当前位置:文档之家› 阻聚剂-作用机理教程文件

阻聚剂-作用机理教程文件

阻聚剂-作用机理教程文件
阻聚剂-作用机理教程文件

阻聚剂-作用机理

阻聚剂

阻聚剂分子与链自由基反应,形成非自由基物质或不能引发的低活性自由基,从而使聚合终止。

阻聚剂 - 阻聚剂

阻聚剂 - 正文

能使烯类单体的自由基聚合反应完全终止的物质。这种作用称阻聚。阻聚剂分子与链自由基反应,形成非自由基物质或不能引发的低活性自由基,从而使聚合终止。

为了避免烯类单体在贮藏、运输等过程中发生聚合,单体中往往加入少量阻聚剂,在使用前再将它除去。一般,阻聚剂为固体物质,挥发性小,在蒸馏单体时即可将它除去。常用的阻聚剂对苯二酚能与氢氧化钠反应生成可溶于水的钠盐,所以可用5%~10%的氢氧化钠溶液洗涤除去。氯化亚铜和三氯化铁等无机阻聚剂也可用酸洗除去。

阻聚剂类别和作用一般分为分子型阻聚剂和稳定自由基型阻聚剂,前者主要有:对苯二酚 (见结构式a)、对苯醌 (b)、酚噻嗪(c)、β-苯基萘胺(d)、对叔丁基邻苯二酚(e)、亚甲基蓝(f):

氯化亚铜、三氯化铁等无机物以及硫黄等也可作阻聚剂。稳定自由基型阻聚剂主要有1,1-二苯基-2-苦肼DPPH(g)、2,2,6,6-四甲基哌啶氮氧自由基

TMP(h):

虽然它们本身也是自由基,但由于它们很稳定,不能引发单体聚合,只能有效地与链自由基结合,使链自由基消失,以DPPH为例,其反应如下:

在这一反应中,一个DPPH分子与一个链自由基 P·结合,几乎是定量的。反应物料由紫色变为无色,可用分光光度法测出参加反应的DPPH的量,从而算出自由基的浓度,所以此法常被用来测定引发速率。

三苯甲基自由基(结构式如下)

也可算作自由基型阻聚剂,但稳定性较差,温度较高时可引发聚合,所以使用较少。工业和实验室中最常用的阻聚剂是对苯二酚,一般加入量为单体量的

0.001%~0.1%。其阻聚机理是先在氧作用下转化成苯醌,再与自由基反应:

催化材料的研究背景与意义

催化材料的研究背景与意义 随着工业的发展和技术的发展,大量有害污染物进入环境。近年来,各国关于污染物排放的法律法规越来越严格,因此,为了现代工业可持续发展,把环境中的污染物消除,已经成为当今社会的一个重要问题,也是重中之重的关键因素。研究和开发更高效的废水处理技术是不可避免的。在清除污染物的方法中,采用催化降解的方法是当前研究的热点话题。过渡金属硫化物由于其独特的物理化学性质已经在催化、锂离子电池和超电容等领域引起了广泛关注。硫化钴由于其独特的光电特性,具有多种化学计量比,如CoS、CoS2、Co3S4、Co9S8等,磁性能和电化学性能被广泛应用于各个领域。通过对Co9S8/Ni3S2的制备以及在污染物降解方面的应用进行研究,有利于Co9S8/Ni3S2在污染降解方面的应用,改善环境的污染现状。 1、催化材料的研究现状 催化材料有很多种,但是真正能被应用于工业化的却不是太多。由于催化材料在碱性条件下必须保持结构稳定、耐腐蚀性和较长的催化寿命。 (1)金属及合金材料 Ni是一种相对比较便宜的金属,并且Ni在碱性溶液中的耐腐蚀性比较高,而且它对析氧反应的催化效率要高于其他的金属元素。所以工业中常用Ni作为电解水的催化剂材料。除此之外,其他的一些金属如Co、Zr、Nb等也具有一定的催化效果从而引起了广泛关注。 与金属材料相比,掺杂材料通常具有较低的氧演化过电压。这样的例子有很多,比如Ni2Co合金,Co50Ni25Si15B10和Ni2Co2P合金等,因为它们能在表面形成高度活性的含NiCo2O4或者含有CoO (OH)的钴化合物,直到达到析氧电位,这显著提高了Ni电极的电催化活性。另外一个例子是镍铜合金,Cu的存在能够显著的提高Ni电极的催化活性。这都是由于合金材料发生析氧反应的时候表面的离子价态发生转变,所以就会有高化合价的中间产物产生,这些中间产物可以显著提高电极的催化活性。但是,长时间工作在高电位和强碱性环境下,在金属材料和合金材料的表面,都会形成一层金属氧化膜,增加其内阻,从而增加能耗。 (2)贵金属氧化物

阻聚剂

阻聚剂 定义 能使烯类单体的自由基聚合反应完全终止的物质。这 阻聚剂 种作用称阻聚。 为了避免烯类单体在贮藏、运输等过程中发生聚合,单体中往往加入少量阻聚剂,在使用前再将它除去。一般,阻聚剂为固体物质,挥发性小,在蒸馏单体时即可将它除去。常用的阻聚剂对苯二酚能与氢氧化钠反应生成可溶于水的钠盐,所以可用5%~10%的氢氧化钠溶液洗涤除去。氯化亚铜和三氯化铁等无机阻聚剂也可用碱洗除去。 阻聚剂可以防止聚合作用的进行,在聚合过程 作用: 单体在贮存、运输中常加入阻聚剂以防止聚合 中产生诱导期(即聚合速度为零的一段时间),诱导期的长短与阻聚剂含量成正比,阻聚剂消耗完后,诱导期结束,即按无阻聚剂存在时的正常速度进行。 阻聚机理 根据抑制聚合反应的作用,将能终止每个自由基而使聚合反应停止,直到它们完全耗尽的物质称为阻聚剂或抑制剂;而只能使自由基活性减弱,减慢聚合反应速度,但不能终止反应的物质称为阻滞剂。 (1)酚类阻聚剂。多元酚及取代酚是一类应用广泛、效果较好的阻聚剂,但必须在单体中溶解有氧时才显示阻聚效果。其阻聚机理是酚类被氧化成相应的醌与链的自由基结合而起阻聚作用。在酚类阻聚剂存在下,使过氧化自由基很快终止,确保在单体中有足够量氧,可以延长阻聚期。 (2)醌类阻聚剂。醌类阻聚剂是常用的分子型阻聚剂,用量O.01%~O.1%便能达到预期的阻聚效果;但对不同的单体阻聚效果有异.对皋醌是苯乙烯、醋酸乙烯有效的阻聚剂,但对丙烯酸甲酯和甲基丙烯酸甲酯仅起缓聚作用;醌类的阻聚机理尚不完全清楚,可能是醌与自由基进行加成或歧化反应,生成醌型或半醌型自由基,再与活性自由基结合,得到没有活性的产物,起到阻聚作用。每一分子对苯醌能终止的自由基数大于1,甚至达到2。将四氯苯醌、l,4-萘醌等加入到含苯乙烯的不饱和聚酯树脂中能起到良好的阻聚作用,提高储存稳定性。四氯苯醌是醋酸乙烯的有效阻聚剂,但对丙烯腈无阻聚效果。 (3)芳烃硝基化合物阻聚剂。芳烃硝基化合物的阻聚效果不如酚类,只用于醋酸乙烯、异戊二烯、丁二烯、苯乙烯,但对丙烯酸酯和甲基丙烯酸酯类没有阻聚作用:硝基苯通过与自由基生成稳定的氮氧自由基而起阻聚作用。 (4)无机化合物阻聚剂。无机盐是通过电荷转移而起阻聚作用,氯化铁阻聚效率高,并能按化学剂量1:1消灭自由基。硫酸钠、硫化钠、硫氰酸铵能用作水相阻聚剂。 (5)氧气的阻聚作用。分子氧有两个未配对的电子,常被视为双自由基,能起阻聚和引发双重作用,低温时则起阻聚作用。氧能与交联剂的自由基和大分子链自由基反应生成较无活性的过氧化自由基,在室温或稍高温度下都不能引发共聚合反应。这种氧的阻聚作用使不饱和聚酯树脂与空气接触的表面固化不完全而发黏。但在高温时氧与自由基生成的过氧化物自由基能分解成活性自由基,从而引发聚合反应。当氧在单体中的溶解度达10-3mol/L时,就有强烈的阻聚作用。包装厌氧胶的容器不能装满就是保证有足够量的氧气,阻聚而稳定储存。在聚合反应过程中通惰性气体则是防止氧的阻聚作用。[1]

实验01 单体和引发剂的精制

实验一单体和引发剂的精制 一、实验目的 1、了解苯乙烯、甲基丙烯酸甲酯等单体及过氧化苯甲酰、偶氮二异丁腈等引发剂的商品组成、特点及精制的意义; 2、掌握在实验室中对苯乙烯、甲基丙烯酸甲酯、过氧化苯甲酰、偶氮二异丁腈进行精制的常用方法和操作规程; 3、正确使用并能够熟练操作实验中所用到的各种仪器。 二、实验原理 高分子合成中所常用的单体,如苯乙烯、甲基丙烯酸甲酯等,为防止其在分离精制、贮存和运输过程中受到热、光、辐射、机械等作用而引发聚合,通常需添加一定量(几~几十ppm)的阻聚剂(多为对苯二酚),此时单体外观呈黄色。用含有阻聚剂的单体进行聚合,反应通常不能顺利进行,宏观上表现为有较长的诱导期,更为严重时甚至不发生生成高分子的聚合反应;微观上则表现为引发剂分解所产生的初级自由基与阻聚剂反应生成非自由基物质或形成活性低、不再具有引发聚合能力的自由基,使聚合完全停止。只有当阻聚剂被消耗完后且体系中尚含有多余的引发剂时,聚合反应才有可能发生并生成高分子化合物。此时所引入的引发剂不是全部被用来生成高分子,引发效率降低,聚合速率减慢,且不利于对所合成的高分子的分子量及配方进行设计与控制。因此,在聚合前,需要对单体及引发剂等进行精制,以脱除阻聚剂或微量杂质,尽量降低其对聚合的不利影响。 实验室中,通常采用两种方法对单体进行精制,一为碱洗法,另一为减压蒸馏法。 碱洗法是利用单体与阻聚剂在碱液中的溶解性能差异来进行精制分离的。而减压蒸馏则是利用单体的沸点随其分压的降低而下降进行精制的。 根据聚合反应体系和所得高分子对纯度及分子量等的具体要求,可以只使用其中的一种方法,也可以两种方法都采用。 表1 苯乙烯沸点和压力关系 压力/kPa mmHg 0.67 5 1.33 10 2.66 20 5.32 40 7.98 60 13.30 100 26.60 200 53.20 400 101.08 760 沸点℃18 30.8 44.6 59.8 69.5 82.1 101.4 122.6 145.2 表2 甲基丙烯酸甲酯沸点和压力关系 压力/kPa mmHg 3.19 24 4.66 35 7.05 53 10.77 81 16.49 124 25.14 189 37.11 279 50.80 397 72.75 547 101.08 760 沸点℃10 20 30 40 50 60 70 80 90 100.6

氮化物作为催化剂的研究进展

氮化物作为催化剂的研究进展 内容摘要:近年来,被誉为“准铂催化剂”的过渡金属氮化物因其优良的催化活性已受到世界各国学者的广泛关注。大量的研究表明,过渡金属氮化物在氨的合成与分解、加氢精制等许多涉氢反应中都表现出良好的催化活性。过渡金属氮化物的制备方法有高温法和程序升温氮化法, 程序升温氮化法的显著优点是可以制备出高比表面积的金属氮化物。研究人员不仅对金属氮化物催化剂的制备方法进行了大量的研究,并且发现负载型金属氮化物具有负载量低、比表面积大等优点。因此, 金属氮化物的负载化研究正成为目前的研究热点。 关键词:过渡金属、氮化物、催化剂、结构、性能、工业 Nitride as a catalyst research progress Grade: grade 09 Applied Chemistry Specialty Name: Hong Huaiyong number: 122572009003 Abstract:In recent years, known as the" Platinum" transition metal nitride because of its excellent catalytic activity has been subjected to extensive concern of scholars all over the world. A large number of studies show that, transition metal nitride in ammonia synthesis and decomposition, hydrogenation and so many wading hydrogen reaction showed good catalytic activity. Preparation of transition metal nitride has high temperature method and temperature-programmed nitridation, temperature-programmed nitridation method has the advantages of preparation of high specific surface area of the metal nitride. The researchers not only on the metal nitride catalyst preparation method was studied, and found that the load type metal nitride having load low, large specific surface area and other advantages. Therefore, a metal nitride load research is becoming the research hotspot at present. Key word:Transition metal, nitride, catalyst, structure, performance, industry 引言 过渡金属氮化物是元素N插入到过渡金属晶格中所生成的一类金属间充型化合物,它兼具有共价化合物、离子晶体和过渡金属三种物质的性质,从而表现出优良的物理和化学性能。它作为一类具有很高硬度、良好热稳定性和抗腐蚀特性的新型功能材料,已经在各种耐高温、耐磨擦和耐化学腐蚀分机械领域得到应用。而且它在氨合成与分解、加氢脱硫/脱氮(HDS/HDN)、F-T合成等许多涉氢反应都具有优良的催化活性,不逊色于Pt和Rh等贵金属催化剂的性能,被誉为“准铂催化荆”。过渡金属氮化物作为一种有应用前景的新型加氢精制催化剂已引起人们的广泛关注,成为国际催化荆新材料领域的研究热点。本章概述了这一催化新材料的最新研究进展。 1.过渡金属氮化物的结构和电子特征 过渡金属氮化物是一种间充化合物,是由于氮原子填隙似的融进过渡金属的晶格中形成的,它们倾向于形成组成可在一定范围内变动的非计量间隙化合物。其固态化学特征类似于纯金属,具有简单的晶体结构特征。其中的金属原子形成

阻聚剂的性质

阻聚剂的性质 1.对苯二酚, 有机化合物,白色结晶。毒有,成人误服1g,即可出现头痛、头晕、耳鸣、面色苍白等症状。遇明火、高热可燃。与强氧化剂接触,可发生化学反应。受高热分解放出有毒的气体。主要用于制取黑白显影剂、蒽醌染料、偶氮染料、橡胶防老剂、稳定剂和抗氧剂。 管制信息,本品不受管制. 名称: 中文名称:氢醌,1,4-二羟基苯,几奴尼,海得 英文别名:Hydroquinone ,p-Benzenediol ,p-Dihydroxybenzene ,Hydroquinol ,Quinol 化学式: C6H6O2 相对分子质量: 110.11 性状 无色或白色结晶。在空气中露光易变色。其水溶液在空气中能氧化变成褐色,碱性介质中氧化更快。易溶于乙醇和乙醚,溶于14份水,微溶于苯。相对密度(d15)1.332。熔点170~171℃。沸点285~287℃。闪点165℃。中等毒,半数致死量(大鼠,经口)320mG/kG。有致癌可能性。 储存:密封避光保存。 生产方法:对苯二酚我国目前普遍使用苯胺法生产。

用途: 光度测定磷、镁、铌、铜、硅和砷等。铱的极谱法和容量法测定。杂多酸的还原剂,铜和金的还原剂。检验磷酸盐、钨酸盐、硝酸盐、硝酸盐、硒和碲等。显影剂。抗氧剂。 安全措施 泄漏:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴自给式呼吸器,穿防毒服。小量泄露:用洁净的铲子收集于干燥、洁净、有盖的容器内。也可用大量水冲洗,洗水稀释后放入废水系统。大量泄露:收集回收或运至废物处理场所处臵。 灭火方法 燃烧性:可燃引燃温度(℃):499 灭火剂:雾状水、抗溶性泡沫、干粉、二氧化碳、砂土。 紧急处理 吸入:迅速脱离现场至新鲜空气处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。误食:立即给饮植物油15~30ml。催吐。就医。皮肤接触:立即脱去被污染衣着,用大量流动清水冲洗。就医。眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 有害物成分CAS No. 对苯二酚123-31-9 健康危害: 本品毒性比酚大。成人误服1g,即可出现头痛、头晕、耳鸣、面色苍白、紫绀、恶心、呕吐、腹痛、窒息感、呼吸困难、心动过速、

苯乙烯论文

苯乙烯中DNBP含量测定方法 摘要:DNBP(邻仲丁基-4,6-二硝基苯酚)是一种橙黄至橙褐色透明液体液有机弱酸性化合物。邻仲丁基-4,6-二硝基苯酚的分子式为:C10H12N2O5,相对分子质量为: 240g/mol, 其结构式如图1所示: 图1、邻仲丁基-4,6-二硝基苯酚结构图 DNBP是苯乙烯精馏过程中所需的一种新型高温高效阻聚剂,其阻聚效果优于其它硝基酚类阻聚剂。同时可减少环境污染,提高苯乙烯生产能力。 目前测定DNBP含量的方法主要是根据DNBP的弱酸性,能与氢氧化钾反应生成相应的盐,在容量分析中,可以根据氢氧化钾所消耗的体积数,计算试样中DNBP的含量。但是其结果采用试样的平均密度与试样体积的乘积,来得出试样的质量。 本文考虑到:采用平均密度来计算试样的体积存在一定的误差,所以本文采用对试样进行直接称量来获得试样的质量,来消除这一误差。本文所采用的分析方法简便、精度较高,完全满足分析要求。 关键词:DNBP(邻仲丁基-4,6-二硝基苯酚),阻聚剂,苯乙烯

目录 一前言 (1) 1.1 苯乙烯阻聚剂的应用及发展现状 (1) 1.2 阻聚剂含量测定方法以及立题思路 (1) 二试验部分 (3) 2.1 原理概要 (3) 2.2 仪器 (3) 2.3 试剂 (3) 2.4 宁波科元阻聚剂含量分析试验 (3) 2.5 DNBP含量分析化验方法改进 (3) 三结果与讨论 (4) 四展望 (5) 五参考文献 (5) 六致谢 (5)

一前言 1.1 苯乙烯阻聚剂的应用及发展现状 苯乙烯是一种重要化工原料,这些年国内苯乙烯规模化生产得到较快发展。苯乙烯单体具有自聚性质,常温下就可发生聚合,温度越高,聚合速度越快。苯乙烯单体在精馏过程中,由于热引发易形成高聚物,不但影响苯乙烯产品质量,而且会造成生产不稳定和危险性。为了减少苯乙烯精馏过程中苯乙烯单体的聚合损失,保证精馏系统正常进行,一般装置除采用减压降温精馏,通常都以注入缓聚剂或阻聚剂方法来延缓和防止聚合的发生。因此,人们不断地对苯乙烯精制过程中的阻聚剂进行研究开发。近年来从降低阻聚剂毒性出发,同时考虑阻聚剂性能,又出现了复配型阻聚剂。如今工业上苯乙烯生产精制过程中多数都是采用复配型阻聚剂,主要是使用缓聚剂和阻聚剂(又称为真阻聚剂)的复配,比如采用2,4-二硝基苯酚(NSI),或者邻仲丁基4,6-二硝基苯酚(DNBP)等与真阻聚剂(如GE公司生产的styrex 310)复配,以产生更高的阻聚效率,从而降低苯乙烯的生产成本。阻聚效果较好的精馏阻聚剂有: NSI,DNPC,DNBP,DEHA-,FR,DTBNO,TEMPDO等。 目前国内苯乙烯规模化生产装置在精馏过程中,大多采用DNBP。由于NSI毒性较大已经被大多数装置所淘汰;其他一些阻聚剂由于价格较高或存在应用问题等诸多原因未被推广使用;寻求新型高效低毒使用方便苯乙烯阻聚剂,一直是让人关注的课题,由于很难在合成方面得到一种性能优异阻聚剂,复配出具有协同效应阻聚剂成为一个重要发展方向。苯乙烯工艺中,阻聚剂的循环利用,对整个工艺流程的成本以及苯乙烯的纯度都有影响,所以阻聚剂含量的测定对整个工艺的控制和苯乙烯产品质量具有重要的意义。 1.2 阻聚剂含量测定方法以及立题思路 目前测定DNBP含量的方法主要是根据DNBP的弱酸性,能与氢氧化钾反应生成相应的盐,在容量分析中,可以根据氢氧化钾所消耗的体积数,计算试样中DNBP的含量。但是其结果采用试样的平均密度与试样体积的乘积,来得出试样的质量。

实验一 单体和引发剂的精制

实验一单体和引发剂的精制 —、实验目的 1. 了解单体、引发剂的精制原理,掌握它们的精制方法; 2. 纯化几种烯类单体、自由基引发剂。 二、实验原理 试剂的纯化对高分子聚合反应而言是相当重要的,极少量的杂质往往会影响反应的进程,离子聚合反应对杂质尤为敏感,杂质浓度要求更低,而阴离子聚合反应还需绝对无水,所以聚合以前试剂的纯化是必需的。 固体单体常用的纯化方法为结晶和升华,液体单体可采用减压蒸馏、在惰性气氛下分馏的方法进行纯化,也可以用制备色谱分离纯化单体。单体中的杂质可采用下列措施加以除去:(1)酸性杂质(包括阻聚剂酚类)用稀碱溶液洗涤除去,碱性杂质(包括阻聚剂苯胺)可用稀酸溶液洗涤除去。(2)单体中的水分可用干燥剂除去,如无水CaCl2,无水Na2S04,CaH2或钠。 (3)采用减压蒸馏法除去单体中的难挥发杂质。 自由基聚合的引发剂有如下几种类型: (1)偶氮类引发剂:常用的有偶氮二异丁腈(AIBN,用于40℃~65℃聚合)和偶氮二异庚腈,后者半衰期较短。 (2)有机过氧化物:最常用的是过氧化苯甲酰(BPO,用于60℃~80℃聚合),还有过氧化二异丙苯、过氧化二特丁基和过氧化二碳酸二异丙脂。 以上两种引发剂为油溶性,适用于本体聚合、悬浮聚合和溶液聚合。 (3)无机过氧化物:如过硫酸钾(KSP)和过硫酸铵,这类引发剂溶于水,适用于乳液聚合和水溶液聚合。 (4)氧化-还原引发剂:活化能低,可以在较低的温度(0℃~50℃)引发聚合反应。水溶性的有氧化剂过硫酸盐、过氧化氢以及还原剂Fe2+,NaHS03,Na2S203和草酸;油溶性的氧化剂有氢过氧化物、过氧化二烷基;还原剂有叔胺、硫醇等。 三、化学试剂与仪器 化学试剂:乙酸乙烯酯过氧化苯甲酰过硫酸钾 无水硫酸钠 饱和碳酸钠溶液 盐酸(4mol/L)氯仿 甲醇 无水乙醇 仪器设备:100mL分液漏斗锥形瓶蒸馏装置布氏漏斗抽滤瓶 滤纸 四、实验步骤 1. 乙酸乙烯酯的精制(商品中含苯胺、乙酸、水分及固体杂质) 在100mL分液漏斗中加入50mL乙酸乙烯酯单体,用15mL盐酸(4mol/L)洗涤两次,15 mL的饱和碳酸钠溶液洗涤二次,再用蒸馏水洗涤至中性。分离出的单体置于锥形瓶中,加入无水硫酸钠至液体透明。干燥后的单体进行常压蒸馏,收集72℃~73℃的馏分。如单体暂时不用,可储存在烧瓶中,充氮封存,置于冰箱中。 2. 过氧化苯甲酰的精制 100mL的烧杯中加入6g过氧化苯甲酰,在搅拌条件下逐滴加入氯仿约25 mL,稍作加热使其溶解,如有不溶物时趁热过滤。向澄清的溶液中加入甲醇(50 mI—100 mL),有过氧化苯甲酰晶体析出。过滤,固体用甲醇洗两次,抽干,置于真空干燥器内除溶剂。 3. 过硫酸钾的精制 取10g过硫酸钾放于100mL烧杯中,于40℃水浴中加热,电磁搅拌下加入尽量少的蒸馏水使其溶解(如有不溶物加以过滤),然后于冰箱中冷却30 min,溶液中析出晶体。过滤,用冰水洗涤,再用少量无水乙醇洗涤,结晶置于真空保干器内,减压除去溶剂,放在冰箱中保存。

MoS2电催化剂的制备性能研究

第1章MoS2 材料的制备及催化性能研究 3.1 引言 本章主要从理论和实验两个方面对MoS2 电催化剂进行研究,具体研究内容如下: (1) 通过基于密度泛函理论的第一性原理对MoS2 模型进行计算,探究MoS2 的不同位置对氢原子的结合能力。 (2) 通过液相剥离法制备了尺寸不同的MoS2 纳米片,详细介绍了其制备工 艺,并对其形貌表征及电化学性能进行分析。 (3) 通过水热法制备了花状M0S2纳米材料,介绍了这种材料的制备方法,利用TEM 、XPS 等手段对其结构、成分进行分析。利用LSV 和CV 法对其电化学性能进行分析。 3.2 理论模型及计算方法 MoS2具有类石墨烯的二维结构,其基本结构层为Mo-S-Mo,层内原子以共价键相互作用,层之间以较弱的范德华力相互作用。这种特殊结构使M0S2较容 易被剥离,形成少层甚至单层的M0S2纳米材料。这种材料在电化学析氢反应中表现出较好的催化活性,为了研究M0S2催化析氢反应的活性位点。从而制备具有良好催化性能的催化剂,本课题首先应用了基于密度泛函理论的计算方法,在Material Studio软件中建立单层M0S2结构模型。 3.2.1 Materials Studio 仿真软件介绍 Materials Studio 为美国Accelrys 公司开发的一款软件,在该软件中可以搭建分子、晶体及高分子材料结构模型,并对这些材料进行相关性质的计算与预测。被广泛应用于催化剂、化学反应、固体物理等材料领域。 Materials Studio 软件包含多种算法模块,其中Visualizer 为建模模块的核心,包含如Castep、DMol 3、Discover、Amporphous、COMPASS 等多个计算和分析 模块。本文主要利用CASTEP模块来完成计算和分析。Castep模块中包含LDA 及GGA两种交换关联函数近似方法,在该模块下通过建立单层M0S2分子模型计算其对氢原子的吸附能力,从而确定M0S2的电催化析氢反应活性位点。 3.2.2 模型建立及计算 模型为3X3X1的M0S2超胞模型,如图3-1。为使计算结果更为准确,在正式

实验一 单体和引发剂的精制1

高 分 子 化 学 实 验 报 告 实验一单体和引发剂的精制

(一)苯乙烯的精制 一、实验目的 1、了解苯乙烯的储存和精制方法。 2、掌握苯乙烯减压蒸馏的精制方法。 二、实验原理 苯乙烯为无色或淡黄色透明液体,沸点145.2 摄氏度。 为了防止苯乙烯在储存或运输过程中发生自聚,通常在苯乙 烯中加入阻聚剂,实验室采用减压蒸馏的方法来降低苯乙烯的沸 点,从而在不是很高的温度苯乙烯不会聚合的情况下精制苯乙 烯。 减压蒸馏是分离可提纯有机化合物常用方法之一,特别适用 于那些常压蒸馏时未达沸点即已受热分解、氧化或聚合物质。 苯乙烯阴离子聚合的活性中心能与微量的水、氧、二氧化碳、 酸、醇等物质反应而导致活性中心失活,因此苯乙烯的精制要先 除阻聚剂,再除去过程中混入的水,方法主要包括物理吸附和化 学方法两种:物理吸附是用多孔的物质与水接触,而把水吸附在 空隙中,通常采用0.5纳米的分子筛;化学方法是加入某些物质 与水反应,再除去生成物。氢化钙常用来做干燥剂,也可以两种 方法结合在一起使用,如将除去阻聚剂的苯乙烯先用分子筛浸泡 在加入氢化钙,在高纯氮气的保护下进行检验蒸馏,收集所需的 组分。 苯乙烯沸点与压力的关系如下: 沸点18 30.8 44.6 59.8 69.5 82.1 101.4 122.6 145.2 压力 0.67 1.33 2.66 6.32 7.98 13.30 26.6 53.2 101.0 /Kpa 压力 5 10 20 40 60 100 200 400 760 /mmHg

三、实验药品及仪器 药品:苯乙烯,氢化钙 仪器:500ml 三口瓶、水浴锅、直型冷凝管、接液瓶、铁架台实验装臵如下图: 四、实验步骤 1、向500ml 分液漏斗中加入250ml 本苯乙烯,用5%氢氧化纳洗数次至无色,然后用无离子水洗至中性.用干燥剂干燥一周,再换纳米分子筛浸泡一周。 2、按图安装实验装臵,要求整个装臵密封。先用水浴一段时间,开动真空泵抽真空、加热,反复3 次。 3、开动真空泵抽真空,开始抽真空,水浴加热回流2 小时。控制压力在22mmHg 进行减压蒸馏,收集44 摄氏度的馏分。由于苯乙烯沸点与真空度密切相关,多余对体系真空度的空要仔细,使真空度在蒸馏过程中保持稳定,避免形成暴沸。 4、为防止苯乙烯自聚,精制好的苯乙烯在纯氮的保护下放进冰箱保存。

紫外固化胶粘剂作用机理及研究进展

紫外固化胶粘剂作用机理及研究进展 摘要:阐述了UV胶(紫外固化胶粘剂)的作用机理、应用现状和新的研究进展。 关键词:UV固化;胶粘剂;研究进展,结构胶,发展前景。 1.前言: 紫外线胶又称无影胶、光敏胶、UV胶,它是指必须通过紫外线光照射才能固化的一类胶粘剂,它可以作为粘接剂使用,也可作为油漆、涂料、油墨等的胶料使用。紫外线固化技术,被认为是一种环境友好的绿色技术,近些年取得了快速发展,主要应用于涂料、油墨、胶粘剂等领域。在辐射固化领域中,UV固化胶粘剂虽然所占的比例仅为1%,但发展却是最为迅速的。UV固化胶粘剂中,结构性UV胶约占UV胶的20%。 近年来,自由基和阳离子引发体系、杂化引发体系以及双重固化体系都有大量研究报道,有很多成果应用于时间。预聚物和活性稀释单体的种类及质量都有很大提高,这些都促进了辐射固化胶粘剂的发展。 2.作用机理 粘结机理:人们对粘结机理进行了大量的研究,提出了很多粘结理论,其中主要有以下5种。 ①机械理论 机械理论认为,胶粘剂必须渗入被粘物表面的空隙内,并排除其界面上媳妇的空气,才能产生粘接作用。 ②吸附理论 吸附理论认为,粘接是由两材料间分子接触和界面力产生所引起的。粘接力的主要来源是分子间作用力包括氢键力和范德华力。胶粘剂与被粘物连续接触的过程叫浸润,要使胶粘剂润湿固体表面,胶粘剂的表面张力应小于固体的临界表面张力,胶黏

剂进入固体表面的凹陷与孔隙就形成良好润湿。 ③扩散理论 扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长脸大分子聚合物时,扩散理论基本是适用的。 ④经典理论 经典理论又称为双电层理论,由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的证实。但经典理论无法解释性能相同或相近的聚合物之间的粘接。 ⑤弱边界层理论 弱边界层理论认为,当粘接破获被认为是界面破坏时,实际上往往是内聚破坏或若边界层被破坏。 固化原理:UV固化材料中的光引发剂(或光敏剂)在紫外线的照射下吸收紫外光后产生活性自由基或阳离子,引发单体聚合、交联和接枝化学反应,使粘合剂在数秒内由液态转化为固态。 3.结构型UV胶的组成与传统结构胶的比较 结构型紫外线固化胶粘剂的固化属于光引发的自由基,其基本组成为:基础聚合物,即光交联性聚合物(相对分子质量一般在1000~5000);光聚合性单体,即单体或活性稀释剂(常带有可自由基聚合的乙烯基官能团);助剂,如阻聚剂(或稳定剂)、着色剂、触变剂、增粘剂、填充剂、增塑剂等;光引发剂,在紫外光照射下可产生活性自由基。 光交联性聚合物对UV固化胶粘剂的性能有决定性的影响,主要有聚酯类,聚醚类,环氧类,氨基甲酸酯类(甲基)丙烯酸酯等。合理选择光交联性聚合物,可以满足不同使用要求和不同性能紫外线固化胶的要求。配方设计时,要综合平衡胶液固化前的工艺性、稳定性以及固化物的特性和价格。 经过配方设计,结构型UV固化胶可以达到传统结构胶的各种性能。而室温固化环氧结构胶10~120min初固,7d才能达到最高强度;第二代丙烯酸酯结构胶1~30min 初固,24h才能达到最高强度;结构型UV胶1~5s初固,1h即可达到最高强度,可以满足自动化生产线节奏的需要,这是其他类结构胶无法比拟的。

MoS2电催化剂的制备及性能研究(仅供参考)

第1章MoS2材料的制备及催化性能研究 3.1 引言 本章主要从理论和实验两个方面对MoS2电催化剂进行研究,具体研究内容如下: (1)通过基于密度泛函理论的第一性原理对MoS2模型进行计算,探究MoS2的不同位置对氢原子的结合能力。 (2)通过液相剥离法制备了尺寸不同的MoS2纳米片,详细介绍了其制备工艺,并对其形貌表征及电化学性能进行分析。 (3)通过水热法制备了花状MoS2纳米材料,介绍了这种材料的制备方法,利用TEM、XPS等手段对其结构、成分进行分析。利用LSV和CV法对其电化学性能进行分析。 3.2 理论模型及计算方法 MoS2具有类石墨烯的二维结构,其基本结构层为Mo-S-Mo,层内原子以共价键相互作用,层之间以较弱的范德华力相互作用。这种特殊结构使MoS2较容易被剥离,形成少层甚至单层的MoS2纳米材料。这种材料在电化学析氢反应中表现出较好的催化活性,为了研究MoS2催化析氢反应的活性位点。从而制备具有良好催化性能的催化剂,本课题首先应用了基于密度泛函理论的计算方法,在Material Studio软件中建立单层MoS2结构模型。 3.2.1 Materials Studio仿真软件介绍 Materials Studio为美国Accelrys公司开发的一款软件,在该软件中可以搭建分子、晶体及高分子材料结构模型,并对这些材料进行相关性质的计算与预测。被广泛应用于催化剂、化学反应、固体物理等材料领域。 Materials Studio软件包含多种算法模块,其中Visualizer为建模模块的核心,包含如Castep、DMol3、Discover、Amporphous、COMPASS等多个计算和分析模块。本文主要利用CASTEP模块来完成计算和分析。Castep模块中包含LDA 及GGA两种交换关联函数近似方法,在该模块下通过建立单层MoS2分子模型计算其对氢原子的吸附能力,从而确定MoS2的电催化析氢反应活性位点。 3.2.2模型建立及计算 模型为3×3×1的MoS2超胞模型,如图3-1。为使计算结果更为准确,在正

阻聚剂的性质及作用

生产与技术 阻聚剂的性质及作用 田建波2014/5/26 【摘要】阻聚剂的性质及作用和在苯加氢中的应用。【关键词】阻聚剂、结焦、三苯 一.特性:外观呈橙红色液体,有芳烃气味,不溶于水,易溶于有机溶剂。阻聚剂为有机混合物,和芳香烃互溶性好,可以燃烧,。 指标名称指标 外观橙红色液体 密度(20℃)Kg/M31000-1130 水含量(Wt%)≤0.15 苯不溶物(Wt%)≤0.2 二、阻聚剂的主要成分:由耐高温的特效阻聚剂、抗氧防胶剂、清净分散剂、金属离子钝化剂及石油溶剂按一定比例复配、调和而成。 三、芳烃混合物分离:在芳烃混合物中一般含有大量的苯乙烯、α-甲基苯乙烯、二乙烯基苯、二聚环戊二烯及茚等不饱和物。上述不饱和物在芳烃馏分精馏分离过程中因受热会快速聚合而形成大 量焦油状物,从而造成目的产物收率降低,甚至造成设备堵塞使生产无法顺利进行。阻聚剂具有耐高温、对芳烃馏分中不饱和物阻聚效果好、本身蒸汽压低不影响目的产品纯度等优点。阻聚剂可有效

抑制不饱和物的热聚合,大幅度降低焦油物产生量,提高目的三苯 的收率,避免设备结胶、堵塞。 四、使用方法:阻聚剂成液态,可预先与原料按一定浓度混合好后 再进料;也可在连续进料时用计量泵按一定比例与原料一起加入系 统中。对苯加氢装置而言,可根据装置设计的不同,选择两点或一 点加入:对有脱重组分塔的装置,推荐选择两点加入:即在脱重塔 预热器前和预加氢加热器前加入阻聚剂;对没有脱重组分塔的置, 可在预加氢加热器前加入。 五、阻聚剂既可以用计量泵直接按比例与原料一起连续加入系中, 也可以根据需要用溶剂稀释成合适浓度再使用。 六、推荐用量:对粗苯加氢精制装置而言,推荐使用量一般为: 100~200ppm。 粗苯中不饱和物总量 1.0-1.5% 1.5-2.0% 2.0-2.5% 2.5-3.0% 3.0-3.5%推荐加入量0.05-0.1‰0.1-0.15‰0.15-0.2‰0.2-0.25‰0.25-0.3‰ 七、阻聚剂使用注意事项: (1)危险特性:阻聚剂为有机混合物,可以燃烧,无腐蚀性。 (2)安全措施:·远离火种,避免阳光暴晒,储于阴凉通风处。 ·保持容器密封,竖直向上存放,避免猛烈撞击。 ·避免与食品类接触。 ·注意个体防护,避免身体直接接触。操作者一定 要佩戴防化学品手套。 ·用肥皂水和清水冲洗身体接触部位。

单体,引发剂和溶剂的精制 实验报告 PB10206252 黄鹏

单体,引发剂和溶剂的精制 黄鹏 PB10206252 中国科学技术大学高分子科学与工程系2010级本科班 【摘要】商业上面制备好的用于聚合的单体往往含有阻聚剂,寡聚物,水分等杂质,直接用于聚合的效果不是太好,一般需要精制单体,阻聚剂。 【关键词】单体引发剂溶剂精制聚合物 1,引言 试剂的纯化对于聚合反应来说至关重要,极少量的杂质就可以影响反应的进程,离子聚合反应对杂质尤为敏感,杂质浓度要求更低,而阴离子聚合反应需要无水,所以反应以前试剂的纯化相当重要。 2,实验内容 ①实验仪器 甲基丙烯酸甲酯,过氧化苯甲酰,氢氧化钠,蒸馏水,氯仿,甲醇,无水硫酸钠,pH试纸。 100毫升分液漏斗,锥形瓶,减压蒸馏装置,回流装置,布氏漏斗,抽滤瓶,电磁搅拌器。 ②实验步骤 首先是甲基丙烯酸甲酯的纯化 在100ml的分液漏斗中加入100mlMMA单体,用15ml的NaOH溶液(百分之5)洗涤两到三次。用蒸馏水洗涤至中性,分离出来的单体置于锥形瓶当中,加入无水硫酸钠至液体透明。干燥后的单体进行减压蒸馏,收集39-41摄氏度的馏分,压力在100KPa左右,如果单体暂时不用,可以储存在烧瓶中充氮气置于冰箱保存。 再就是引发剂过氧化苯甲酰的精制 在100ml的烧杯中加入6g过氧化苯甲酰,在搅拌的条件下逐滴加入氯仿大约25ml,稍微加热使其溶解,如果有不溶物时趁热过滤。向澄清的溶液中加入甲醇大约50-100ml,有过氧化苯甲酰晶体析出。过滤,固体使用甲醇洗两次,抽干,置于真空干燥器中除去溶剂。 ③实验现象记录以及分析 在MMA中加入氢氧化钠溶液并振荡时会在下层有黄色液体分层,初步分析是对苯二酚的钠盐的颜色,也就是对苯二酚阴离子的颜色。 在减压蒸馏前一段时间,温度计的温度不断升高,当压力在100KPa左右时,温度上升到了38度时就稳定不动了,这时候开始收集我们所需要的馏分——甲基丙烯酸甲酯的单体。 在减压蒸馏中装置的密闭性需要的要求较为高,在接口处涂上适量的凡士林可以提高装置的密闭性。 注意调节蒸发管气泡的速率,气泡鼓出的太慢的话影响反应的速率,气泡鼓出太快容易使单体爆沸,很危险。 精制过氧化苯甲酰的实验需要注意的是在晶体析出的时候要注意饱和溶液,

水处理中阻垢剂的作用机理及区别

水处理中阻垢剂的作用机理及区别 什么是阻垢剂? 阻垢剂(Scale Inhibitor),是具有能分散水中的难溶性无机盐、阻止或干扰难溶性无机盐在金属表面的沉淀、结垢功能的一类药剂。 阻垢剂作用机理 螯合作用:中低硬度水中,起重要作用的是阻垢剂的螯合作用。 分散作用:中高硬度水中,阻垢剂的分散功能起主要作用。 晶格畸变作用:阻止成垢粒子在其规则的晶格点阵上排列。 常用阻垢剂分类 1、有机膦系列阻垢剂 具有良好的螯合、低限抑制及晶格畸变作用。可阻止水中成垢盐类形成水垢,特别是碳酸钙垢的形成。在水中化学性质稳定,不易水解。在水中浓度较高时,有良好的缓蚀效果。 2、有机膦盐系列阻垢剂 是有机膦系列阻垢剂的中性钠盐,可阻止水中成垢盐类形成水垢,特别是碳酸钙垢的形成。适用于火力发电厂、炼油厂的循环冷却水、油田回注水系统。对于其他一些添加剂也有很好的相容性,特别适用于中性到酸性配方,无氨味产生氧化物。 3、聚羧酸类阻垢分散剂 无毒,易溶于水,可在碱性和中浓缩倍数条件下运行而不结垢。PAAS能将碳酸钙、硫酸钙等盐类的微晶或泥沙分散于水中不沉淀,从而达到阻垢目的。4、复合阻垢剂 由有机膦酸和聚羧酸等高聚物组成的复合品,具有很高的缓蚀和阻垢性能,其耐温性特别好,可有效地应用于低压锅炉的炉内水处理。 5、RO阻垢剂 适用于反渗透系统及纳滤和超滤系统,可防止膜面结垢,能提高产水量和产水质量,降低运行费用。 如何正确选择和使用反渗透阻垢剂 反渗透阻垢剂的主要成分有哪些?

反渗透阻垢剂主要包括一些天然分散剂、膦酸、膦羧酸及膦磺酸和高分子聚合物等,而目前使用的绝大多数阻垢分散剂是高分子聚合物。它们能分散水中的难溶性无机盐、阻止或干扰难溶无机盐的沉积、结垢。 反渗透阻垢剂和循环水阻垢剂的区别? 由于二者所面临情况的不同,对于二者的要求是有差别的: 循环水的运行环境要求长效,耐菌,可以使用大量的聚合物分散剂,提供对悬浮物的分散作用来增加阻垢效果,循环水系统体积大,露天运行,对于药剂的纯度要求不高。 反渗透阻垢剂由于作用时间短,要求阻垢剂快速与结垢离子作用,所以要求快速高效;另外由于膜内部通道狭窄,如果采用聚合物分散剂会引起更大的问题;同时阻垢剂过程是在膜表面的浓缩过程,如果杂质含量高也会影响系统的稳定运行。 阻垢剂的浓度高的显著的优点是可以降低运输费用。 对于单一剂型的阻垢剂,浓度越高其稳定的区间就越狭小,对于复配型的阻垢剂,由于各单剂的稳定区间不同,要提高产品的浓度困难就更大。 另外阻垢剂的浓度的越高,其在存放过程中产生变化的速度就会加快,其杂质的含量也就随之增加。 怎样计算反渗透阻垢剂的加药量? 反渗透阻垢剂的推荐浓度一般为3-6ppm,即反渗透设备每进水1吨需要添加3-6g的阻垢剂。 月用量的计算:W=Q×S×H×30/1000,式中:W为月用量(Kg); Q为反渗透设备的进水流量(m3/h);S为投加浓度(3-6ppm,即g/吨),H为反渗透设备的工作时间(小时); 1000为g与Kg的换算量。 反渗透阻垢剂一般添加在反渗透系统的保安过滤器,即精密过滤器之前(通过滤芯,使投入的阻垢剂能很好的与原水混合),通过计量泵投加在反渗透设备的管道之中。可以直接使用原液也可稀释后再使用,稀释倍数不得超过10倍,即浓度不得低于10%。

TMHPHA与几种阻聚剂复配对EGDA阻聚的研究_习连兴

入24.63g氢氧化镁时,氧化镁白度可达到87.65。吸附用的氢氧化镁可用作制备其他用途的镁化合物或经再生处理返回作吸附剂。 (3)选用合适的树脂也能够有效地提高镁化合物的白度,试验中选用的树脂中,D301T的效果最显著。 (4)采用氧化剂-树脂联合法进行卤水脱色同样是一条经济有效的途径,利用这种方法氧化镁的 白度可提高到83.27。 参考文献: 陈丽芳.制备高纯晶体氯化镁脱色净化的研究.海湖盐 与化工2003,32(4):34-36. 盛巧青、袁建军、郭桂兰.井矿水采卤除铁技术的研究. 中国井矿盐2004,35(6):7-9. 王海增、郭鲁钢、于红.絮凝吸附法脱除盐湖卤水中的 有色物质.海湖盐与化工2003,32(1):22-24. [1][2][3]乙二醇二丙烯酸酯(EGDA)是一种重要的化工原料,它不但是优良的交联剂、接枝剂[1],还可广泛用做纸张、皮革、纺织品整理剂、乳化剂、上光剂等,也是用来制备优质胶粘剂、涂料等的单体[2]。由于 EGDA分子中含有两个双键,在加热条件下易引发 自由基聚合,而在合成EGDA时,其精馏纯化处理要在较高温度下进行,这种条件下EGDA易发生自由基聚合而降低收率,所以在合成EGDA时,选择 合适的阻聚剂是一项非常重要的工作。为了改善单独使用一种阻聚剂对该反应阻聚效果差的缺点,本文研究了单一阻聚剂及2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基分别与对苯二酚、酚噻嗪、苯醌(TMHPHA-HQ、TMHPHA-PT、TMHPHA-BQ)等三种复合配聚剂对偶氮二异丁腈(AIBN)引发的 EGDA聚合的阻聚效率。 1 实验部分 1.1 实验试剂与仪器 EGDA(AR);AIBN(AR);碳酸钠(CP);2,2,6, 6-四甲基-4-羟基哌啶-1-氧自由基(AR);对苯二酚(AR);苯醌(AR);酚噻嗪(AR);丙酮(AR);甲醇(CP);N,N-二甲基甲酰胺(CP);聚合管;恒温水浴; 分析天平;真空干燥箱;秒表 1.2试剂的预处理 EGDA经碱洗、 水洗到中性(去除其中所含的阻聚剂),再用无水硫酸钠干燥,减压蒸馏收集66℃/266.644Pa的馏分,储存冰箱中备用,AIBN在使用前按文献[3]所述方法进行重结晶。 TMHPHA与几种阻聚剂复配 对EGDA阻聚的研究 习连兴,李连贵,丛 娟 (长春工业大学生物工程学院,吉林长春 130012) 摘要:研究了2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基(TMHPHA)分别与对苯二酚(HQ)、苯醌(BQ)、酚噻嗪(PT)等几种常用阻聚剂复配,组成的复合阻聚剂对AIBN(偶氮二异丁腈)引发的乙二醇二丙烯酸酯(EGDA)自由基聚合的阻聚效率。实验结果表明,复合阻聚剂TMHPHA-HQ阻聚效果较好,聚合反应的诱导期长,聚合速率下降,说明氮氧自由基与常用阻聚剂有协同效应。得出的阻聚剂的阻聚效率顺序为:2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基-对苯二酚>2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基-酚噻嗪>2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基-苯醌。 关键词:阻聚剂;2,2,6,6-四甲基-4-羟基哌啶-1-氧自由基;乙二醇二丙烯酸酯中图分类号:TQ225 文献标识码:A 文章编号:1008-1267(2007)01-0043-02 收稿日期:2006-07-16 第21卷第1期2007年1月 Vol.21No.1Jan.2007 天津化工 TianjinChemicalIndustry !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

水处理工艺中反渗透缓蚀阻垢剂的作用

水处理工艺中反渗透缓蚀阻垢剂的作用 2020年6月15日

一般高硬度水缓蚀阻垢剂是由多种有含磺酸盐共聚物、缓蚀剂、特殊界面活性剂等,将具高阻垢性能有机膦及高缓蚀性能锌盐组合,再辅以与上述单组份具有良好协同效应的分散活化剂、辅助缓蚀剂而成,适用于循环水中钙硬度+碱度要求达到1500 ppm的高浓缩倍率的循环冷却水系统。 缓释阻垢剂作用机理 络和增溶作用

络和增溶作用是共聚物溶于水后发生电离,生成带负电性的分子链,它与Ca2+形成可溶于水的络合物或螯合物,从而使无机盐溶解度增加,起到阻垢作用。 晶格畸变作用 晶格畸变作用是由分子中的部分官能团在无机盐晶核或微晶上,占据了一定位置,阻碍和破坏了无机盐晶体的正常生长,减慢了晶体的增长速率,从而减少了盐垢的形成; 静电斥力作用 静电斥力作用是共聚物溶于水后吸附在无机盐的微晶上,使微粒间斥力增加,阻碍它们的聚结,使它们处于良好的分散状态,从而防止或减少垢物的形成。 缓蚀阻垢剂浓度窄范围控制的意义 精确控制缓蚀阻垢剂浓度,从而控制循环水的腐蚀速度和粘附速率,以减少或避免生产装置冷换设备的介质泄漏事件;如果能够精确控制缓蚀阻垢剂浓度范围,可以将目标控制在允许范围的下限,从而达到节约药剂的目的。 缓蚀阻垢剂性能及用途 高硬度水缓释阻垢剂其阻垢作用是由于它本身能阻止碳酸盐小晶粒的长大,并使晶格歪曲畸变,从而使循环冷却水中碳酸盐不会在换热器表面形成硬垢,同时,通过其组织中有机磷酸盐等成份与金属形成保护膜的特性,使它可与循环冷却水中钙离子相结合,起到防止金属腐蚀的作用。本品PH使用范围广,可在PH7.0~10.0之间具有阻垢

相关主题
文本预览
相关文档 最新文档