酸锌等抑制剂,从而可提高精矿中金、银的含量。

4、阳离子捕收剂Cationic collectors

阳离子捕收剂为脂肪胺(Fatty amine)类捕收剂,根据结构可分为(1)伯胺(primary)、(2)仲胺(secondary)、(3)叔胺(tertiary)和(4)季铵盐(quaternary ammonium)四种:

根据N原子锁连接烃链的特性,可分为脂肪胺、醚胺(Ether amine)、醚二胺(Ether diamine)和缩合胺(Condensates)。

4.1 脂肪胺捕收剂Fatty amine

脂肪胺合成可以脂肪酸为原料,与氨作用后再用氧化铝催化脱水成脂肪腈,然后再海绵镍存在下加氢还原(Hydrogeneration)成脂肪胺,如下:

脂肪胺性质:水中溶解度小,作为捕收剂使用时应配置成脂肪胺醋酸溶液或盐酸溶液使用。可用于浮选未经CaO活化的石英及其他硅酸盐矿物;也可用于浮选可溶性钾盐,从光卤石(Carnallite, KCl·MgCl2·6H2O)中浮选分离氯化钾,还

作为络合剂(chelating agent)浮选菱锌矿(Smithsonite, FeCO3)等。

4.2 醚胺Ether amine

用作捕收剂的醚胺是烷基丙基醚胺(3-alkoxy-propylamine),通式为:

RO-CH2CH2CH2NH2,式中R为C8-C18的烷基,合成过程如下:

醚胺与脂肪胺相比,在脂肪胺的烷基上引入一个醚基,可降低其熔点,增加溶解度,在矿浆中较易分散,浮选效果可得到改善。

武汉理工大学研发GE-609耐低温阳离子捕收剂,属于醚二胺类,在酒钢、鞍钢的工业试验表明,GE-609在使用过程中对低温适应能力强,浮选精矿品位比十二胺高,但由于醚胺捕收剂起泡性过强,所以适应过程中存在泡沫多、消泡难和浮选剂易跑槽等缺点。

5、非离子型捕收剂Non-ionizing collectors

非离子型捕收剂或非极性(Non-polar reagent)捕收剂主要为烃油,如煤油(Kerosene)、柴油(Diesel oil )等,在水溶液中不能溶解形成离子。

由于非离子型捕收剂不存在亲固基团(Solidophilic group),所以不能再矿物表面形成定向吸附层(Orientated absorption layer),而只能在某些天然疏水性矿物(Naturally hydrophobic minerals)表面产生物理附着(Adhesion),所以此类捕收剂仅能用于捕收石墨(Graphite)、辉钼矿(Molybdenite)、硫磺(Elemental sulfur)和滑石(Talc)等天然可浮矿物。

用黄药、黑药乳化煤油后浮选辉钼矿,可降低黄药黑药的用量,提高回收率。

煤泥浮选时采用甲基异丁基甲醇(MIBC)、聚丙二醇基醚(D-200)和仲辛醇作为起泡剂,煤油作为捕收剂,组合成为煤泥捕收剂选煤油FX-127,用于煤泥脱灰可得到较好结果。

6、思考题

分析比较硫化矿捕收剂(①黄药、②黑药、③硫氮和④硫氨酯)的结构与浮选性能差异?提示:参考《浮选剂作用原理及应用[M].王淀佐》。

①②③④

从结构上看,黄药与黑药的中心核原子不同,且黑药两个-OR基比黄药的负诱导作用强,故黑药键合原子硫电子云密度比黄药低,键合作用比黄药弱;

硫氮从结构上看,相当于仲胺基-NR1R2取代黄药的烷氧基-OR,前者的负诱导效应比后者小,所以硫氮亲固原子S的电子云密度比黄药大,键合能力比黄药强;

硫氨酯从结构上看,相当于用胺基取代黄药的硫氢基-SH,由于胺基为受电子基,导致硫氨酯键合原子S的电子云密度降低,键合能力降低,所以对Fe的键合能力低于黄药,但对Cu仍保持有捕收作用,可用于优先浮铜。

铁矿可浮性和浮选捕收剂及其进展

铁矿可浮性和浮选捕收剂及其进展 罗良飞陈雯李文风 (长沙矿冶研究院,长沙 410012) 摘要本文对具有工业价值的铁矿物的可浮选性及其浮选工艺进行了综述。并介绍了铁矿浮选捕收剂近年来研究进展,提出了铁矿浮选捕收剂的研究方向。 关键词 捕收剂可浮性浮选铁矿进展 Iron Floatability and Advance in Flotation Collector Luo Liangfei ChenWen Li Wenfeng (Changsha Research Institute of Ming and Metallurgy,Changsha,410012) Abstract This paper reviewed the floatability of industrial value iron ore and its technology. And introduced the development of the iron ore flotation collector and proposed the research direction of iron ore flotation collector. Key words collector, floatability, floatation, iron, advance 1 引言 随着钢铁工业的高速发展,现代高炉对铁精矿质量要求越来越严格,即铁精品位要求越来越高,杂质含量要求越来越低。因此,铁矿选矿过程中浮选工艺显得越来越变得重要。自鞍山钢铁公司东鞍山烧结厂于1958年开始采用浮选分选铁矿石以来,我国氧化铁矿石选矿技术已经取得长足进步,尤其是在国家十五科技攻关的支持下,鞍山式磁、赤铁矿选矿技术已经达到世界领先水平。长沙矿冶研究院张泾生教授开创并成功应用于鞍钢调军台选矿厂的弱磁—强磁—阴离子反浮选工艺流程已成为此类矿石的经典流程,在我国大中型铁矿山选矿厂如鞍钢齐大山选矿厂、调军台选矿厂、弓长岭选矿厂、太钢尖山铁矿、唐钢司家营铁矿、安钢舞阳铁矿广泛推广应用。 2 铁矿物可浮性及浮选工艺 2.1铁矿物的可浮性 有工业价值的铁矿石可以分为以下五种类型:磁铁矿矿石、赤铁矿及假像赤铁矿矿石、褐铁矿矿石、含钛磁铁矿矿石、菱铁矿矿石[1]。 (1)磁铁矿的可浮性。磁铁矿的天然可浮性比赤铁矿差,浮选速度也比赤铁矿小。因此,通常采用反浮选工艺对脉石矿物进行浮选来提高铁品位,降低杂质含量。正浮选工艺应用相对少。 (2)赤铁矿的可浮性。赤铁矿的可浮性较好,极易被脂肪酸类捕收剂浮选,因此,可以采用抑制脉石矿罗良飞,男,高级工程师,luolfcs@https://www.doczj.com/doc/b49369498.html,

新型浮选药剂论文

新型浮选药剂论文

一:浮选原理及新型浮选药剂 浮选是利用矿物亲水性的差异而实现矿物分离的方法。易被水湿润的表面称为亲水表面,难被水润湿的表面称为疏水表面。煤各部分的显微组分是不同的,煤粒表面的大部分为非极性区域,部分为极性区域。有机组分的表面主要是非极性区域,矿物杂质等的表面主要是极性区域。 煤粒在水中,其表面的质点和水分子互相极化,从而产生程度不同的水化作用。极性区域的水化作用较强,能生成较厚且较稳定的水化层,从而表现出亲水性。非极性区域的水化作用弱,甚至没有水化作用,表现出疏水性。 浮选时,在搅拌和起泡剂的作用下产生气泡,气泡和煤中的疏水表面相接触时,因水化层较薄容易破裂,结果使气泡和煤中的有机组分黏在一起而上浮。而当气泡和由煤中的矿物杂质构成的亲水表面相接触时,要克服较厚的水化层的阻挡是困难的,故难以使其上浮。 当煤粒表面吸附液相中的离子或分子后,其水化作用的大小程度会变化,故可通过向水中加入药剂的方法来扩大被分离组分间亲水性的差别,并产生大量合适的气泡,促进有机组分的上浮。按其作用可把这些药剂分为两类。其中一类属于起泡剂,它们能在气-液界面上促进气体向水中的扩散,从而生成大量均匀、稳定性好的气泡。另一类属于捕收剂,其主要作用是在固-液相界面上增加有机组分的疏水性,从而使煤粒和气泡结合的更牢固。 捕收剂 浮选是细粒煤泥精选的最为有效的方法,煤泥浮选过程中通常要加入捕收剂来提高煤颗粒表面的疏水性,捕收剂多为煤油、轻煤油,约占80~90%。而这类浮选药剂普遍存在药耗量过大的问题,而且,对于细粒煤含量较多和低变质程度的焦煤,由于其可浮性和选择性更差,因而浮选药剂耗量更大。煤泥浮选中烃类油用量一般在吨干煤泥1~2kg,随着油价上涨,浮选药剂费用将大幅度上升,从而导致浮选成本上升,最终影响到选煤厂的经济效益,近年来,世界各国都在研制新型高效的浮选药剂,以求降低成本,提高精煤产率。以下是新型捕收剂的种类。 第一类:ZNX-0711捕收剂 ZNX-0711捕收剂是一种新型煤泥浮选捕收剂具有捕收性能好、浮选速度快、分选效率高的特点。采用这种捕收剂在实验室进行了煤泥浮选的对比试验,并在选煤厂进行了工业应用。实验结果表明:ZNX-0711用于煤泥浮选,其性能明显好于煤油和柴油。 理论分析: 煤泥浮选涉及到气、液、固三相,是一个相当复杂的过程,不同变质程度的煤具有不同的可浮性,浮选药剂的作用正是通过调节气、液、固三相的界面性质,增加了煤与矿物之间是的表面性质的差异,从而实现了煤与矿物颗粒的有效分离。 煤泥浮选的前提条件就是要提高煤颗粒的疏水性,增大煤颗粒与杂质的表面疏水性差异。烃类油(柴油、煤油等)是一种疏水性物质,它与水互不相溶,在矿浆中不能形成细小的分散相,只能以液滴的形式存在,导致烃类油与煤粒发生接触碰撞时附着的概率较小,而

选矿浮选药剂

选矿浮选药剂(最新整理、内容详尽) 浮选捕收剂(collectors)是能提高矿物表面疏水性的一类药剂,也是矿物浮选最主要的一类药剂。由于浮选是利用捕收剂与矿物表面的活性点作用,从而使矿物表面疏水上浮的选矿方法,而自然界中,天然疏水性矿物(hydrophobic minerals)为数甚少,大部分矿物亲水或弱疏水,只有与捕收剂作用,增大其表面的疏水性,才具有一定的可浮性。即使是天然疏水性矿物,为了有效浮选,也要适当添加非极性油类捕收剂,以提高其可浮性。因此,捕收剂对浮选技术的发展起着关键的作用。据统计,美国1985年浮选处理4.22x108t 矿石,所用捕收剂就占全部浮选药剂费用的50%以上。 最初的捕收剂为杂酚油等油类,随后是油酸捕收剂。可溶于水的捕收剂的发现是浮选药剂的一大进步,尤其是科勒尔发明的黄药。上世纪30年代,浮选技术发展到处理非金属矿物,此时皂类捕收剂和阳离子胺类捕收剂与抑制剂一起使用。至50年代,除哈里斯发明了Z-200外,浮选捕收剂研究进展不大。随后,捕收剂的研究取得很大进展,研制了大豆油脂肪酸硫酸化皂、氧化石蜡皂等铁矿的捕收剂,合成了黄原酸酯类及硫代氨基甲酸酯类等选择性较好的捕收剂。近些年,也出现了一系列高效捕收剂,如硫化矿捕收剂Y-89、T-2K、KM-109、PAC,氧化矿捕收剂GY、CF、MOS,硅酸盐浮选的胺类捕收剂等。 目前,捕收剂的研究,主要朝两个方向发展:一是开发研制高效、无毒(或低毒)、价廉、低耗、原料来源广泛的新型捕收剂;再就是对各种现有捕收剂进行合理搭配与组合使用。前者一旦突破,将使选矿技术取得革命性进展,但研制周期长、难度大;后者见效快,容易在选矿实践中实现。 3.1 浮选捕收剂的分类与作用 3.1.1 捕收剂的分类 理论研究和浮选实践均已表明,对不同类型的矿石需要选用不同类型的捕收剂。对捕收剂进行分类,可系统地、科学地认识各类捕收剂的共性和个性,有利于对药剂的掌握和发展,同时也有助于正确的选择和使用好各种药剂。然而,由于研究角度不同,对捕收剂的分类存在着不同的方法。依据捕收剂对矿物起捕收作用的部分及其结构,可将其分为异极性捕收剂、非极性油类捕收剂和两性捕收剂三类;按捕收剂的应用范围把其分为硫化矿、氧化矿、硅酸盐矿物、非极性矿物和沉积金属等的捕收剂;通常根据药剂在水溶液中的解离性质,将捕收剂分为离子型(ionizing)和非离子型(non-ionizing)两类。在离子型捕收剂中,又根据起捕收作用疏水离子的电性,分为阴离子型、阳离子型和两性型捕收剂。非离子型捕收剂则可进一步分为非极性捕收剂与异极性捕收剂两类(见表3-1)。 表3-1 浮选捕收剂的常用分类

浮选捕收剂的分类及应用

教学题目:浮选捕收剂的分类及应用 Title:Classification and Application of Collectors 目录 1、目的和意义Purpose and Significance 2、捕收剂结构与分类Structure and Classification of collectors 3、阴离子捕收剂Anionic collectors 4、阳离子捕收剂Cationic collectors 5、非离子性捕收剂Non-ionizing collectors 1、目的意义Purpose and Significance (1) 目的和意义: Without reagents there would be no flotation, and without flotation the mining industry, as we know it today, would not exist [By SRDJAN M.BULATOVIC]. 因此,学习和掌握浮选药剂的分类和应用非常重要,是学习浮选乃至选矿的基础,而浮选捕收剂又是浮选药剂中最重要的一种。 (2) 学习要求: 熟练掌握浮选捕收剂的分类方法和每一类捕收剂的浮选性能;掌握捕收剂适用的矿物类型;了解常用捕收剂的合成方法。 (3) 重难点: 同一类捕收剂结构、性质的异同点(尤其硫化矿捕收剂);捕收剂极性基按照结构的细分:中心核原子、亲固原子和连接原子。 (4) 参考书籍: ①浮选剂作用原理及应用[M].王淀佐,湖南:中南工业大学出版社. ②浮选药剂的化学原理[M].朱建光,湖南:中南工业大学出版社.

螯合捕收剂在浮选中的应用

综 述 螯合捕收剂在浮选中的应用 刘文刚 魏德洲 周东琴 朱一民 贾春云 (东北大学资源与土木工程学院,辽宁沈阳,110006) 摘 要 近年来,螯合捕收剂的发展取得了飞速进步,一些研究及实践的资料证明,螯合捕收剂的浮选性能与它们的螯合特性密切相关。本文从配位原子、捕收性能、捕收机理、药剂组合使用、工业应用等方面,总结了近十年来螯合捕收剂的研发现状,并指出了存在的主要问题。 关键词 螯合捕收剂 配位原子 药剂组合使用 工业应用 在浮选药剂发展过程中,第一代混合捕收油早已过时,第二代离子型水溶性捕收力强的浮选药剂(如黄药、黑药等)已经历了70余年,越来越无法满足目前世界范围内日渐贫、细、杂矿石的浮选分离要求。近年来,人们都把注意力转向第三代非离子型高选择性浮选剂上,特别是螯合捕收剂更以其卓越的选择性深受人们关注〔1〕。因为金属螯合物比普通的离子型和共价型金属盐更稳定,长期以来将螯合剂当作选择性更好的捕收剂,并且,它们似乎可以代替常规的捕收剂,从已知的分析化学中的分离金属方法也可以看出这一点〔2,3〕。 螯合捕收剂必须至少有两个原子同时与同一个金属原子配位,这些原子通常是O、N和S。配位物质提供的这些给予体原子称为“配位体”。如果单个配位体分子或离子不只有一个原子与金属离子配位,便使其自身围绕中心原子弯曲成螯状,形成复杂的环状结构,称为“螯合物”。根据配位体在带正电的金属离子周围配位区域内的配位数目是三、四、五、六,将其相应地称作三元环、四元环、五元环和六元环〔4〕。 螯合类捕收剂有供电子原子(如硫、氮和氧、有时也包括磷)组成的碱性官能团或酸性官能团,碱性官能团是含有能与金属阳离子反应的未配对电子的原子,其中重要的有:-N H2(胺)、-N H(亚氨基)、-N=(无环或杂环叔氮)、=O(羰基)、-O-(酯或醚)、-N=OH(肟)、-OH(脂肪醇)、-S-(硫醚)、-PR2(取代膦基)等;酸性基团丢失一个质子而与金属原子配位,主要有-COOH(羧酸)、-SO3H(磺酸)、-PO(OH)2(磷酸)、-OH(烯醇和酚基)、=N -OH(肟)或-SH(硫醇和硫酚)。 从实际应用的角度考虑,螯合捕收剂在矿物表面形成的螯合物必须具有很小的溶度积,而且能使矿物表面具有足够的疏水性〔5〕。 1 结构明晰的螯合捕收剂 111 O-O型螯合捕收剂 中南大学蒋玉仁等〔6〕开发合成了一种新型廉价螯合捕收剂COBA,并研究了它对一水硬铝石和高岭石的捕收活性、结构-性能关系及作用机理。结果表明,COBA对一水硬铝石的捕收能力强,而对高岭石的捕收能力弱,具有比水杨羟肟酸更好的选择性,其性能差异主要是由极性基结构差异即电负性、拓扑连接指数、断面尺寸和疏水性所引起的。研究者认为,COBA对一水硬铝石的捕收机理,主要是极性基中羧基-COOH的O原子、羟肟基-C(O) N HOH中>C=O的O原子和-N HOH的O原子通过化学成键与矿物表面原子形成了两环螯合物。 王明细、蒋玉仁等〔7〕用COBA与油酸钠混合捕收剂对黑钨矿进行了浮选试验研究,在捕收剂用量为3?10-5mol/L时,黑钨矿的回收率能达到90%;增加捕收剂用量至5?10-5mol/L时,黑钨矿的回收率为9911%;单用油酸钠时,药剂用量达8?10-5 mol/L时,回收率才达到90%。可见添加COBA可明显减少捕收剂用量,说明COBA对黑钨矿有很好的捕收性能。 CF捕收剂是北京矿冶研究总院的研究工作者用CF法浮选柿竹园黑白钨矿使用的药剂,其主要成分是N-亚硝基-N-苯胲铵盐。它除了对柿竹园粗、细粒黑白钨矿具有较强的捕收能力外,对萤石和方解石也具有较强的选择性,目前已成功地应用于柿竹园黑白钨矿浮选生产中,并已建成100t/a的药剂生产基地〔8〕。

浮选药剂论文

选矿药剂作业 学院:矿业工程学院 姓名: 学号: 班级:矿加09—3班 时间:2012年12月05日

选矿药剂的原理及其部分领域的应用 摘要对一铜铅锌硫多金属硫化矿铜铅混合浮选后, 用重铬酸钾与水玻 璃的混合液作为铅矿物的抑制剂进行铜铅分离, 对锌硫采用部分混合浮选再分 离流程获得较好的选别铜铅锌多金属硫化矿有效分选一直是多金属硫化矿浮选 的难题之一,一直以来不少选矿学者致力于铜铅锌多金属硫化矿药剂与矿物表面吸附作用的研究,如何适应矿石性质的变化以及越来越强的环境意识,已成为当 代浮选科技的重大问题之一。 关键词铜铅锌硫多金属硫化矿铜铅混合浮选铅矿物抑制剂稀土应用 矿石性质 本试验矿样为一铜铅锌硫多金属硫化矿, 主要金属矿物有方铅矿、闪锌矿、黄铁矿、磁黄铁矿、白铁矿、毒砂、黄铜矿、褐铁矿和菱铁矿等。并赋存有一定量的铋、镉、银等稀散元素和贵金属。主要脉石矿物有石英、绿泥石、绢云母、铁白云石和炭质等。方铅矿一般粒度为0. 36~0. 0097mm,多数呈不规则脉状他形粒状嵌布于闪锌矿间。有些也交代充填于黄铁矿颗粒间。 闪锌矿一般粒度为0. 36~0. 039mm, 大部分为含铁高的黑色闪锌矿, 他形, 粗粒。闪锌矿包含有方铅矿、黄铁矿、磁黄铁矿和黄铜矿。闪锌矿同周围脉石矿物或所包含矿物之间的关系多为不规则港湾状, 部分呈微波状。黄铜矿为伴生元素铜的主要赋存矿物,多数呈粗粒度嵌布于闪锌矿裂隙之中, 其接触关系较为平直, 解离性能较好。少部分黄铜矿呈尘点状、马尾丝状嵌布于闪锌矿内, 或在闪锌矿内的磁黄铁矿边部呈镶边状, 它们之间的接触关系比较复杂, 多为岛屿状、海湾状。黄铁矿、磁黄铁矿、白铁矿为回收硫的主要矿物, 其中以黄铁矿为主, 磁黄铁矿次之。磁黄铁矿与闪锌矿关系密切, 常包含其中; 黄铁矿除与闪锌矿、方铅矿关系密切外, 也常独自呈不规则团块嵌布于脉石中; 白铁矿总是和黄铁矿交生, 很少单独嵌布于其它矿物之中, 他们之间的关系有微波状、港湾状。 各矿物含量见表1。原矿多元素分析结果见表2。

【CN109894281A】一种萤石浮选捕收剂及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910110371.8 (22)申请日 2019.02.11 (71)申请人 浙江工业大学 地址 310004 浙江省杭州市潮王路18号 申请人 金石资源集团股份有限公司 (72)发明人 宋英 王福良 金火荣 陈建建  (74)专利代理机构 北京三聚阳光知识产权代理 有限公司 11250 代理人 朱静谦 (51)Int.Cl. B03D 1/00(2006.01) B03D 1/012(2006.01) B03D 101/02(2006.01) B03D 103/04(2006.01) (54)发明名称 一种萤石浮选捕收剂及其制备方法和应用 (57)摘要 本发明属于矿物浮选技术领域,具体涉及一 种萤石浮选捕收剂及其制备方法和应用。该浮选 捕收剂包括磺化琥珀酸二辛酯钠盐、油酸和乙 醇。该浮选捕收剂的捕收能力强、水溶分散性和 浮选选择性好、浮选指标稳定,能够提高萤石浮 选的回收率,在大规模工业应用中,重复效果较 好。利用该捕收剂浮选得到的精矿的回收率高、 二氧化硅的含量较低,且尾矿的品位更低。此外, 该浮选捕收剂也可在低温下对矿物进行浮选,可 以有效避免矿浆加热等问题, 有利于节能减排。权利要求书1页 说明书6页 附图1页CN 109894281 A 2019.06.18 C N 109894281 A

权 利 要 求 书1/1页CN 109894281 A 1.一种萤石浮选捕收剂,其特征在于,包括磺化琥珀酸二辛酯钠盐、油酸和乙醇。 2.根据权利要求1所述的浮选捕收剂,其特征在于,所述磺化琥珀酸二辛酯钠盐为磺化琥珀酸二辛酯钠、磺化琥珀酸二辛酯二钠中的至少一种。 3.根据权利要求1或2所述的浮选捕收剂,其特征在于,所述磺化琥珀酸二辛酯钠盐、油酸和乙醇的质量比为(135-155):(760-790):(65-85)。 4.一种权利要求1-3任一所述的浮选捕收剂的制备方法,其特征在于,将油酸、磺化琥珀酸二辛酯钠盐和乙醇依次混合,搅拌反应0.5-1h后得到所述浮选捕收剂。 5.一种权利要求1-3任一所述的浮选捕收剂或权利要求4所述的制备方法制备得到的浮选捕收剂在萤石浮选中的应用。 6.根据权利要求5所述的浮选捕收剂在萤石浮选中的应用,其特征在于,所述萤石浮选步骤为,将原矿矿石破碎,对其磨矿处理后,加入调整剂调浆,再加入抑制剂和捕收剂充分搅拌后,经一次粗选,七次精选和两次扫选得到精矿产品和尾矿。 7.根据权利要求5或6所述的浮选捕收剂在萤石浮选中的应用,其特征在于,所述粗选过程中:以1000kg原矿计,所述捕收剂用量为800-1500g;所述调整剂用量为800-1200g;所述抑制剂用量为400-800g; 所述精选过程中:以1000kg原矿计,所述捕收剂用量为50-200g;所述抑制剂用量为1000-1500g; 所述扫选过程中:以1000kg原矿计,所述捕收剂用量为50-200g。 8.根据权利要求7所述的浮选捕收剂在萤石浮选中的应用,其特征在于,所述粗选阶段的抑制剂为水玻璃,调整剂为碳酸钠。 9.根据权利要求7或8所述的浮选捕收剂在萤石浮选中的应用,其特征在于,所述精选阶段的抑制剂为酸化水玻璃;所述酸化水玻璃中水玻璃与硫酸的质量比为(0.8-1.2):1。 2

浮选捕收剂吸收性能研究

材料科学 化工之友 2007.NO.13 浮选用捕收剂是一种能选择性地吸附在煤粉表面并使其疏水性提高的有机物质,主要作用是在煤粉—水界面上,通过提高煤粉的疏水性,使煤粉能够更牢固地附着于气泡而上浮,增加煤粉的可浮性。但是捕收剂在煤表面的吸附规律至今仍处于积累数据、探索机理的阶段。长期以来,引用各种气液界面的等温吸附公式来从事这方面探讨,应用最多的是Langmuir公式和Fveundich等温吸附公式,虽然有些实验事实与这2个公式相符,但仍有一定局限。因此寻求捕收剂在煤表面的吸附规律,对捕收剂在煤表面的等温吸附技术模拟还需进一步研究。 1 建立捕收剂在煤表面等温吸附的技术模拟 在煤表面的吸附机理可以用界面化学两阶段的吸附模型来概括。第1阶段时个别的表面活性分子或离子通过静电吸引和/或范德华引力(包括氢键)与固体表面直接作用被吸附。到一定浓度以上,吸附进入第2阶段。这时溶液中的表面活性分子或离子与已吸附的表面活性分子或离子通过碳氢键间的疏水相互作用形成表面胶团(或称做半胶团)使吸附急剧上升。此时,第1阶段中吸附的单体形成表面胶团的活性中心。 第一阶段:吸附位(煤)+单体(捕收剂)→吸附单体 第二阶段:吸附单体+(n—1)单体→表面胶团 2 捕收剂在煤表面等温吸附技术模拟的研讨 2.1 染料—浮选剂络合物形成法测定捕收剂在煤表面等温吸附量(1)测定原理 煤在浮选药剂中对药剂吸附量的测定,按照测定方法分为直接法和间接法。直接法是对吸附在矿物表面的药剂量和组成作直接测定;间接法是用已知浓度和体积的药剂溶液作用后,测定残余溶液的浓度,再计算出吸附量。本实验即采用间接法测量。利用捕收剂与有机染料在一定的溶剂中形成有色络合物,此络合物的消光值与捕收剂的浓度成比例关系,因而可作比色或分光光度测定。 (2)捕收剂在煤表面等温吸附量的测定 煤的最大吸附量为每2.7g煤吸附0.02ml煤油,准确称取待测煤样50g,加水制成煤浆液,用微型注射器吸取不同体积的煤油分别加入煤浆液中,搅拌后静置2d,待吸附达平衡后离心分离,将滤液(含未被吸附的煤油)加染料染色,利用分光光度计测定溶液的吸光度。再参加吸光度的标准曲线,由被测液吸光度可查得其浓度,即残余液中煤油的浓度,用溶液中总的煤油量减去残余液中煤油的量,再除以煤的质量,即可求出每克煤吸附煤油的量(见表1)。计算公式为: 吸附量=[加入煤油的体积—残余液中煤油的体积]/煤的质量2.2 该技术模拟在生产实践中的应用 某选煤厂采用跳汰粗选、重介质旋流器精选,原煤经水力分级旋流器分级去粗后直接浮选工艺,设计能力1.8Mt/a,2004年实际生产能力达到2.4Mt,入选原煤为主焦煤,主要产品为10级冶炼精煤,浮选捕收剂原一直采用的是190#溶剂油。 (1)工业性试验 根据该捕收剂技术模拟试验,在现场针对该厂实际入选原煤应用不同捕收剂进行等温吸附模拟,根据其在煤粒表面等温吸附量及选择性不同,对DI-1新型合成捕收剂和原捕收剂190#溶剂油分别进行大量等温吸附技术模拟试验及效果分析,并对原捕收剂和DI-1合成捕收剂进行大量工业性试验的基础上,发现采用DI - 1合成捕收剂时各项指标均好于原190#溶剂油捕收剂(见表3),认为该厂采用DI-1新型合成捕收剂进行煤泥浮选效果最佳。这就更进一步验证了这一技术模拟的可行性。 (2)捕收剂效益分析 浮选捕收剂吸收性能研究 刘维林 (七煤(集团)公司龙湖选煤厂) 摘 要:煤炭洗选加工是提高煤炭综合利用价值的有效途径,煤炭分选本身如浮选煤需要研究捕收剂、起泡剂、促进剂等浮选药剂性能,以降低精煤灰分、提高精煤产率、改善浮选效果。而在浮选原矿中加入浮选捕收剂可改善煤粉表面疏水性,促进捕收剂在煤炭表面的吸附,可见吸附是其间相互作用的一种主要形式。 关键词:煤炭 浮选捕收剂 中图分类号:TD82文献标识码:A文章编号: 1004-0862(2007)07(a)-0042-02表1 捕收剂在煤表面等温吸附量表2 DI-1合成捕收剂和轻柴油工业性试验结果统计表(起泡剂为杂醇) FRIEND OF CHEMICAL INDUSTRY 42

新型赤铁矿反浮选脱硅捕收剂的合成及浮选性能研究

立志当早,存高远 新型赤铁矿反浮选脱硅捕收剂的合成及浮选性能研究 我国铁矿资源丰富,但随着矿山的延伸开采,矿石品位逐年降低,难选程度逐 年加大。对难选贫矿来说,仅靠传统的磁选工艺难以达到冶炼的要求,于是浮选 在铁矿选矿中所占的地位越来越重要。浮选成功的关键,很大程度上取决于浮选药剂的正确选择。国内铁矿浮选药剂的开发研制,在国际上处于领先水平,浮选 药剂更新换代速度很快,多种新型高效浮选药剂已经成功的在工业上应用。但铁矿反浮选药剂的研制开发,仍然存在一些不足之处,如阴离子捕收剂操作条件相 对较为复杂、阳离子捕收剂浮选效率偏低等,所以加强新型高效赤铁矿反浮选药剂的研制对提高我国铁矿资源的综合利用效率具有重要意义。本文在对赤铁矿 反浮选脱硅体系进行分析的基础上,设计并合成了两种新型赤铁矿反浮选脱硅捕收剂(N-十二烷基乙二胺和N-十二烷基-1,3-丙二胺),并通过单矿物试验、人工混合矿分选试验和实际矿石分选试验对其捕收性能进行了研究。在对浮选药剂的 分子结构与性能关系进行分析的基础上,通过接触角测定、动电位分析、XPS 测试以及红外光谱分析对其捕收作用机理进行了探讨。(1)以脂肪胺和丙烯腈为原料,在无催化剂条件下,通过加成和还原胺化反应合成了N-十二烷基-1,3-丙二胺 固体;以溴代十二烷和乙二胺为原料,以乙醇为有机溶剂,通过卤代烷氨解法合成 了N-十二烷基乙二胺固体,并通过红外光谱技术、核磁共振成像技术、熔点测 定以及元素分析对合成的两种固体进行了表征。(2)通过单矿物浮选试验,研究了N-十二烷基-1,3-丙二胺和N-十二烷基乙二胺对赤铁矿和石英的浮选性能,并与 传统阳离子捕收剂(十二胺)的浮选性能进行了对比。试验结果表明,在N-十二烷基-1,3-丙二胺用量为50.0mg/L、pH=10.08 时,石英回收率达到最大值,为 98.39%;在N-十二烷基乙二胺用量为41.7 mg/L、pH=6.6 时,石英回收率达到最大值,为98.10%。然而,两种捕收剂对赤铁矿的捕收能力均比较差,用N-十二烷基

浮选硫化矿常用的捕收剂种类

书山有路勤为径,学海无涯苦作舟 浮选硫化矿常用的捕收剂种类 浮选硫化矿常用的捕收剂主要有: 1.黄药类包括黄药和黄药酯。1)黄药(黄原酸盐)。其结构式: 学名为烃基二硫代碳酸盐,通式是ROCSSMe,其中R 为烃基,Me 为碱金属离子。R 为乙基、丁基等,则相应地称为乙基黄药、丁基黄药等。黄药为淡黄色粉剂,含杂质时顔色变深,比重为1.3~1.7。有刺激性臭味,易溶于水。黄药的捕收能力与分子中非极性基的烃链长度、异构有关。2)黄药酯,通式为ROCSSRˊ。常用的有:乙基腈酯、丁黄腈酯等。常用来做铜、铅、钼等硫化矿捕收剂。 2.硫氮类常用乙基氮、丁硫氮、硫氮酯等。乙硫氮分子式为(C2H5)2NCSSNa,它是白色粉剂,工业上常因含少量黄药呈淡黄色,易溶于水,在酸性介质中易分解。它对黄铜矿、方铅矿有较强的捕收能力,对黄铁矿捕收能力弱。硫氮酯的通式为RNCSSRˊ。常用的二乙基硫氮腈酯是棕褐色油状液体,难溶于水,可溶于有机溶剂,有起泡性能。 3.硫胺酯即硫逐氨基甲酸酯,属非离子型捕收剂,微溶于水,琥珀色油状液体。它是硫化矿浮选时有良好选择性的捕收剂,对黄铜矿、辉铜矿有较强的捕收作用,不捕黄铁矿。 4. 黑药类即二烃基二硫代磷酸盐,通式为: R2O2PSSMe 黑药具有起泡性,捕收及不及黄药,但选择性较黄药好,而且在酸性介质中不易分解,性质稳定。 1)25 号黑药,即甲酚黑药(C2H4CH8O)2PSSH。常温下,甲酚黑药为黑色或暗绿色粘稠液体,比重约为1.2,有硫化氢臭味,微溶于水,有起泡性,对 皮肤有腐蚀作用,与氧气接触易氧化而失效。2)丁铵黑药,即二丁基二硫代磷酸铵,分子式为(C4H9O)2PSSNH4。白色粉末,易溶于水,潮解后变黑,有起泡性,适于金、铜、锌等硫化矿的浮选。3)胺黑药,通式为(RNH)

赤铁矿反浮选捕收剂应用现状及未来发展趋势

赤铁矿反浮选捕收剂应用现状及未来发展趋势摘要:综述了近年来铁矿石反浮选阳离子捕收剂理论研究、铁矿石反浮选新型阳离子捕收剂研究以及铁矿石阳离子反浮选工艺研究的进展,介绍了铁矿石阳离子反浮选技术的工业应用现状。认为随着阳离子捕收剂合成工艺及反浮选工艺的日趋成熟,阳离子反浮选技术将被越来越多地应用于我国难选铁矿石的处理。 关键词:赤铁矿;反浮选;阳离子捕收剂;应用现状 随着我国优质铁矿资源储量不断减少,低品位、微细粒嵌布复杂难选铁矿石的开发利用变得越来越重要,单一重选或单一磁选工艺已很难适应日益恶化的矿石性质,磁选、重选与反浮选相结合的联合工艺在铁矿石的处理方面占据越来越主要的地位。其中反浮选技术就是有效的选矿分选方法之一,特别是降低铁精矿中微细粒嵌布的有害杂质如:磷、硫的含量,反浮选具有其他的物理选矿方法所无法比拟的技术优势。经过半个多世纪的对铁矿石选别的研究及实践,铁矿石的反浮选技术已取得长足的发展,现如今铁矿反浮选技术是铁精矿提质降杂最为重要的研究方向之一[1]。而反浮选技术最关键、最核心的就是浮选药剂的研究与运用,本研究将对反浮选捕收药剂的应用现状及未来发展趋势进行介绍和探讨。 1 铁矿石反浮选捕收剂 由于铁矿石脉石主要为硅酸盐类,所以铁矿反浮选所用捕收剂最终归结为硅酸盐类矿物的捕收剂。目前硅酸盐类矿物所用捕收剂大体上可分为两大类:阴离子捕收剂和阳离子捕收剂[2]。 1.1反浮选阳离子捕收剂 当捕收剂在水中解离后,疏水基为阳离子的称为阳离子捕收剂。阳离子捕收剂主要有胺类和胺类衍生物以及铵盐类化合物,起捕收作用的疏水性离子是阳离子(RNH3+)。据报道,有人用分子轨道法研究了胺类药剂在石英表面的作用,指出RNH3+与石英主要是通过3种离子键合力而发生作用:H(RNH3+)-O(SiO2),N(RNH2)-SiO2及N(RNH2)-H(Si-OH-),这种键合力大约是水分子二聚物中氢键(H-O-H-O-)作用力的一半。由于N-H…O 的稳定性比N…H-O 键稳定性差,胺类与石英的键合形式主要作用。用于浮选硅质矿物,具有和矿物作用时间短、分选效果好的特点。在硅酸盐矿物的浮选中主要用脂肪胺类的捕收剂。是≡SiO-H…N+H3R。在某些情况下胺分子起捕收作用。用于浮选硅质矿物,具有和矿物作用时间短、分选效果好的特点。在硅酸盐矿物的浮选中主要用脂肪胺类的捕收剂。 阳离子捕收剂反浮选的技术优势: (1)药剂制度单一简单。阳离子反浮选技术采用单一药剂-胺类捕收剂,药剂制度简单,浮选温度较低,适宜现场使用。 (2)操作简单可靠。阳离子反浮选工艺药剂种类少,浮选过程更易于操作,调整变化快,对工艺流程适应性强。 (3)与重选、磁选等工艺联合后效果更好。阳离子反浮选工艺与重选、磁选等工艺联合

浮选捕收剂(教案)

浮选捕收剂的分类及应用 目录 1、目的和意义Purpose and Significance 2、捕收剂结构与分类Structure and Classification of collectors 3、阴离子捕收剂Anionic collectors 4、阳离子捕收剂Cationic collectors 5、非离子性捕收剂Non-ionizing collectors 1、目的意义Purpose and Significance (1) 目的和意义: Without reagents there would be no flotation, and without flotation the mining industry, as we know it today, would not exist [By SRDJAN M.BULATOVIC]. 因此,学习和掌握浮选药剂的分类和应用非常重要,是学习浮选乃至选矿的基础,而浮选捕收剂又是浮选药剂中最重要的一种。 (2) 学习要求: 熟练掌握浮选捕收剂的分类方法和每一类捕收剂的浮选性能;掌握捕收剂适用的矿物类型;了解常用捕收剂的合成方法。 (3) 重难点: 同一类捕收剂结构、性质的异同点(尤其硫化矿捕收剂);捕收剂极性基按照结构的细分:中心核原子、亲固原子和连接原子。 (4) 参考书籍: ①浮选剂作用原理及应用[M].王淀佐,湖南:中南工业大学出版社. ②浮选药剂的化学原理[M].朱建光,湖南:中南工业大学出版社. ③Handbook of Flotation Reagents Chemistry, Theory and Practice: Flotation of Sulfide Ores [M].Srdjian B.bulatovic, Elesevier Science & Technology Books

浮选金红石用的捕收剂和调整剂

综述 浮选金红石用的捕收剂和调整剂 朱建光 (中南大学资源与生物工程学院湖南长沙410083) 摘要本文介绍了浮选金红石用的捕收剂和调整剂。在捕收剂部分介绍了脂肪酸、美狄兰、苄基胂酸、苯乙烯膦酸、烷胺二甲膦酸、烷基磷酸氢酯、烷基羟肟酸和水杨羟肟酸等对金红石的捕收性能;在调整剂部分,介绍了硝酸铅、六偏磷钠、羧甲基纤维素(CM C)、氟硅酸钠、硫酸铝和糊精等的活化或抑制性能。简略说明捕收剂和调整剂的作用机理,并略加述评。关键词金红石浮选捕收剂活化剂抑制剂 前言 我国拥有丰富的钛资源,主要是钛铁矿和金红石,目前我国共发现金红石矿床59处112,其中大型矿床13个,中型矿床11个,小型矿床35个,探明总储量1亿t以上。随着勘探工作的深入,可能还要增加,尽管各地矿石性质有些差异,但它们之间却有很多相似之处。有人122通过7个金红石矿石工艺特性的分析,认为这7个矿床的金红石矿石有下述共同特点。 品位低,一般含T iO22%~4%左右,伴生有钛铁矿,钛赤铁矿、赤铁矿、磁铁矿等磁性矿物,这些磁性矿物的密度均大于412g/cm3与金红石密度412 ~413g/cm3相近,脉石矿物含有角闪石、绿泥石、石榴石、磷灰石、榍石、云母和长石等。 嵌布粒度细,且与其它矿物嵌布关系复杂,含有硫(主要是黄铁矿)和磷(磷灰石)等矿物。由于一些脉石矿物比金红石易泥化,选矿时产生大量矿泥,金红石中一般以类质同象存在的Fe、Si和Ca等杂质难以除去,因此对金红石矿石进行选矿富集时,宜视矿石性质不同采取不同的方法和流程,本文只讨论用浮选法处理金红石矿石时所用的捕收剂和调整剂。 1捕收剂 金红石的捕收剂有:羧酸类及其皂。不饱和脂肪酸132有油酸和亚油酸。饱和脂肪酸有月桂酸(皂)和氧化石蜡皂等。膦酸类捕收剂有苯乙烯膦酸和烷胺二甲双膦酸等。胂酸类捕收剂有苄基胂酸。羟肟酸类捕收剂有C7-9羟肟酸(NM-50),水杨羟肟酸等。下面择重要者介绍。 1.1脂肪酸作捕收剂 户鼎金红石矿石中的金红石粒度细,矿石易碎,难选,含金红石2.07%。主要脉石密度(g/cm3)为方解石2.91,绿泥石2.74、石英2.68、白云石2.91、蛇纹石2.62、云母3.12、金红石4.23、铁矿物5112。因此用重选法以离心机抛弃一部分细粒脉石矿物和矿泥,再用磁选除去磁铁矿,使金红石得到富集,富集后的金红石矿石由于嵌布粒度细,采用脂肪酸作捕收剂,Na2Co3作pH调整剂,CM C作抑制剂,松醇油作起泡剂,通过一粗一扫丢尾矿,粗精矿经三次精选,精?尾矿和扫精混合返回粗选,精ò和精ó尾矿顺序返回的浮选流程得到浮选精矿,再用盐酸和氢氟酸酸清洗浮选精矿,得到含87.0% T iO2,回收率49.4%的钛精矿142。 油漆厂的微细粒度料含TiO242.1%和SiO22817%。先用重选法(如旋流器)除去含石英轻的部分,重部分得到富集,含T iO254.8%和SiO22219%。取600g重部分于2L浮选槽中,加水调浆,加EDTA015kg/t,NaF015kg/t,用硫酸调pH至2.5~3,加油酸6kg/t,调浆后粗选,丢尾矿;将粗精矿加油酸015kg/t,调浆精选。得到含T iO277.3%,回收率5311%的精矿152。 本文作者认为下述两点值得使用脂肪酸作捕收剂时参考:动植物油脂肪酸除椰子油脂肪酸外,多为十八碳脂肪酸,在十八碳脂肪酸中,不饱和的比饱和的效果要好,因不饱和的十八碳酸熔点比饱和的低,

硫化铜浮选捕收剂

硫化铜浮选捕收剂 一、捕收剂 凡能选择性地作用于矿物表面,使矿物表面疏水的有机物质,称为捕收剂。可以作为捕收剂的有机化合物很多,实践中常用的如黄药,油酸,煤油等。 硫化矿浮选常用的捕收剂有: 1、黄药 黄药为烃基二硫代碳酸盐(ROCSSMe),式中R为非极性的烃基,Me为碱金属离子(通常为Na+或K+)。在水中解离ROCSSMe = ROCSS-—+ Me+ 黄药在常温下是固体的黄色粉末,带有刺激性臭味,有毒。黄药在水中解离出阴离子,具有捕收作用。黄药性质不稳定,易吸水潮解,遇热更加速其分解。易溶于水、丙酮与醇中。 常用的有乙基黄药(CH3CH2OCSSMe)及丁基黄药(CH3CH2CH2CH2OCSSMe)。黄药是硫化矿物(如:方铅矿,黄铜矿,闪锌矿,黄铁矿等)最常用的捕收剂。 矿浆经过黄药处理,硫化矿物表面即与黄药的极性基发生作用,而非极性基朝端朝外起疏水作用。硫化矿物表面由于吸附了黄药,其疏水性大大增强,与弥散矿浆中的气泡附着,借气泡浮力上浮至矿浆表面,将其收集为泡沫产品,即得精矿;而未与气泡附着的脉石矿物留在矿浆内,从而达到分选的目的。 2、黑药 黑药是仅次于黄药、应用较广的硫化矿物捕收剂。生产的黑药有加酚黑药和丁基铵黑药两种。由于黑药具有起泡性能,使用时用量不宜过大,一般为25~100克/ 吨。 二、起泡剂 为了产生浮选所必需的大量而稳定的气泡,必须向浮选矿浆中添加起泡剂。起泡剂一般是异极性的表面活性物质。在其分子中含有极性基,如:羟基OH—,胺基NH2—,羧基COOH—, 羰基C=O等。在分子的另一端是非极性基烃基R—。就其结构而言,与异极性捕收剂十分相似。由于起泡剂分子中结构的不对称性,在有起泡剂的矿浆中充入大量空气后,起泡剂分子会优先的吸附在气水界面上。疏水的非极性基力图离开水中移至水面,而亲水的极性基部分,则力图进入水中。这两种趋势的大小,取决于分子中极性基(如亲水的羟基OH—)与非极性基(如疏水的烃基R—)强弱的对比。如:非极性基的成分大,则分子移至水面的趋势大于进入水中的趋势,因而减少了增加单位表面所需做的功,从而降低了水的表面张力。物质在表面层中自发的富集现象,叫吸附现象。由于起泡剂分子在水气界面上这种取向吸附作用,降低了水气界面的表面张力,使水中弥散气泡变得坚韧与稳定。形成了两相(气水两相)稳定泡沫。在矿浆中形成的气泡的表面附有大量疏水矿粒。这种附有矿粒的气泡,叫三相泡沫。在三相泡沫中,矿粒成为气泡兼并的障碍物,同时又能阻止气泡间水层的流动,避免气泡的直接接触。故三相泡沫的稳定性,较未矿化的两相泡沫要高些。

铁矿物阴离子反浮选捕收剂的研究概况

铁矿物阴离子反浮选捕收剂的研究概况 1 前言 我国铁矿石具有相对品位低、品质差、构造复杂、品种多、富矿少等特点,97.5%的矿石需要选矿后方能利用。近年来的研究表明,浮选是提高我国铁矿石利用水平的重要方法,也是潜力所在。铁矿浮选主要分有两种流程:一是捕收剂反浮脉石;二是捕收剂正浮铁矿。从铁矿本身的性质来说,反浮选应比正浮选有优势,因为反浮选工艺捕收的对象是脉石,而正 浮选工艺捕收的对象是铁矿物。铁矿物的密度在510 kg/L左右,铁矿物的密度大于脉石的密度。浮选作业矿浆密度在1~2 kg/L之间。因此,脉石在浮选作业矿浆中,有效重力将远远低于铁矿物在浮选作业矿浆中的有效重力,造成浮选过程效率低下。从药剂用量上比较,用胺类捕收剂对石英进行反浮选,胺的覆盖率6%~7%即可实现反浮选;而用羧酸浮选铁矿物,羧酸的覆盖率必须达到15%以上,方可实现铁矿物浮选。再者,正浮选虽然具有抛尾矿品位低的特点,但是由于捕收剂选择性的局限,铁精矿品位难以提高到大于65%,致使正浮选精矿品位难以提高,该法只适用于易选矿石。正是由于铁矿本身性质的限制,使得正浮选应用较少,长期以来反浮选流程成为应用最广泛的方法。 对于反浮选,又有阳离子反浮选和阴离子反浮选之分。当捕收剂在水中解离后,疏水基为阳离子的称为阳离子捕收剂;疏水基为阴离子的称为阴离子捕收剂。在浮选过程中,起作用的药剂是阳离子捕收剂时,就称该过程为阳离子反浮选工艺,反之为阴离子反浮选工艺。常用的阳离子捕收剂主要是脂肪胺,但是采用胺类常规阳离子反浮选工艺,存在阳离子浮选药剂种类较少,药剂配制不便、浮选泡沫粘度大流动性差、不易消泡、选择性较差等实际生产问题,使得目前,阳离子反浮选工艺在我国很少使用,仅东鞍山铁矿曾经开展了采用胺类反浮选石英的实验研究,取得了良好的浮选指标。而阴离子捕收剂对矿石性质变化有较强的适应性,种类多,配药制度灵活多样,可充分利用多种药剂的协同作用,取得更好的选别效果。所以,阴离子反浮选工艺是我国目前铁矿物浮选工艺的主流,一直以来,有很多科研人员在这方面做了大量研究工作。 阴离子反浮选的作用机理 矿物的表面特性是浮选界面现象中最重要的一种特性,直接影响到矿物的可浮性。矿物的表面特性很复杂,包括表面键的断裂、表面电性、表面离子状态、表面元素的电负性、表面极性、表面自由能、表面剩余能、表面不均匀性、表面积、表面溶解性以及表面结构和化学组成等特性。这些表面特性与矿物可浮性具有直接的关系,也为通过利用浮选药剂的作用来改变矿物表面的某些特性达到分离矿物及改善浮选效果提供了机会。在浮选中,矿物的表面性质和浮选药剂的性能是决定矿物分选的两个重要因素。从一定意义上讲,捕收剂在实现有用矿物与脉石矿物的分离中起着决定性的作用。 阴离子反浮选捕收剂在矿物表面的吸附主要有以下形式: (1)物理吸附。 靠吸附剂与吸附质之间分子引力(范德华力)产生的,该种吸附过程是可逆的,吸附速度与脱附速度在一定条件下呈动态平衡。其特点是能量小,吸附分子与固体表面距离较大,在固体表面上具有流动性。药剂分子与矿物间不发生键合的电子转移或共存。物理吸附一般没有选择性,并且易于解吸,通常吸附量随温度上升而下降。 (2)化学吸附。 化学吸附是指药剂与矿物表面间的反应,形成定向排列的单层。其特点是能量大,吸附分子与固体表面距离较小。化学吸附具有选择性高,不易解吸,通常吸附量随温度上升而升高。 (3)表面化学反应。 表面化学反应是指药剂与矿物表面间的反应,形成定向排列的多层金属-药剂的盐。表面化学反应与溶液内化学反应的主要区别是前者的反应产物在表面上构成独立的相,而后者是金属离子与药剂在离开表面的溶液内发生反应,形成金属与药剂的化合物沉淀。

相关主题
文本预览
相关文档 最新文档