当前位置:文档之家› 圆与三角函数及相似结合

圆与三角函数及相似结合

圆与三角函数及相似结合
圆与三角函数及相似结合

圆和三角函数及相似练习题

1、如图11,AB 是⊙O 的弦,D 是半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于F ,且CE=CB 。(1)求证:BC ⊙O 是的切线;(2)连接AF 、BF ,求∠ABF 的度数;(3)如果CD=15,BE=10,sinA=13

5

,求⊙O 的半径。

2、如图,AB 是⊙0的直径,C 是⊙0上的一点,直线MN 经过点C ,过点A 作直线MN 的垂线,垂足为点D ,且∠BAC=∠DAC .

(1)猜想直线MN 与⊙0的位置关系,并说明理由; (2)若CD=6,cos=∠ACD=,求⊙0的半径.

3、已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE .(1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2

s i n 3

ABC ∠=,

求BF 的长.

4、如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.(1)

求证:CD∥ BF;(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长.

5、如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,

交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.

(1)求证:直线PA为⊙O的切线;

(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;

(3)若BC=6,tan∠F=1

2

,求cos∠ACB的值和线段PE的长.

6、如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.

(1)求证:KE=GE;

(2)若2

KG=KD·GE,试判断AC与EF的位置关系,并说明理由;

(3)在(2)的条件下,若sinE=3

5

AK=FG的长.

5

4

5题图

P

7、如图11,AB 是⊙O 的弦,D 是半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于F ,且CE=CB 。(1)求证:BC ⊙O 是的切线;(2)连接AF 、BF ,求∠ABF 的度数;(3)如果CD=15,BE=10,sinA=13

5

,求

⊙O 的半径。

3、【解析】圆与直线的位置关系;相似和三角函数 【答案】

(1)证明:连结OC ∵OD ⊥BC 所以∠EOC =∠EOB 在△EOC 和△EOB 中

OC OB

EOC EOB OE OE =??

∠=∠??=?

∴△EOC ≌△EOB (SAS ) ∴∠OBE =∠OCE =90° ∴BE 与⊙O 相切

(2)解:过点D 作DH ⊥AB ∵△ODH ∽△OBD ∴OD :OB =OH :OD =DH :BD 又∵sin ∠ABC =23

∴OD =6

∴OH =4,OH =5,DH

又∵△ADH ∽△AFB

∴AH :AB =DH :PB

FB

∴FB

【点评】(1)利用全等三角形求出角度为90°,即得到相切的结论。 (2)利用三角形相似和三角函数求出三角形各线段的长。

4 分析】(1)由BF 是圆O 的切线,AB 是圆O 的直径,根据切线的性质,可得到BF ⊥AB ,然后利用平行线的判定得出CD ∥BF

(2)由AB 是圆O 的直径,得到∠ADB=90o ,由圆周角定理得出∠BAD=∠BCD ,再根据三角函数cos ∠BAD= cos ∠BCD=

= 即可求出AD 的长

【解析】(1)证明:∵BF 是圆O 的切线,AB 是圆O 的直径

54AD

AB

B

A

B

A

∴BF ⊥AB ∵CD ⊥AB ∴CD ∥BF

(2)解:∵AB 是圆O 的直径

∴∠ADB=90o ∵圆O 的半径5 ∴AB=10

∵∠BAD=∠BCD

∴ cos ∠BAD= cos ∠BCD=

= ∴=8 ∴AD=8

【点评】本题考查了切线的性质、圆周角定理和解直角三角形,此题难度适中。圆是一个特殊的几何体,它有很多独到的几何性质,知识点繁多而精粹。圆也是综合题中的常客,不仅会联系三角形、四边形来考察,代数中的函数也是它的友好合作伙伴。因此圆在中考中占有重要的地位,是必考点之一。在近几年各地的中考中,圆的有关性质,如垂径定理、圆周角、切线的判定与性质等一般以计算或证明的形式考查,与圆有关的应用题、阅读理解题、探索存在性问题仍是中考命题的热点.

5【解析】(1)要证PA 是⊙O 的切线,只要连接OB ,再证∠PAO =∠PBO =90°即可.(2)OD ,OP 分别是Rt △OAD ,Rt △OPA 的边,而这两个三角形相似且这两边不是对应边,所以可证得OA 2=OD·OP ,再将EF =2OA 代入即可得出EF ,OD ,OP 之间的等量关系.(3)利用tan ∠F =1

2

,得出AD ,OD 之间的关系,据此设未知数后,根据AD =BD ,OD =

1

2

BC =3,AO =OC =OF =FD -OF ,将AB ,AC 也表达成含未知数的代数式,再在Rt △ABC 中运用勾股定理构建方程求解.

【答案】解:(1)证明:如下图,连接OB , ∵PB 是⊙O 的切线,∴∠PBO =90°.

∵OA =OB ,BA ⊥PO 于D ,∴AD =BD ,∠POA =∠POB . 又∵PO =PO ,∴△PAO ≌△PBO .

∴∠PAO =∠PBO =90°.∴直线PA 为⊙O 的切线.

(2)EF 2=4OD·OP .

证明:∵∠PAO =∠PDA =90°,

45AD AB

105

4

cos ?=

?∠=AB BAD AD

P

∴∠OAD +∠AOD =90°,∠OPA +∠AOP =90°. ∴∠OAD =∠OPA .∴△OAD ∽△OPA .∴OD OA =OA

OP

,即OA 2=OD·OP . 又∵EF =2OA ,∴EF 2=4OD·OP .

(3)∵OA =OC ,AD =BD ,BC =6,∴OD =1

2

BC =3. 设AD =x ,∵tan ∠F =

1

2

,∴FD =2x ,OA =OF =2x -3. 在Rt △AOD 中,由勾股定理 ,得(2x -3)2=x 2+32. 解之得,x 1=4,x 2=0(不合题意,舍去). AD =4,OA =2x -3=5.

∵AC 是⊙O 的直径,∴∠ABC =90°. 而AC =2OA =10,BC =6, ∴cos ∠ACB =

610=35

. ∵OA 2=OD·OP , ∴3(PE +5)=25.

∴PE =

103

. 【点评】本题考查了切线的判定、相似三角形的判定和性质以及勾股定理等知识,综合性很强,并富

有探究性.要证某线是圆的切线,若已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可;若此线与圆的切点未知,可以过圆心作这条直线的垂线段(即为垂直),再证半径即可.另外,与圆有关的探究、计算问题,多与相似三角形和勾股定理有关,上来从这方面着手分析思考,有利于思路的快速打开.

6、解析:利用切线的性质和等边对等角可以证明∠EGK=∠EKG ,然后根据等角对等边,即可证明第(1)

小题;对于第(2)小题,可以先由等积式得到比例式,然后得到三角形相似,根据角的关系可以判断两条直线的位置关系;对于第(3)小题,可以先利用方程的思想求出相关线段的长,然后利用三角函数求FG 的长。 答案:(1)如下图,连接OG ,

∵EG 是⊙O 的切线∴OG ⊥GE ∴∠OGK+∠EGK =90°∵CD ⊥AB ∴∠OAG+∠AKH =90°∵OG=OA ∴∠OGK=∠OAG ∴∠EGK=∠AKH=∠EKG ∴KE=GE ;

(2)AC ∥EF 理由如下:

∵2

KG =KD ·GE ,GE=KE ∴KG KE

KD KG

∴△KGD ∽△KGE ∴∠KGD =∠E

∠KGD =∠C ∴∠E =∠C ∴AC ∥EF

(3)∵在(2)的条件下, ∴AC ∥EF

∴∠CAF =∠F ,∠E =∠C

∵sinE=

35 ∴sinC=35,sinF=45,tanE=tanC=3

4

连接BG ,过G 作GN ⊥AB 于N ,交⊙O 于Q

则弧BQ=弧BG ∴∠BGN =∠BAG 设AH=3k ,则CH=4k

于是BH=221616==33CH k k AH k ,OG=+25=26

BH AH k

∵EG 是切线,CD ⊥AB

∴∠OGF =90°

∴∠FOG+∠F=∠E+∠F ∴∠FOG=∠E ∴NG=OGsin ∠FOG=

25365k ?=52

k

∴BN=OB-ON=OG-OGcos ∠FOG=

25451-=656

k k

?? ??? ∴

56

点评:本题的第(3)小题是一道大型综合题,且运算量较大,属于较难题;但是,前两个小题比较基础,

同学们应争取做对。 7、【解析】(1)连接OB ,证OB ⊥BC ,即证∠OBE+∠EBC=90°。通过OA=OB ,CE=CB ,∠AED=∠BEC ,可将∠OBE 、∠EBC 分别转化为∠A 、∠AED ,结合CD ⊥OA 可证∠OBE+∠EBC=90°;

(2)连接OF ,由CD 垂直平分OA 得AF=OF=OA ,再结合圆心角与圆周角关系易求∠ABF 的度数;,∴

Q

N

(3)作CG ⊥BE 于G ,得∠A=∠ECG ,CG 是BE 垂直平分线,由CD=15,BE=10,sinA=13

5

,可求EG 、CE 、CG 、DE 长度,通过△ADE ∽△CGE 可求AD ,从而计算半径OA 。

【答案】(1)证明:连接OB 。∵OA=OB ,∴∠A=∠OBE 。∵CE=CB ,∴∠CEB=∠EBC ,∵∠AED =∠EBC ,∴∠AED = ∠EBC ,又∵CD ⊥OA ∴∠A+∠AED=∠OBA+∠EBC=90°,∴BC ⊙O 是的切线;

(2)∵CD 垂直平分OA ,∴OF=AF ,又OA=OF ,∴OA=OF=AF ,∴∠O=60°,∴∠ABF=30°;

(3)作CG ⊥BE 于G ,则∠A=∠ECG 。∵CE=CB ,BD=10,∴EG=BG=5,∵sinECG=sinA=

13

5

,∴CE=13,CG=12.又CD=15,∴DE=2。∵ADE ∽△CGE ,∴

EG DE CG AD =,即5212=AD ,∴AD=524,∴OA=548,即⊙O 的半径是5

48

【点评】本题将多个知识点结合在一起,问题设计层层递进,梯度鲜明,是一道中档偏上的题,有一定区分度.我们必须学会由已知条件寻找相应的定理、性质的基本图形,以及在不能直接根据已知条件解决问题时,要学会运用转化的思想。

初三锐角三角函数与圆综合专题训练解析

中考数学锐角三角函数与圆综合训练题 1、如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD. (1)求证:CD2=CA?CB; (2)求证:CD是⊙O的切线; (3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长. 2、如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE 于点M,且∠B=∠CAE,EF:FD=4:3. (1)求证:点F是AD的中点; (2)求cos∠AED的值; (3)如果BD=10,求半径CD的长.

3、如图11,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E ,F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF . (1)求证:直线PA 为⊙O 的切线; (2)试探究线段EF ,OD ,OP 之间的等量关系,并加以证明; (3)若BC =6,tan ∠F = 1 2 ,求cos ∠ACB 的值和线段PE 的长. 4、如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ; (2)若2 KG =KD ·GE ,试判断AC 与EF 的位置关系,并说明理由; (3) 在(2)的条件下,若sinE=3 5 ,AK=23,求FG 的长. 5、如图11,AB 是⊙O 的弦,D 是半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于F ,且CE=CB 。 (1)求证:BC ⊙O 是的切线; (2)连接AF 、BF ,求∠ABF 的度数; (3)如果CD=15,BE=10,sinA=13 5 ,求⊙O 的半径。 图11 A C B D E F O P

专题05 圆与三角函数、相似结合的综合问题(解析版)

备战2020中考数学之解密压轴解答题命题规律 专题05 圆与三角函数、相似结合的综合问题 【典例分析】 【例1】如图,M,N是以AB为直径的⊙O上的点,且?AN=?BN,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F. (1)求证:MF是⊙O的切线; (2)若CN=3,BN=4,求CM的长. 思路点拨 (1)根据等腰三角形的性质和角平分线的定义证得∠OMB=∠MBF,得出OM∥BF,即可证得OM⊥MF,即可证得结论; (2)由勾股定理可求AB的长,可得AO,BO,ON的长,由勾股定理可求CO的长,通过证明△ACN∽△MCB, 可得AC CN CM BC ,即可求CM的长. 满分解答 (1)连接OM, ∵OM=OB, ∴∠OMB=∠OBM,

∵BM 平分∠ABD , ∴∠OBM =∠MBF , ∴∠OMB =∠MBF , ∴OM ∥BF , ∵MF ⊥BD , ∴OM ⊥MF ,即∠OMF =90°, ∴MF 是⊙O 的切线; (2)如图,连接AN ,ON Q ??AN BN =, 4AN BN ∴== AB Q 是直径,??AN BN =, 90ANB ∴∠=?,ON AB ⊥ 2242AB AN BN ∴=+22AO BO ON ∴===22981OC CN ON ∴=-=-= 221AC ∴=,221BC = A NM B ∠=∠Q ,AN C MBC ∠=∠ ACN MCB ∴??∽ ∴ AC CN CM BC = AC BC CM CN ∴=g g 73CM ∴=g 7 3 CM ∴=

【例2】如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H. (1)判断直线DC与⊙O的位置关系,并说明理由; (2)若HB=2,cos D=3 5 ,请求出AC的长. 思路点拨 (1)连接OC,易证∠COB=∠D,由于∠P+∠D=90°,所以∠P+∠COB=90°,从而可知半径OC⊥DC; (2)由(1)可知:cos∠COP=cos∠D=3 5 ,设半径为r,所以OH=r﹣2,从而可求出r的值,利用勾股定 理即可求出CH的长度,从而可求出AC的长度. 满分解答 解:(1)DC与⊙O相切.理由如下: 连接OC,∵∠COB=2∠A,∠D=2∠A,∴∠COB=∠D,∵DE⊥AP,∴∠DEP=90°,在Rt△DEP中,∠DEP=90°,∴∠P+∠D=90°,∴∠P+∠COB=90°,∴∠OCP=90°,∴半径OC⊥DC,∴DC与⊙O相切. (2)由(1)可知:∠OCP=90°,∠COP=∠D,∴cos∠COP=cos∠D=3 5 ,∵CH⊥OP,∴∠CHO=90°,设 ⊙O的半径为r,则OH=r﹣2.在Rt△CHO中,cos∠HOC=OH OC = 2 r r = 3 5 ,∴r=5,∴OH=5﹣2=3,∴ 由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8. 在Rt△AHC中,∠CHA=90°,∴由勾股定理可知:AC=5

三角函数与圆的专题训练题

※三角函数与圆的专题训练题 A 基础训练 1.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂 足为D ,则tan ∠COD 的值等于线段( )的长. A .OD B .OA C .C D D .AB 2.如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 、F 分别为AC 、AB 、BC 的中点,则 sin ∠ABC 的值等于线段( )的长. A .AC B .EF C .DF D .AB 3.如图,矩形ABCD 内接于⊙O ,点P 在弧AD 上,若AB :AD =1:2,则sin ∠BPC =( ) A .21 B .2 C .45 D .5 52 4.如图,AB 为⊙O 的直径,弦AC 、BD 相交于P 点,∠BPC =α,则CD :AB 等于( ) A .sin α B .cos α C .tan α D .其他答案 5.如图,⊙O 的直径AB = 2 1,AB 平分弦CD 交CD 于E ,DF ⊥CD 交CA 的延长线于F ,则sin ∠C ·sin ∠ADC 的值为线段( )的长. A .DF B .AE C .CE D .AC 6.如图,⊙O 的直径AB =1,C 为弧AB 的中点,E 为OB 上一点,CE 的延长线交⊙O 于D , 则sin ∠AEC 的值为( )的长. A .A B B .AE C .C D D .CE 7.如图,P A 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,P A =4,OA =3,则sin ∠AOP 的 值为( ) A . 43 B .53 C .54 D .3 4 8.P A 、PB 分别切⊙O 于A 、B ,∠APB =60°,P A =10,则⊙O 半径长为( ) A .33 10 B .5 C .310 D .35 B 综合运用 9.如图,P A 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交P A 、PB 于C 、D ,若⊙O 的 半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )

圆与三角函数专题

第21题专练 课前练习: 南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元.(销售利润=销售价﹣进货价) (1)求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; (2)假设这种汽车平均每周的销售利润为z 万元,试写出z 与x 之间的函数关系式; (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少? 1.如图,在Rt △ABC 中,∠ACB =90°,BO 平分∠ABC 交AC 于点O ,以点O 为圆心,OC 长为半径作⊙O ,交AC 于点D . (1)判断直线AB 与⊙O 的位置关系,并说明理由; (2)若AD =2,tan ∠BOC =2,求⊙O 的半径. 2.在⊙O 中,AB ⌒=AC ⌒,点F 是AC 上一点,连接AO 并延长交BF 于E. (1)如图1,若BF 是△ABC 高,求证:∠CBF=∠CAE ; (2)如图2,若BF 是△ABC 内的角平分线,BC=10,COS ∠BCA=13,求AE 的长. 图2 图1

3.如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E (1) 若∠AOD =45°,求证:CE =2ED (2) 若AE =EO ,求tan ∠AOD 的值 4.如图,P A 是⊙O 的切线,A 为切点,点B 、C 均在⊙O 上,且P A =PB (1) 求证:PB 为⊙O 的切线 (2) 连AB ,若AB =6,tanC =2 3,求P A 的长 5.如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ; (2) 连接BE 交AC 于点F ,若cos ∠CAD = 4 5 ,求AF FC 的值. A

09三角函数在单位圆的表示方法

09三角函数在单位圆的表示方法 1 在理解任意角三角函数定义的基础上,理解三角函数在单位圆上的表示方法,理解正弦线、余弦线,并能由图象讲出三角函数的值域和已知三角函数值作出对应的角。 三角函数(正弦、余弦)在单位圆的表示 已知三角函数值作出对应的角。 讲授与讨论相结合

三角函数在单位圆的表示方法 课本P14 图4-12 MP y y r y ====1sin α -1≤sin α≤1 -1≤cos α≤1 例 题 OM x x r x ====1cos α 例 题 P20 第2 题

一、三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”,三角函数的定义已经明确告诉角的终边上取点具有任意性,如果我们在角的终边上取适当的点,使比值中的分母为1,那末三角函数就可以用相应的一个坐标表示,这样讨论三角函数就比较方便。 二、单位圆的定义 在直角坐标系中,以原点为圆心,以1为半径的圆。 三、角α的正弦、余弦在单位上的表示 1.作图:(课本P14 图4-12 ) 此处略 …… …… ……… …… …… 设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边与单位圆交于P 过P(x,y)作PM ⊥x 轴于M , 简单介绍“向量”(带有“方向”的量—用正负号表示),“有向线段”(带有方向的线段),方向可取与坐标轴方向相同,长度用绝对值表示。 例:有向线段OM ,OP 长度分别为y x , 当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x 若0

中考数学复习专题三角函数与圆

2011中考数学复习专题—三角函数和圆 考点1 三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用。 1.如图所示 ,Rt △ABC ~Rt △DEF ,则cosE 的值等于( ) A .2 1 B .2 2 C .2 3 D .33 2.如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B=ο40,则直角边BC 的长是( ) A .ο40sin m B .ο40cos m C .ο40tan m D .ο40tan m 3.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为ο60,又知水平距离BD=10m ,楼高AB=24m ,则树高CD 为( ) A .()m 31024- B .m ???? ??-331024 C .()m 3524- D .9m 4.如图是掌上电脑设计用电来测量某古城墙高度的示意图。点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A .6米 B .8米 C .18米 D .24米 5.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE= 512,则河堤的高BE 为 米。 6.如果,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东ο60方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东ο30方向上,则灯塔P 到环海路的距离 PC= 米(用根号表示)。

中考数学复习专题三角函数与圆

2011中考数学复习专题-三角函数和圆 考点1 三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用. 1.如图所示 ,Rt △ABC~Rt △DEF ,则cosE 的值等于( ) A .21 B .22 C .23 D .33 2.如图,已知直角三角形ABC 中,斜边AB 的长为m,∠B= 40,则直角边BC 的长是( ) A . 40sin m B . 40cos m C . 40tan m D . 40tan m 3。王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为 60,又知水平距离BD=10m,楼高AB=24m,则树高CD 为( ) A .()m 31024- B .m ???? ??-331024 C .()m 3524- D .9m 4.如图是掌上电脑设计用电来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到 古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1。2 米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A .6米 B .8米 C .18米 D .24米 5.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE= 512,则河堤的高BE 为 米。 6.如果,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东 60方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东 30方向上,则灯塔P 到环海路的距离 PC= 米(用根号表示)。 7.某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东 45、B 地北偏西 60方向上有一牧民区C 。一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C 。方案Ⅱ:从A 地开车穿越草沿AC 方向到牧民区C 。已知汽车在公路上行驶的速度是在草地上行驶速度的3倍。 (1)求牧民区到公路的最短距离CD 。

圆切线相似和锐角三角函数综合题中考专题复习无复习资料

圆切线、相似和锐角三角函数综合题专题复习 复习目标:巩固圆的切线和相似三角形的性质和判定、锐角三角函数求法和特殊锐角三角函数值,熟练应用它们解决相应的问题。 复习过程 一、热身练习 二、实战演练

三、巩固提高 2.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P. (1)求证:BF=EF; (2)求证:PA是⊙O的切线; 3,求BD和FG的长度. (3)若FG=BF,且⊙O的半径长为2 3.如图,△ABC中,AD平分∠BAC交△ABC的外接圆⊙O于点H,过点H作EF∥BC交AC、AB的延长线于点E、F. (1)求证:EF是⊙O的切线; (2)若AH=8,DH=2,求CH的长; (3)若∠CAB=60°,在(2)的条件下,求弧BHC的长.

4.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB 于点E ,∠POC=∠PCE . (1)求证:PC 是⊙O 的切线; (2)若OE :EA=1:2,PA=6,求⊙O 的半径; (3)求sin ∠PCA 的值. 5.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8.以AB 为直径的⊙O 交AC 于D ,E 是 BC 的中点,连接ED 并延长交BA 的延长线于点F . (1)求证:DE 是⊙O 的切线; (2)求DB 的长; (3)求S △FAD :S △FDB 的值. 6.如图i ,半圆O 为△ABC 的外接半圆,AC 为直径,D 为劣弧BC 上的一动点,P 在CB 的延长线上,且有∠BAP=∠BDA . (1)求证:AP 是半圆O 的切线; (2)当其它条件不变时,问添加一个什么条件后,有BD 2=BE?BC 成立?说明理由; (3)如图ii ,在满足(2)问的前提下,若OD ⊥BC 与H ,BE=2,EC=4,连接PD ,请探究四边形ABDO 是什么特殊的四边形,并求tan ∠DPC 的值.

2015中考数学专题与圆有关的综合题

与圆有关的综合题 知识考点?对应精练 【知识考点】 (1)圆与三角函数; (2)圆与函数; (3)圆与点、线、三角形; (4)圆与多边形. 【方法总结】 (1)看到求圆的切线,想到:有交点,连半径,证垂直;无交点,作垂直,证半径;(2)看到圆中的三角函数,想到三角函数一般在直角三角形中使用,直径所对的圆周角是直角; (3)看到过圆外的同一点的两条切线,想到切线长定理; (4)看到垂直于弦的直径,想到垂径定理. 【失分盲点】 (1)易忽视圆中的两条半径构成等腰三角形这个条件; (2)在证明一条直线是圆的切线时,若直线与圆的公共点未确定时,易犯证明直线与半径垂直的错误; (3)在圆中的三角形,易犯不说明其为直角三角形就应用三角函数解决问题的错误. 【对应精练】 例.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB 垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF. (1)求证:PB与⊙O相切; (2)试探究线段EF,OD,OP之间的数量关系,并加以证明; (3)若AC=12,tan∠F=,求cos∠ACB的值 、

真题演练?层层推进 1.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C. (1)求证:AB与⊙O相切; (2)若∠AOB=120°,AB= ,求⊙O的面积. 2.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE的长; (3)求证:BE是⊙O的切线. 3.(2014广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)PF是⊙O的切线。

《单位圆与三角函数线》习题

《单位圆与三角函数线》习题 1某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条。如图, 在Rt△ABC中,∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形纸条a1、a2、a3,若使裁得的矩形纸条的长都不小于5cm,则每张直角三角形彩纸能裁成的矩形纸条的总数是 A.24 B.25 C.26 D.27 2.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙1.6米,梯上点D距离墙1.4米,BD长0.55米,则梯子的长为 A.3.85米 B.4.00米 C.4.40米 D.4.50米 3.国际奥运会会旗上的图案是由代表五大洲的五个圆环组成(如图),每个圆环的内、外圆直径分别为8和10,图中两两相交成的小曲边四边形(黑色部分)的面积相等,已知五个 圆环覆盖的面积是122.5平方单位,请你们计算出每个 ..小曲边四边形的面积为 __________________平方单位(π取3.14)。 4.如图,是一块在电脑屏幕上出现的矩形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形边长为1,则这个矩形色块图的面积为___________. 5.已知:如图2-6,C城市在B城市的正北方向,两城市相距100km,计划在两城市间修筑一条高速公路(即线段BC)。经测量,森林保护区A在B城市的北偏东40°的方向上,又在C城市的南偏东56°的方向上,已知森林保护区A的范围是以A为圆心,半径为50km的圆。 问:计划修筑的这条高速公路会不会穿越保护区?为什么?

6. 如图,有一块铁皮,拱形边缘呈抛物线状,MN=4分米,抛物线顶点处到边MN的距离是4分米,要在铁皮上截下一矩形ABCD,使矩形顶点B、C落在边MN上,A、D落在抛物线上,问这样截下的矩形铁皮的周长能否等于8分米? 7.在某高新技术开发区中,相距200米的A,B两地的中点O处有一个精密仪器研究所,为保证研究所的正常工作,在其周围50米内不得有机动车辆通过。现在要从A到B修一条公路,有两种修路方案。(1)分别由A,B向以O为圆心,半径为50米的半圆引切线,切点分别为M,N,沿线段AM、圆弧MN、线段NB修路(图1);(2)分别由A,B向以O为圆心,半径为50米的半圆引切线,两切线相交于点P,沿线段AP,PB修路(图2)。分别计算两种修路方案的公路长,指出哪种修路方案节省? 8.在直径为AB的半圆内,划出一块三角形区域,使三角形的一边为AB,顶点C在半圆周上,其他两边分别为6和8,现要建造一个内接于△ABC的矩形水池DEFN,其中,DE在AB上,如图的设计方案是使AC=8,BC=6。

锐角三角函数与圆的综合

1:如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线; (2)若⊙O 的半径为3,AB =4,求AD 的长. 2:如图,AB 是⊙O 的直径,AC 是弦,点D 是BC 的中点,DP AC ,垂足为点P . (1)求证:PD 是⊙O 的切线. (2)若AC =6, cosA=3 5 ,求PD 的长. 3.如图,⊙O 的直径AB 交弦CD 于点M ,且M 是CD 的中点.过点B 作BE ∥ CD ,交AC 的延长线于点E .连接BC . (1)求证:BE 为⊙O 的切线; (2)如果CD =6,tan ∠BCD=2 1 ,求⊙O 的直径的长. A B C D O D B O C A P E B M D C O A

4.如图,AB 是半⊙O 的直径,弦AC 与AB 成30°的角,CD AC =. (1)求证:CD 是半⊙O 的切线; (2)若2=OA ,求AC 的长. 5.如图,点P 在半O 的直径BA 的延长线上,2AB PA =,PC 切半O 于点C ,连结BC . (1)求P ∠的正弦值; (2)若半O 的半径为2,求BC 的长度. 6.如图,△DEC 内接于⊙O ,AC 经过圆心O 交O 于点B ,且AC ⊥DE ,垂足为F , 连结AD 、BE ,若1sin 2 A =,∠BED=30°. (1)求证:AD 是⊙O 的切线; (2)DCE △是否是等边三角形?请说明理由; (3)若O 的半径2R =,试求CE 的长. A B C D E O F C B A O P

中考数学锐角三角函数与圆综合训练题

中考数学锐角三角函数与圆综合训练题 例题一 2013?泸州)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上, ∠CDA=∠CBD . (1)求证:CD 2=CA?CB ;(2)求证:CD 是⊙O 的切线;(3)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC=12,tan ∠CDA=,求BE 的长. 例题二(2013?呼和浩特)如图,AD 是△ABC 的角平分线,以点C 为圆心, CD 为半径作圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD=4:3.(1)求证:点F 是AD 的中点;(2)求cos ∠AED 的值;(3)如果BD=10,求半径CD 的长. 例题四(2014?沈阳)如图,⊙O 是△ABC 的外接圆,AB 为直 径,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD ,BD ,CD .(1) 求证:AD=CD ;(2)若AB=10,cos ∠ABC=,求tan ∠DBC 的值. 综合练习1、如图,AB 是⊙O 的直径,PA ,PC 分别与⊙O 相切于 点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E. (1)求证:∠EPD=∠EDO.(2)若PC=6,tan ∠PDA=43,求OE 的长. 2、如图,AB 是⊙0的直径,C 是⊙0上的一点,直线MN 经过点C ,过点A 作 直线MN 的垂线,垂足为点D ,且∠BAC=∠DAC .(1)猜想直线MN 与⊙0的位 置关系,并说明理由;(2)若CD=6,cos=∠ACD=,求⊙0 的半径. 3、已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点 D ,过点C 作O ⊙的切线,交OD 的延长线于点 E ,连结 BE .(1)求证:BE 与O ⊙相切;(2) 连结AD 并延长交BE 于点F ,若9OB =,2sin 3 ABC ∠=,求BF 的长. 4、如图,已知⊙O 的直径AB 与弦CD 相交于点E , AB ⊥CD ,⊙O 的切线BF 与弦AD 的延长线相交于点F . (1)求证:CD ∥ BF ; (2)若⊙O 的半径为5, cos ∠BCD= 5 4,求线段AD 的长.

单位圆与正余弦函数的定义

精心整理 图1 1.4.1单位圆与任意角的正弦函数、余弦函数 1.4.2单位圆与周期性 主备人:刘红岩 一、教学目标 1、理解利用单位圆定义的正弦函数、余弦函数的概念 2、通过借助单位圆讨论正弦函数、余弦函数的过程,感悟数形结合思想方法是学习数学的重二、 12121、12、k Z ∈ 330(21 2在直角坐标系中,给定单位圆,对于任意角α,使角α的顶点与原 点重合,始边与x 轴正半轴重合,终边与单位圆交于点P(u,v),则交点P 的纵坐标v 叫作角 α的正弦函数,记作v=sin α;点P 的横坐标u 叫作角α的余弦函数,记作u=cos α. 通常,用x 表示自变量,用x 表示角的大小,用y 表 示函数值, 因此定义任意角的三角函数y=sinx 和y=cosx,定义域为R ,值 域为[-1,1]。 【设计意图】升华概念,加深对概念的理解。

3、三角函数值的符号 思考:以小组为单位讨论当角的终边分别在第一、第二、第三、第四象限时,角的正弦函数值、余 【设计意图】使学生掌握根据定义,三角函数值的符号仅与点P的纵、横坐标的符号有关。sinα在一、二象限为正,三、四象限为负;cosα在一、四象限为正,二、三象限为负.轴线角的正余弦 练习1 ,使学生加深对三角函数概念的理解。 的正 ,利用三角函数的定义求其三角函数,需要确定三 到原点的距离r. 例2的正弦函数值、余弦函数值 练习2:的正弦函数值、余弦函数值 变式1 变式2 1. (2) 弦值sin 2.当角 例3: 练习3:判断下面各式的符号:sin2·cos3 【思路探究】由角的终边所在象限分别判断三角函数值的符号;进一步确定各式符号. 【设计意图】使学生掌握一下规律:1.判断三角函数值的符号关键是看角α的终边所在的象限位置,若角α的终边位置难以判断应先利用α=2kπ+β(k∈Z)进行转化. 2.判断三角函数值的符号的步骤: (1)先观察角α所在终边所在象限;(2)判断角α各个三角函数值的符号;(3)给出最后的结论. 高考链接:(2011江西,14)

圆与三角函数及相似三角形综合训练题

圆与三角函数及相似三角形综合训练题 1.如图,R t△ABC中,∠ACB=90 ,AC=4,BC=2,以AB上的一点O为圆心作⊙O分别与AC、 BC相切于D、E。⑴求⊙O的半径。⑵求sin∠BOC的值。 2.如图,如图,R t△ABC中,已知∠ACB=90 ,BC=6,AB=10,以BC为直径作⊙O交AB于 D,AC、DO的延长线交于E,点M为线段AC上一点,且CM=4. ⑴求证:直线DM是⊙O的切线。⑵求tan∠E的值。

3.﹙河南中考题﹚已知,如图,在半径为4的⊙O 中,AB 、CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E,且EM ﹥MC.连结DE ,DE=15.⑴求EM 的长;⑵求sin ∠EOB 的值。 4.﹙河南中考题﹚已知:如图,点DC 是以AB 为直径的半圆上的两点,O 为圆心,DB 与AC 相交于点E,OC ∥AD,AB=5,cos ∠CAB=5 4.求CE 和DE 的长。

5. ﹙河南中考题﹚已知:如图,AB是⊙O的直径,O为圆心,AB=20,DP与⊙O相切于点D,DP ⊥PB,垂足为P,PB与⊙O交于点C,PD=8. ⑴求BC的长;⑵连结DC,求tan∠PCD的值;⑶以A为原点,直线AB为x轴建立平面直角坐标系,求直线BD的解析式。 6. ﹙北京中考题﹚已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE, FE:FD=4:3. ⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积。

7. ﹙北京海淀区中考题﹚已知:以R t△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,E为BC边上的中点,连结DE. ⑴如图,求证:DE是⊙O的切线;⑵连结OE、AE.当∠CAB为何值时,四边形AOED是平行四边形,并在此条件下求sin∠CAE的值。 8.﹙天津中考题﹚如图,R t△ABC中,∠C=90 ,AC=3,BC=4,以点C为圆心、CA为半径 的圆与AB、BC分别交于点D、E.求AB、AD的长。

单位圆与三角函数线教案

1.2.2单位圆与三角函数线 教学目标: 1.知识与技能: 使学生掌握如何利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值,并能利用三角函数线解决一些简单的三角函数问题. 2.过程与方法: 借助几何画板让学生经历概念的形成过程,提高学生观察、发现、类比、猜想和实验探索的能力;在论坛上开展研究性学习,让学生借助所学知识自己去发现新问题,并加以解决,提高学生抽象概括、分析归纳、数学表述等基本数学思维能力. 3.、情感与态度三维目标:激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境. 教学重点难点: 1.重点:三角函数线的作法及其简单应用. 2.难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来. 教学方法与教学手段: 1.教法选择:“设置问题,探索辨析,归纳应用,延伸拓展”——科研式教学. 2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展. 3.教学手段:本节课地点选在多媒体网络教室,学生利用几何画板软件探讨数学问题,做数学实验; 借助网络论坛交流各自的观点,展示自己的才能. 教学过程 一、复习引入: 复习三角函数的定义 二、讲解新课: 1. 观览车模型,并建立平面直角坐标系。 2.(边描述边画),以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆。当角α为第一象限角时,则其终边与单位圆有一个交点P(x,y),过点P作PM⊥x轴交x轴于点M,则请学生观察, (1)sinα等于什么? (2)随着α在第一象限内转动,MP是否也跟着变化?而它的长度值是否永远等于sinα? (3)MP就是sinα的几何表示,也叫做正弦线。 (4)能找到余弦线吗? (5)能找到正切线吗? 3.当α是第二象限角时情形怎样?

圆与三角函数(解析版)

九年级数学下册解法技巧思维培优 专题16 圆与三角函数 题型一 利用锐角三角函数值求有关线段的长 【典例1】(2019?碑林区校级模拟)如图,已知△OAB 中,OA =OB =10,sin B =35 ,以点O 为圆心,12为直径的⊙O 交线段OA 于点C ,交直线OB 于点E 、D ,连接CD ,EC . (1)求证:AB 为⊙O 的切线; (2)在(l )的结论下,连接点E 和切点,交OA 于点F ,求CF 的长. 【点拨】(1)过点O 作OG ⊥AB ,垂足为G ,由条件求出OG ,根据切线的判定方法判断即可; (2)先求出CE 长,证明OG ∥EC ,得到△FOG ∽△FCE ,根据相似三角形的性质定理得OF CF =OG CE ,可 得OF ?CE =OG ?CF ,设CF =x ,则可得关于x 的方程,解方程即可得解. 【解析】(1)证明:如图,过点O 作OG ⊥AB ,垂足为G , ∴∠OGA =∠OGB =90, ∵OA =OB ,sin B =3 5=OG OB , ∴OG =3 5×10=6,

∵⊙O 的直径为12, ∴半径r 为6, ∴OG =r =6,又OG ⊥AB , ∴AB 为⊙O 的切线; (2)解:∵DE 为⊙O 的直径, ∴∠ECD =90°, ∵CD ∥AB , ∴∠CDE =∠ABD , ∴sin∠CDE =CE DE =3 5, ∴ CE 12 =3 5, ∴CE =36 5, ∵OA =OB ,AG =BG , ∴∠AOG =∠BOG , ∵OE =OC , ∴∠OEC =∠OCE , ∵∠AOB =∠OEC +∠OCE , ∴∠AOG =∠OCE , ∴OG ∥EC , ∴△FOG ∽△FCE , ∴ OF CF =OG CE ,

高中数学用匀速圆周运动来讲解三角函数的图像和性质

以匀速圆周运动来讲解三角函数的图像和性质对于三角函数y=Asin(ωx+φ)的周期,频率,初相,它是由函数y=sinx经过怎样的变换来得到,有些同学掌握的不是很好,他们主要是觉得比较抽象,虽然对于对变换法则进行了记忆,但由于理解并不透彻,因而在具体应用时,仍然常常出错。为了让初次接触这些函数的同学能更好的理解,掌握这些函数的性质和它们之间的关系,我在此尝试用质点做圆周运动的模型来讲解三角函数y=Asin(ωx+φ)的图像和性质以及它是由y=sinx经过怎样的变换得到的。 在正式讲述之前,我们先来思考一个问题:有一个单位圆,以其圆心为坐标原点建立直角坐标系,有一质点,以单位圆与横轴的交点为起点,以角速度1rad/单位时间在单位圆上按逆时针方向做周而复始的匀速圆周运动,求任一时刻质点对横轴的位移(以x轴上方为正)是多少?并作出其图像。 对上面的问题,当我们学过单位圆和三角函数之后,我们就知道,所求的这一位移正是质点所到达位置的正弦线,如下图中的PM

因此,所求问题的解正是正弦函数y=sinx,其图像也就是三角函数y=sinx 的图像,在此模型下,函数y=sinx图像也就是质点做此圆周运动的位移---时间图像,如下图 从上面问题的叙述来看,质点的圆周运动明显是一种周期运动,那么其运动的周期是多少呢?我们知道,一个整圆的圆周角是2π,质点以1rad/单位时间的角速度在圆上做圆周运动,那么它走完一周所需要的时间就是整圆的圆周角除以质点运动的角速度,也就是2π/1=2

π,这就是它的周期。如果质点在此单位圆上运动的角速度变成了ω,那么其运动的周期就是2π/ω,这时,相应的函数也就变成了y=sin ωx。在上面两图中,两纵轴的意义相同,其上的纵坐标都是表示位置,但两图的横坐标却有了不同的含义,上面质点在单位圆上的运行图中,横坐标仍然是表示位置的,但下面函数图象上的横坐标就不再表示位置了,而是表示时间,整个函数图象表示的是在质点运行时间内的任一时刻质点对横轴的位移,因此,后面在此模型下讨论函数y=Asin(ωx+φ)的图象和性质时,其图象横轴都是时间轴,其轴上坐标都表示了某一时刻。在正弦函数y=sinx中的x实际上是1和x的乘积,它表示了质点以1rad/单位时间的角速度运动了x时间后所产生的角位移,把这些区别记清楚。 在上面,我们讨论到当质点做匀速圆周运动的角速度ω不为单位速度时,其周期是2π/ω,而在三角函数的书本上,我们知道,函数y=Asin(ωx+φ)的周期为2π除以频率,从这里我们可以知道,我们平时在书本上所看到的三角函数的频率正是这一模型中质点运行的角速度。下面我们从角速度的方面出发来理解频率ω为什么能决定周期。我们再来看上面质点做匀速圆周运动的模型,在这一模型中能影响质点运行周期的因素有哪些呢?从学过的关于匀速圆周运动的知识中我们知道,做匀速圆周运动的物体其运行周期取决于运行一个周期所经历的角位移的大小和运行角速度的大小。在这一模型中,无论运行的圆的半径是多少,只要是一个整圆,其圆周角就是2π,为一定值,因此,其运行的周期就只决定于质点做圆周运动的角速度ω,

圆和三角函数及相似练习题

圆和三角函数及相似练习题 1、如图11,AB 是⊙O 的弦,D 是半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于F ,且CE=CB 。(1)求证:BC ⊙O 是的切线;(2)连接AF 、BF ,求∠ABF 的度数;(3)如果CD=15,BE=10,sinA=13 5 ,求⊙O 的半径。 2、如图,AB 是⊙0的直径,C 是⊙0上的一点,直线MN 经过点C ,过点A 作直线MN 的垂线,垂足为点D ,且∠BAC=∠DAC . (1)猜想直线MN 与⊙0的位置关系,并说明理由; (2)若CD=6,cos=∠ACD=,求⊙0的半径. 3、已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE .(1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2 s i n 3 ABC ∠=, 求BF 的长.

4、如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.(1) 求证:CD∥ BF;(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长. 5、如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D, 交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF. (1)求证:直线PA为⊙O的切线; (2)试探究线段EF,OD,OP之间的等量关系,并加以证明; (3)若BC=6,tan∠F=1 2 ,求cos∠ACB的值和线段PE的长. 6、如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K. (1)求证:KE=GE; (2)若2 KG=KD·GE,试判断AC与EF的位置关系,并说明理由; (3)在(2)的条件下,若sinE=3 5 , AK=FG的长. 5 4 5题图 P

浅谈“单位圆”在三角函数中的应用(1)

浅谈“单位圆”在三角函数中的使用 胡海光 (宝鸡文理学院数学系陕西宝鸡721013) 摘要:新课程用单位圆定义任意角的三角函数,提升了单位圆、三角函数线的地位,三角函数的知识结构和方法体系也发生了一些变化,利用单位圆本身直观、形象、准确、方便等特点,再结合相关的数学知识,可以使问题化难为易,化繁为简,思路清晰,方法明确。探究它在新课程三角函数公式推导和性质中的使用及解题中的使用,这样不但能使学生掌握用单位圆解题的方法,而且能激发学生的学习兴趣。 关键字:单位圆;诱导公式;三角函数;使用 1.引言 新课标指出:学生的数学活动不应只限于接受、记忆、模仿和练习,应倡导自主探索、动手实践、合作交流、阅读自习等学习数学的方式,通过各种不同形式的自主学习、探索活动,不但能让学生体验数学发现和创造的历程,培养他们的数学思维能力和创新意识,而且可以大大减少课堂的教学时间。因此,我们在教学中应充分挖掘教材的问题背景,逐渐培养学生的自主学习、自主探索等学习习惯。基于这种目的,在新课改下,我们可以将三角函数章节学习统一在单位圆和三角函数线之下,利用数形结合让学生理解知识的来龙去脉、推导过程,最主要的是使学生学会用联系的观点看三角函数,研究三角函数的定义、公式、图象和性质,明白如何用单位圆和三角函数线研究问题,动态地分析问题和解决问题。 2.单位圆的认识 单位圆是新课标里刚引进的新概念,学生受老教材的影响对单位圆的认识很模糊,为了让学生能很好的利用单位圆解决三角函数问题,笔者认为首先要了解单位圆的概念、为什么用单位圆上点的坐标定义三角函数及用单位圆上点的坐标定义三角函数的意义。 2.1单位圆的定义 所谓单位圆,就是在直角坐标系中,以原点O为圆心,以单位长度为半径的圆。如下图所示: 2.2为什么用 单位圆上点的坐标定义三a

圆与三角函数综合专题

B C E 圆与三角函数 知识点:垂直的证明方法 (1) 当已知条件中没有明确给出直线与圆是否有公共点时,常过圆心作该直线的垂线段,证明该 垂线段的长等于半径,也就是“作垂直,证半径”。 (2) 当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于 这条直线,也就是“连半径,证垂直” 例1.如图,Rt △ABC 中, ∠ACB=90°,AC=4, BC=2,以AB 上的一点0为圆心作⊙O 分别与AC .BC 相切于点D ,E 。 (1)求⊙O 的半径。(2)求sin ∠BOC 的值。 例2.如图,等腰△AB C 中,AB=A C ,以AB 为直径作⊙O ,交BC 于点D ,DE ⊥AC 于点E 。(1)求证:DE 为⊙O 的切线(2)若BC=45,AE=1,求cos ∠AEO 的值。 ●专项训练: 1.如图,已知Rt△ABC 和Rt△EBC,∠B=90°.以边AC 上的点D 为圆心, OA 为半径的⊙O 与EC 相切于点D ,AD∥BC. (l)求证: ∠E=∠ACB: (2)若2求BC 的长. 2.如图,已知点0是Rt △ABC 的直角边AC 上一动点,以D 为圆心,OA 为半径的⊙O 交AB 于D 点, DB 的垂直平分线交BC 于F,交BD 于E 。(l)连结DF ,请你判断直线DF 与⊙O 的位置关系,并证明你的结论

B A F D D A B (2)当点D 运动到OA=2OC 时,恰好有点D 是AE 的中点,求tan ∠B 。 3.如图,在△ABC 中.AB=BC,以AB 为直径的⊙O 交AC 于点D .过D 作DF ⊥BC,交AB 的延长线于点E,垂足为F . (1)求证;直线DE 是⊙O 的切线;(2) 当AB=5, 4.如图,Rt△ABC 中, ∠C=90°,BD 平分∠ABC ,以AB 上一点0为圆心, 过B 、D 两点作⊙O ,⊙O 交AB 于点E EF ⊥AC 于点F 。 (1)求证:⊙O 与AC 相切: (2)若EF=2,BC =4,求tan ∠A 的值。 5.如图, △ABP 中,∠ABP=90°,以AB 为直径作⊙O 交AP 于点C ,在弧AC 上取一点F ,使弧 CF=弧CB ,过C 作AF 的垂线,垂足为M ,MC 的延长线交BP 于D 。 (1)求证:CD 为⊙O 的切线。(2)连BF 交AP 于B 若BE=6,EF=2. 求tan ∠FAE 。

相关主题
文本预览
相关文档 最新文档