当前位置:文档之家› 圆与三角函数综合专题

圆与三角函数综合专题

圆与三角函数综合专题
圆与三角函数综合专题

B

C

E

圆与三角函数

知识点:垂直的证明方法 (1) 当已知条件中没有明确给出直线与圆是否有公共点时,常过圆心作该直线的垂线段,证明该

垂线段的长等于半径,也就是“作垂直,证半径”。

(2) 当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于

这条直线,也就是“连半径,证垂直”

例1.如图,Rt △ABC 中, ∠ACB=90°,AC=4, BC=2,以AB 上的一点0为圆心作⊙O 分别与AC .BC

相切于点D ,E 。

(1)求⊙O 的半径。(2)求sin ∠BOC 的值。

例2.如图,等腰△AB C 中,AB=A C ,以AB 为直径作⊙O ,交BC 于点D ,DE ⊥AC 于点E 。(1)求证:DE 为⊙O 的切线(2)若BC=45,AE=1,求cos ∠AEO 的值。

●专项训练:

1.如图,已知Rt△ABC 和Rt△EBC,∠B=90°.以边AC 上的点D 为圆心, OA 为半径的⊙O 与EC

相切于点D ,AD∥BC. (l)求证: ∠E=∠ACB: (2)若2求BC 的长.

2.如图,已知点0是Rt △ABC 的直角边AC 上一动点,以D 为圆心,OA 为半径的⊙O 交AB 于D 点, DB 的垂直平分线交BC 于F,交BD 于E 。(l)连结DF ,请你判断直线DF 与⊙O 的位置关系,并证明你的结论

B

A F

D

D

A B

(2)当点D 运动到OA=2OC 时,恰好有点D 是AE 的中点,求tan ∠B 。

3.如图,在△ABC 中.AB=BC,以AB 为直径的⊙O 交AC 于点D .过D 作DF ⊥BC,交AB 的延长线于点E,垂足为F . (1)求证;直线DE 是⊙O 的切线;(2) 当AB=5,

4.如图,Rt△ABC 中, ∠C=90°,BD 平分∠ABC ,以AB 上一点0为圆心, 过B 、D 两点作⊙O ,⊙O 交AB 于点E EF ⊥AC 于点F 。 (1)求证:⊙O 与AC 相切:

(2)若EF=2,BC =4,求tan ∠A 的值。

5.如图, △ABP 中,∠ABP=90°,以AB 为直径作⊙O 交AP 于点C ,在弧AC 上取一点F ,使弧

CF=弧CB ,过C 作AF 的垂线,垂足为M ,MC 的延长线交BP 于D 。 (1)求证:CD 为⊙O 的切线。(2)连BF 交AP 于B 若BE=6,EF=2. 求tan ∠FAE 。

初三承诺班晚辅专题答案(54期)

圆与三角函数

1、证:(1):连OE,OD ,证四边形OECD 为正方形,设半径为R ,

2R =44R -, R=3

4; (2)

10

10

3,作CM ⊥AB 于M ,易求AB=25.AB · CM=BC ·AC , ∴CM=

554,易求OC=R 2=32

4,∴sin ∠BOC=OC CM =10

103

2、解:(1)连OD, ∠C=∠ABC=∠ODB. OD//AC,∴∠ODE=∠DEC =90°

(2) ∠AEO=∠DOE, cos ∠AEO= cos ∠DOE=

OE

OD

,连DA.证CD=BD =25, 证△CDE∽△CDA,CD 2

=CE ·CA=CE · (CE+1) ∴CE =4, DE=22CE CD -=2, OD=

21AC=25,OE=22OD DE +=241, ∴cos ∠AEO== cos ∠DOE=

OE OD =41

41

5 专练1、答素:(1)连OD ,证∠ACB=∠DAO=∠ODA=∠E. (2) tan ∠DAC=tan ∠ E=tan ∠ACB=

22,AE AD =BC AB =BE BC =2

2

∵AD=1,∴AE=2,设AB=x ,则BC=2x ,∴

x

x +22=

2

2

,∴x=2,BC=2x=2 2、证:(I) DF 与⊙O 相切,连OD .证∠OAD=∠ODA, ∠FDB=∠B

∠ODF= 90° (2)连OE ,易证

AC OA =AB AE =3

2

,△A OE∽△ACB ,∠AOE=∠C=90°. 又AD = DE,∴ AD= OD=OA ,∠A =60°, tan ∠B= tan30°=

3

3 3、 讧:(1)连结OD 、BD ,证AD=DC ,∵ OA= OB , ∴OD∥BC ∵DE ⊥BC,∴DE ⊥ OD ,∴直线DE 是⊙O 的切线。

(2)作DH ⊥ AB ,垂足为H ,易证∠E=∠ODH ,在Rt△ADB 中,

BD=

22AD AB -=2245-=3,∵ AB ·DH=DA ·DB ,即5DH =3×4,∴ DH=

5

12, 在 Rt △ODH 中,

cos ∠OOH= OD DH =2

5512=2524,cos ∠E=25

24

4、解:①连OD, ∠EBD=∠ODB=∠DBC, OD//BC, OD ⊥AC (2)设BC 交⊙O 于M,证矩形EFCM ,设OD 交EM 于N . EF= CM=ND=2,ON=

21BM=1,OD=3=2

1BE BE=6,∴ EM 22BM BE -=42,tan ∠A=tan ∠BEM =

EM BM =4

2

5、解:(1) OF=OB,∠FOC=∠BOC, OC ⊥BF.证∠AFB=∠M=90°,BF//DM.

(2)

2

2

,方法一:证CD=BD=PD, △CDP∽△EBP ,PC=CE , CD //BE =3,PB=6,证△AFE ∽△ABP,

AB AF =PB FE =62=3

1

在Rt△AFB 中,BF=8,∴AF=22,∴tan ∠FAE=

AF EF =2

2

方法二:连OC 交BF 于N ,证BN =NF=4,EN =2,CN 2

=EN ·BN =8,CN= 22. tan ∠FAE=tan ∠

CBE=

BN CN =4

2

2

初三锐角三角函数与圆综合专题训练解析

中考数学锐角三角函数与圆综合训练题 1、如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD. (1)求证:CD2=CA?CB; (2)求证:CD是⊙O的切线; (3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长. 2、如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE 于点M,且∠B=∠CAE,EF:FD=4:3. (1)求证:点F是AD的中点; (2)求cos∠AED的值; (3)如果BD=10,求半径CD的长.

3、如图11,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E ,F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF . (1)求证:直线PA 为⊙O 的切线; (2)试探究线段EF ,OD ,OP 之间的等量关系,并加以证明; (3)若BC =6,tan ∠F = 1 2 ,求cos ∠ACB 的值和线段PE 的长. 4、如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ; (2)若2 KG =KD ·GE ,试判断AC 与EF 的位置关系,并说明理由; (3) 在(2)的条件下,若sinE=3 5 ,AK=23,求FG 的长. 5、如图11,AB 是⊙O 的弦,D 是半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于F ,且CE=CB 。 (1)求证:BC ⊙O 是的切线; (2)连接AF 、BF ,求∠ABF 的度数; (3)如果CD=15,BE=10,sinA=13 5 ,求⊙O 的半径。 图11 A C B D E F O P

专题05 圆与三角函数、相似结合的综合问题(解析版)

备战2020中考数学之解密压轴解答题命题规律 专题05 圆与三角函数、相似结合的综合问题 【典例分析】 【例1】如图,M,N是以AB为直径的⊙O上的点,且?AN=?BN,弦MN交AB于点C,BM平分∠ABD,MF⊥BD于点F. (1)求证:MF是⊙O的切线; (2)若CN=3,BN=4,求CM的长. 思路点拨 (1)根据等腰三角形的性质和角平分线的定义证得∠OMB=∠MBF,得出OM∥BF,即可证得OM⊥MF,即可证得结论; (2)由勾股定理可求AB的长,可得AO,BO,ON的长,由勾股定理可求CO的长,通过证明△ACN∽△MCB, 可得AC CN CM BC ,即可求CM的长. 满分解答 (1)连接OM, ∵OM=OB, ∴∠OMB=∠OBM,

∵BM 平分∠ABD , ∴∠OBM =∠MBF , ∴∠OMB =∠MBF , ∴OM ∥BF , ∵MF ⊥BD , ∴OM ⊥MF ,即∠OMF =90°, ∴MF 是⊙O 的切线; (2)如图,连接AN ,ON Q ??AN BN =, 4AN BN ∴== AB Q 是直径,??AN BN =, 90ANB ∴∠=?,ON AB ⊥ 2242AB AN BN ∴=+22AO BO ON ∴===22981OC CN ON ∴=-=-= 221AC ∴=,221BC = A NM B ∠=∠Q ,AN C MBC ∠=∠ ACN MCB ∴??∽ ∴ AC CN CM BC = AC BC CM CN ∴=g g 73CM ∴=g 7 3 CM ∴=

【例2】如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H. (1)判断直线DC与⊙O的位置关系,并说明理由; (2)若HB=2,cos D=3 5 ,请求出AC的长. 思路点拨 (1)连接OC,易证∠COB=∠D,由于∠P+∠D=90°,所以∠P+∠COB=90°,从而可知半径OC⊥DC; (2)由(1)可知:cos∠COP=cos∠D=3 5 ,设半径为r,所以OH=r﹣2,从而可求出r的值,利用勾股定 理即可求出CH的长度,从而可求出AC的长度. 满分解答 解:(1)DC与⊙O相切.理由如下: 连接OC,∵∠COB=2∠A,∠D=2∠A,∴∠COB=∠D,∵DE⊥AP,∴∠DEP=90°,在Rt△DEP中,∠DEP=90°,∴∠P+∠D=90°,∴∠P+∠COB=90°,∴∠OCP=90°,∴半径OC⊥DC,∴DC与⊙O相切. (2)由(1)可知:∠OCP=90°,∠COP=∠D,∴cos∠COP=cos∠D=3 5 ,∵CH⊥OP,∴∠CHO=90°,设 ⊙O的半径为r,则OH=r﹣2.在Rt△CHO中,cos∠HOC=OH OC = 2 r r = 3 5 ,∴r=5,∴OH=5﹣2=3,∴ 由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8. 在Rt△AHC中,∠CHA=90°,∴由勾股定理可知:AC=5

三角函数与圆的专题训练题

※三角函数与圆的专题训练题 A 基础训练 1.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂 足为D ,则tan ∠COD 的值等于线段( )的长. A .OD B .OA C .C D D .AB 2.如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 、F 分别为AC 、AB 、BC 的中点,则 sin ∠ABC 的值等于线段( )的长. A .AC B .EF C .DF D .AB 3.如图,矩形ABCD 内接于⊙O ,点P 在弧AD 上,若AB :AD =1:2,则sin ∠BPC =( ) A .21 B .2 C .45 D .5 52 4.如图,AB 为⊙O 的直径,弦AC 、BD 相交于P 点,∠BPC =α,则CD :AB 等于( ) A .sin α B .cos α C .tan α D .其他答案 5.如图,⊙O 的直径AB = 2 1,AB 平分弦CD 交CD 于E ,DF ⊥CD 交CA 的延长线于F ,则sin ∠C ·sin ∠ADC 的值为线段( )的长. A .DF B .AE C .CE D .AC 6.如图,⊙O 的直径AB =1,C 为弧AB 的中点,E 为OB 上一点,CE 的延长线交⊙O 于D , 则sin ∠AEC 的值为( )的长. A .A B B .AE C .C D D .CE 7.如图,P A 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,P A =4,OA =3,则sin ∠AOP 的 值为( ) A . 43 B .53 C .54 D .3 4 8.P A 、PB 分别切⊙O 于A 、B ,∠APB =60°,P A =10,则⊙O 半径长为( ) A .33 10 B .5 C .310 D .35 B 综合运用 9.如图,P A 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交P A 、PB 于C 、D ,若⊙O 的 半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )

圆与三角函数专题

第21题专练 课前练习: 南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元.(销售利润=销售价﹣进货价) (1)求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; (2)假设这种汽车平均每周的销售利润为z 万元,试写出z 与x 之间的函数关系式; (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少? 1.如图,在Rt △ABC 中,∠ACB =90°,BO 平分∠ABC 交AC 于点O ,以点O 为圆心,OC 长为半径作⊙O ,交AC 于点D . (1)判断直线AB 与⊙O 的位置关系,并说明理由; (2)若AD =2,tan ∠BOC =2,求⊙O 的半径. 2.在⊙O 中,AB ⌒=AC ⌒,点F 是AC 上一点,连接AO 并延长交BF 于E. (1)如图1,若BF 是△ABC 高,求证:∠CBF=∠CAE ; (2)如图2,若BF 是△ABC 内的角平分线,BC=10,COS ∠BCA=13,求AE 的长. 图2 图1

3.如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E (1) 若∠AOD =45°,求证:CE =2ED (2) 若AE =EO ,求tan ∠AOD 的值 4.如图,P A 是⊙O 的切线,A 为切点,点B 、C 均在⊙O 上,且P A =PB (1) 求证:PB 为⊙O 的切线 (2) 连AB ,若AB =6,tanC =2 3,求P A 的长 5.如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ; (2) 连接BE 交AC 于点F ,若cos ∠CAD = 4 5 ,求AF FC 的值. A

中考复习专题之三角函数与几何结合

与三角函数有关的几何题 例1、如图3,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =,⊙O 交直线 OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是⊙O 的切线; (2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明; (3)若1 tan 2 CED ∠= ,⊙O 的半径为3,求OA 的长. 析解:(1)证明:如图6,连接OC . OA OB = ,CA CB =,OC AB ∴⊥. AB ∴是⊙O 的切线. (2)BC 2=BD ×BE . ED 是直径,90ECD ∴∠= . 90E EDC ∴∠+∠= . 又90BCD OCD ∠+∠= ,OCD ODC ∠=∠, BCD E ∴∠=∠. 又CBD EBC ∠=∠ ,BCD BEC ∴△∽△. BC BD BE BC ∴ =.∴BC 2=BD ×BE . (3)1tan 2CED ∠= ,1 2 CD EC ∴ =. BCD BEC △∽△,1 2BD CD BC EC ∴==. 设BD x =,则2BC x =. 又BC 2=BD ×BE ,∴(2x )2=x (x +6) 解之,得10x =,22x =.0BD x => ,2BD ∴=. 325OA OB BD OD ∴==+=+=.

2、已知:如图,AB 是⊙O 的直径,10AB =, DC 切⊙O 于点C AD DC ⊥,,垂足 为D , AD 交⊙O 于点E . (1)求证:BC EC =; (2)若4 cos 5 BEC ∠=, 求DC 的长. 3、如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是的中点, OM 交AC 于点D ,∠BOE=60°,cosC=,BC=2 . (1)求∠A 的度数; (2)求证:BC 是⊙O 的切线; (3)求MD 的长度. 分析:(1)根据三角函数的知识即可得出∠A 的度数. (2)要证BC 是⊙O 的切线,只要证明AB ⊥BC 即可. (3)根据切线的性质,运用三角函数的知识求出MD 的长度. 解答:(1)解:∵∠BOE=60°,∴∠A=∠BOE=30°. (2)证明:在△ABC 中,∵cosC=,∴∠C=60°. 又∵∠A=30°,∴∠ABC=90°,∴AB ⊥BC .∴BC 是⊙O 的切线. (3)解:∵点M 是 的中点,∴OM ⊥AE . 在Rt △ABC 中,∵BC=2,∴AB=BC ?tan60°=2 × =6. ∴OA= =3,∴OD=OA=,∴MD=. 点评:本题综合考查了三角函数的知识、切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可. 4、如图,已知Rt △ABC 和Rt △EBC ,∠B=90°.以边AC 上的点O 为圆心、OA 为半径的⊙O 与EC 相切,D 为切点,AD ∥BC . (1)用尺规确定并标出圆心O ;(不写作法和证明,保留作图痕迹) (2)求证:∠E=∠ACB ; (3)若AD=1, ,求BC 的长. B

中考数学复习专题三角函数与圆

2011中考数学复习专题—三角函数和圆 考点1 三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用。 1.如图所示 ,Rt △ABC ~Rt △DEF ,则cosE 的值等于( ) A .2 1 B .2 2 C .2 3 D .33 2.如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B=ο40,则直角边BC 的长是( ) A .ο40sin m B .ο40cos m C .ο40tan m D .ο40tan m 3.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为ο60,又知水平距离BD=10m ,楼高AB=24m ,则树高CD 为( ) A .()m 31024- B .m ???? ??-331024 C .()m 3524- D .9m 4.如图是掌上电脑设计用电来测量某古城墙高度的示意图。点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A .6米 B .8米 C .18米 D .24米 5.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE= 512,则河堤的高BE 为 米。 6.如果,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东ο60方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东ο30方向上,则灯塔P 到环海路的距离 PC= 米(用根号表示)。

中考数学复习专题三角函数与圆

2011中考数学复习专题-三角函数和圆 考点1 三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用. 1.如图所示 ,Rt △ABC~Rt △DEF ,则cosE 的值等于( ) A .21 B .22 C .23 D .33 2.如图,已知直角三角形ABC 中,斜边AB 的长为m,∠B= 40,则直角边BC 的长是( ) A . 40sin m B . 40cos m C . 40tan m D . 40tan m 3。王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为 60,又知水平距离BD=10m,楼高AB=24m,则树高CD 为( ) A .()m 31024- B .m ???? ??-331024 C .()m 3524- D .9m 4.如图是掌上电脑设计用电来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到 古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1。2 米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A .6米 B .8米 C .18米 D .24米 5.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE= 512,则河堤的高BE 为 米。 6.如果,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东 60方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东 30方向上,则灯塔P 到环海路的距离 PC= 米(用根号表示)。 7.某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东 45、B 地北偏西 60方向上有一牧民区C 。一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C 。方案Ⅱ:从A 地开车穿越草沿AC 方向到牧民区C 。已知汽车在公路上行驶的速度是在草地上行驶速度的3倍。 (1)求牧民区到公路的最短距离CD 。

圆切线相似和锐角三角函数综合题中考专题复习无复习资料

圆切线、相似和锐角三角函数综合题专题复习 复习目标:巩固圆的切线和相似三角形的性质和判定、锐角三角函数求法和特殊锐角三角函数值,熟练应用它们解决相应的问题。 复习过程 一、热身练习 二、实战演练

三、巩固提高 2.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P. (1)求证:BF=EF; (2)求证:PA是⊙O的切线; 3,求BD和FG的长度. (3)若FG=BF,且⊙O的半径长为2 3.如图,△ABC中,AD平分∠BAC交△ABC的外接圆⊙O于点H,过点H作EF∥BC交AC、AB的延长线于点E、F. (1)求证:EF是⊙O的切线; (2)若AH=8,DH=2,求CH的长; (3)若∠CAB=60°,在(2)的条件下,求弧BHC的长.

4.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB 于点E ,∠POC=∠PCE . (1)求证:PC 是⊙O 的切线; (2)若OE :EA=1:2,PA=6,求⊙O 的半径; (3)求sin ∠PCA 的值. 5.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8.以AB 为直径的⊙O 交AC 于D ,E 是 BC 的中点,连接ED 并延长交BA 的延长线于点F . (1)求证:DE 是⊙O 的切线; (2)求DB 的长; (3)求S △FAD :S △FDB 的值. 6.如图i ,半圆O 为△ABC 的外接半圆,AC 为直径,D 为劣弧BC 上的一动点,P 在CB 的延长线上,且有∠BAP=∠BDA . (1)求证:AP 是半圆O 的切线; (2)当其它条件不变时,问添加一个什么条件后,有BD 2=BE?BC 成立?说明理由; (3)如图ii ,在满足(2)问的前提下,若OD ⊥BC 与H ,BE=2,EC=4,连接PD ,请探究四边形ABDO 是什么特殊的四边形,并求tan ∠DPC 的值.

2015中考数学专题与圆有关的综合题

与圆有关的综合题 知识考点?对应精练 【知识考点】 (1)圆与三角函数; (2)圆与函数; (3)圆与点、线、三角形; (4)圆与多边形. 【方法总结】 (1)看到求圆的切线,想到:有交点,连半径,证垂直;无交点,作垂直,证半径;(2)看到圆中的三角函数,想到三角函数一般在直角三角形中使用,直径所对的圆周角是直角; (3)看到过圆外的同一点的两条切线,想到切线长定理; (4)看到垂直于弦的直径,想到垂径定理. 【失分盲点】 (1)易忽视圆中的两条半径构成等腰三角形这个条件; (2)在证明一条直线是圆的切线时,若直线与圆的公共点未确定时,易犯证明直线与半径垂直的错误; (3)在圆中的三角形,易犯不说明其为直角三角形就应用三角函数解决问题的错误. 【对应精练】 例.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB 垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF. (1)求证:PB与⊙O相切; (2)试探究线段EF,OD,OP之间的数量关系,并加以证明; (3)若AC=12,tan∠F=,求cos∠ACB的值 、

真题演练?层层推进 1.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C. (1)求证:AB与⊙O相切; (2)若∠AOB=120°,AB= ,求⊙O的面积. 2.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE的长; (3)求证:BE是⊙O的切线. 3.(2014广东)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF. (1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π) (2)求证:OD=OE; (3)PF是⊙O的切线。

锐角三角函数与圆的综合

1:如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线; (2)若⊙O 的半径为3,AB =4,求AD 的长. 2:如图,AB 是⊙O 的直径,AC 是弦,点D 是BC 的中点,DP AC ,垂足为点P . (1)求证:PD 是⊙O 的切线. (2)若AC =6, cosA=3 5 ,求PD 的长. 3.如图,⊙O 的直径AB 交弦CD 于点M ,且M 是CD 的中点.过点B 作BE ∥ CD ,交AC 的延长线于点E .连接BC . (1)求证:BE 为⊙O 的切线; (2)如果CD =6,tan ∠BCD=2 1 ,求⊙O 的直径的长. A B C D O D B O C A P E B M D C O A

4.如图,AB 是半⊙O 的直径,弦AC 与AB 成30°的角,CD AC =. (1)求证:CD 是半⊙O 的切线; (2)若2=OA ,求AC 的长. 5.如图,点P 在半O 的直径BA 的延长线上,2AB PA =,PC 切半O 于点C ,连结BC . (1)求P ∠的正弦值; (2)若半O 的半径为2,求BC 的长度. 6.如图,△DEC 内接于⊙O ,AC 经过圆心O 交O 于点B ,且AC ⊥DE ,垂足为F , 连结AD 、BE ,若1sin 2 A =,∠BED=30°. (1)求证:AD 是⊙O 的切线; (2)DCE △是否是等边三角形?请说明理由; (3)若O 的半径2R =,试求CE 的长. A B C D E O F C B A O P

中考数学锐角三角函数与圆综合训练题

中考数学锐角三角函数与圆综合训练题 例题一 2013?泸州)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上, ∠CDA=∠CBD . (1)求证:CD 2=CA?CB ;(2)求证:CD 是⊙O 的切线;(3)过点B 作⊙O 的切线交CD 的延长线于点E ,若BC=12,tan ∠CDA=,求BE 的长. 例题二(2013?呼和浩特)如图,AD 是△ABC 的角平分线,以点C 为圆心, CD 为半径作圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD=4:3.(1)求证:点F 是AD 的中点;(2)求cos ∠AED 的值;(3)如果BD=10,求半径CD 的长. 例题四(2014?沈阳)如图,⊙O 是△ABC 的外接圆,AB 为直 径,OD ∥BC 交⊙O 于点D ,交AC 于点E ,连接AD ,BD ,CD .(1) 求证:AD=CD ;(2)若AB=10,cos ∠ABC=,求tan ∠DBC 的值. 综合练习1、如图,AB 是⊙O 的直径,PA ,PC 分别与⊙O 相切于 点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E. (1)求证:∠EPD=∠EDO.(2)若PC=6,tan ∠PDA=43,求OE 的长. 2、如图,AB 是⊙0的直径,C 是⊙0上的一点,直线MN 经过点C ,过点A 作 直线MN 的垂线,垂足为点D ,且∠BAC=∠DAC .(1)猜想直线MN 与⊙0的位 置关系,并说明理由;(2)若CD=6,cos=∠ACD=,求⊙0 的半径. 3、已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点 D ,过点C 作O ⊙的切线,交OD 的延长线于点 E ,连结 BE .(1)求证:BE 与O ⊙相切;(2) 连结AD 并延长交BE 于点F ,若9OB =,2sin 3 ABC ∠=,求BF 的长. 4、如图,已知⊙O 的直径AB 与弦CD 相交于点E , AB ⊥CD ,⊙O 的切线BF 与弦AD 的延长线相交于点F . (1)求证:CD ∥ BF ; (2)若⊙O 的半径为5, cos ∠BCD= 5 4,求线段AD 的长.

圆与三角函数及相似三角形综合训练题

圆与三角函数及相似三角形综合训练题 1.如图,R t△ABC中,∠ACB=90 ,AC=4,BC=2,以AB上的一点O为圆心作⊙O分别与AC、 BC相切于D、E。⑴求⊙O的半径。⑵求sin∠BOC的值。 2.如图,如图,R t△ABC中,已知∠ACB=90 ,BC=6,AB=10,以BC为直径作⊙O交AB于 D,AC、DO的延长线交于E,点M为线段AC上一点,且CM=4. ⑴求证:直线DM是⊙O的切线。⑵求tan∠E的值。

3.﹙河南中考题﹚已知,如图,在半径为4的⊙O 中,AB 、CD 是两条直径,M 为OB 的中点,CM 的延长线交⊙O 于点E,且EM ﹥MC.连结DE ,DE=15.⑴求EM 的长;⑵求sin ∠EOB 的值。 4.﹙河南中考题﹚已知:如图,点DC 是以AB 为直径的半圆上的两点,O 为圆心,DB 与AC 相交于点E,OC ∥AD,AB=5,cos ∠CAB=5 4.求CE 和DE 的长。

5. ﹙河南中考题﹚已知:如图,AB是⊙O的直径,O为圆心,AB=20,DP与⊙O相切于点D,DP ⊥PB,垂足为P,PB与⊙O交于点C,PD=8. ⑴求BC的长;⑵连结DC,求tan∠PCD的值;⑶以A为原点,直线AB为x轴建立平面直角坐标系,求直线BD的解析式。 6. ﹙北京中考题﹚已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE, FE:FD=4:3. ⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积。

7. ﹙北京海淀区中考题﹚已知:以R t△ABC的直角边AB为直径作⊙O,与斜边AC交于点D,E为BC边上的中点,连结DE. ⑴如图,求证:DE是⊙O的切线;⑵连结OE、AE.当∠CAB为何值时,四边形AOED是平行四边形,并在此条件下求sin∠CAE的值。 8.﹙天津中考题﹚如图,R t△ABC中,∠C=90 ,AC=3,BC=4,以点C为圆心、CA为半径 的圆与AB、BC分别交于点D、E.求AB、AD的长。

圆与三角函数(解析版)

九年级数学下册解法技巧思维培优 专题16 圆与三角函数 题型一 利用锐角三角函数值求有关线段的长 【典例1】(2019?碑林区校级模拟)如图,已知△OAB 中,OA =OB =10,sin B =35 ,以点O 为圆心,12为直径的⊙O 交线段OA 于点C ,交直线OB 于点E 、D ,连接CD ,EC . (1)求证:AB 为⊙O 的切线; (2)在(l )的结论下,连接点E 和切点,交OA 于点F ,求CF 的长. 【点拨】(1)过点O 作OG ⊥AB ,垂足为G ,由条件求出OG ,根据切线的判定方法判断即可; (2)先求出CE 长,证明OG ∥EC ,得到△FOG ∽△FCE ,根据相似三角形的性质定理得OF CF =OG CE ,可 得OF ?CE =OG ?CF ,设CF =x ,则可得关于x 的方程,解方程即可得解. 【解析】(1)证明:如图,过点O 作OG ⊥AB ,垂足为G , ∴∠OGA =∠OGB =90, ∵OA =OB ,sin B =3 5=OG OB , ∴OG =3 5×10=6,

∵⊙O 的直径为12, ∴半径r 为6, ∴OG =r =6,又OG ⊥AB , ∴AB 为⊙O 的切线; (2)解:∵DE 为⊙O 的直径, ∴∠ECD =90°, ∵CD ∥AB , ∴∠CDE =∠ABD , ∴sin∠CDE =CE DE =3 5, ∴ CE 12 =3 5, ∴CE =36 5, ∵OA =OB ,AG =BG , ∴∠AOG =∠BOG , ∵OE =OC , ∴∠OEC =∠OCE , ∵∠AOB =∠OEC +∠OCE , ∴∠AOG =∠OCE , ∴OG ∥EC , ∴△FOG ∽△FCE , ∴ OF CF =OG CE ,

圆和三角函数及相似练习题

圆和三角函数及相似练习题 1、如图11,AB 是⊙O 的弦,D 是半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于F ,且CE=CB 。(1)求证:BC ⊙O 是的切线;(2)连接AF 、BF ,求∠ABF 的度数;(3)如果CD=15,BE=10,sinA=13 5 ,求⊙O 的半径。 2、如图,AB 是⊙0的直径,C 是⊙0上的一点,直线MN 经过点C ,过点A 作直线MN 的垂线,垂足为点D ,且∠BAC=∠DAC . (1)猜想直线MN 与⊙0的位置关系,并说明理由; (2)若CD=6,cos=∠ACD=,求⊙0的半径. 3、已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE .(1)求证:BE 与O ⊙相切;(2)连结AD 并延长交BE 于点F ,若9OB =,2 s i n 3 ABC ∠=, 求BF 的长.

4、如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.(1) 求证:CD∥ BF;(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长. 5、如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D, 交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF. (1)求证:直线PA为⊙O的切线; (2)试探究线段EF,OD,OP之间的等量关系,并加以证明; (3)若BC=6,tan∠F=1 2 ,求cos∠ACB的值和线段PE的长. 6、如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K. (1)求证:KE=GE; (2)若2 KG=KD·GE,试判断AC与EF的位置关系,并说明理由; (3)在(2)的条件下,若sinE=3 5 , AK=FG的长. 5 4 5题图 P

圆与三角函数综合专题

B C E 圆与三角函数 知识点:垂直的证明方法 (1) 当已知条件中没有明确给出直线与圆是否有公共点时,常过圆心作该直线的垂线段,证明该 垂线段的长等于半径,也就是“作垂直,证半径”。 (2) 当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于 这条直线,也就是“连半径,证垂直” 例1.如图,Rt △ABC 中, ∠ACB=90°,AC=4, BC=2,以AB 上的一点0为圆心作⊙O 分别与AC .BC 相切于点D ,E 。 (1)求⊙O 的半径。(2)求sin ∠BOC 的值。 例2.如图,等腰△AB C 中,AB=A C ,以AB 为直径作⊙O ,交BC 于点D ,DE ⊥AC 于点E 。(1)求证:DE 为⊙O 的切线(2)若BC=45,AE=1,求cos ∠AEO 的值。 ●专项训练: 1.如图,已知Rt△ABC 和Rt△EBC,∠B=90°.以边AC 上的点D 为圆心, OA 为半径的⊙O 与EC 相切于点D ,AD∥BC. (l)求证: ∠E=∠ACB: (2)若2求BC 的长. 2.如图,已知点0是Rt △ABC 的直角边AC 上一动点,以D 为圆心,OA 为半径的⊙O 交AB 于D 点, DB 的垂直平分线交BC 于F,交BD 于E 。(l)连结DF ,请你判断直线DF 与⊙O 的位置关系,并证明你的结论

B A F D D A B (2)当点D 运动到OA=2OC 时,恰好有点D 是AE 的中点,求tan ∠B 。 3.如图,在△ABC 中.AB=BC,以AB 为直径的⊙O 交AC 于点D .过D 作DF ⊥BC,交AB 的延长线于点E,垂足为F . (1)求证;直线DE 是⊙O 的切线;(2) 当AB=5, 4.如图,Rt△ABC 中, ∠C=90°,BD 平分∠ABC ,以AB 上一点0为圆心, 过B 、D 两点作⊙O ,⊙O 交AB 于点E EF ⊥AC 于点F 。 (1)求证:⊙O 与AC 相切: (2)若EF=2,BC =4,求tan ∠A 的值。 5.如图, △ABP 中,∠ABP=90°,以AB 为直径作⊙O 交AP 于点C ,在弧AC 上取一点F ,使弧 CF=弧CB ,过C 作AF 的垂线,垂足为M ,MC 的延长线交BP 于D 。 (1)求证:CD 为⊙O 的切线。(2)连BF 交AP 于B 若BE=6,EF=2. 求tan ∠FAE 。

圆中三角函数综合例题及练习

圆中的三角函数 解决几何图形的三角函数求值问题,关键在于,找到相关的直角三角形.若没有现成的直角三角形,则需根据所给的条件,合理构造直角三角形,或把角进行转化。圆中有关此类问题的解决也不例外,现就解题策略分析如下: 一、用圆周角的性质把角转化到直角三角形中 例1(成都市)如图1,已知AB 是⊙O 的直径,弦CD ⊥AB, 22AC =,BC =1,那么sin ∠AB D的值是 . 解析:在⊙O 中,∠ACD =∠AB D; 又由于AB 为⊙O 的直径,CD ⊥AB ,则∠ACD =∠AB C. Rt △ABC 中,A B= 22BC AC +=221)22(+=3, 从而sin ∠ABD =AB AC =32 2. 评注:借用“同弧所对圆周角相等”,把要求函数值的角予以转化,充分本现了转化思想 的巧妙运用。 二、用直径与所对圆周角构造直角三角形 例2(烟台市)已知A B是半圆O 的直径,弦AD 、BC 相交于点P ,若∠DPB =α,那么CD AB 等于 A .sinα B . C OSα C.t anα D.1 tan α 解析: 连结BD ,由于AB 为直径,则∠ADB =90°, 于是,在Rt △PBD 中,有C OSα= PB PD , 而点C 和点A 在圆周上,所以∠A =∠C , 又∠APB =∠CPD ,则△APB ∽△CPD , 从而 CD AB =PB PD ,所以CD AB =CO Sα,故选B。 评注:直径所对的圆周角是直角。由此,可以得到一个直角三角形,从而为使用三角函数创造条件,因此,在解题中,要倍加关注直径所对圆周角。 三、转化条件中的垂直关系构造直角三角形 例3(武汉市)如图4,等腰三角形ABC 中,AC =BC =10,AB =12。以B C为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥A C,垂足为F ,交CB 的延长线于点E 。 (1)求证:直线EF 是⊙O 的切线; (2)求sin ∠E的值。 解析:(1)证明:如图5,连结O D、CD , 因为BC 是直径,所以CD ⊥AB , 而A C=BC ,则D 是AB 的中点 又因为O 是CB 的中点,所以O D//AC 由于DF ⊥AC,则OD ⊥E F,于是EF 是⊙O 的切线. (2)连结BG ,因为B C是直径,所以∠BGC =90° 图 B D E F G O C B D O 图1

浅谈“单位圆”在三角函数中的应用(1)

浅谈“单位圆”在三角函数中的使用 胡海光 (宝鸡文理学院数学系陕西宝鸡721013) 摘要:新课程用单位圆定义任意角的三角函数,提升了单位圆、三角函数线的地位,三角函数的知识结构和方法体系也发生了一些变化,利用单位圆本身直观、形象、准确、方便等特点,再结合相关的数学知识,可以使问题化难为易,化繁为简,思路清晰,方法明确。探究它在新课程三角函数公式推导和性质中的使用及解题中的使用,这样不但能使学生掌握用单位圆解题的方法,而且能激发学生的学习兴趣。 关键字:单位圆;诱导公式;三角函数;使用 1.引言 新课标指出:学生的数学活动不应只限于接受、记忆、模仿和练习,应倡导自主探索、动手实践、合作交流、阅读自习等学习数学的方式,通过各种不同形式的自主学习、探索活动,不但能让学生体验数学发现和创造的历程,培养他们的数学思维能力和创新意识,而且可以大大减少课堂的教学时间。因此,我们在教学中应充分挖掘教材的问题背景,逐渐培养学生的自主学习、自主探索等学习习惯。基于这种目的,在新课改下,我们可以将三角函数章节学习统一在单位圆和三角函数线之下,利用数形结合让学生理解知识的来龙去脉、推导过程,最主要的是使学生学会用联系的观点看三角函数,研究三角函数的定义、公式、图象和性质,明白如何用单位圆和三角函数线研究问题,动态地分析问题和解决问题。 2.单位圆的认识 单位圆是新课标里刚引进的新概念,学生受老教材的影响对单位圆的认识很模糊,为了让学生能很好的利用单位圆解决三角函数问题,笔者认为首先要了解单位圆的概念、为什么用单位圆上点的坐标定义三角函数及用单位圆上点的坐标定义三角函数的意义。 2.1单位圆的定义 所谓单位圆,就是在直角坐标系中,以原点O为圆心,以单位长度为半径的圆。如下图所示: 2.2为什么用 单位圆上点的坐标定义三a

圆与相似三角形、三角函数专题

圆与相似三角形、解直角三角形及二次函数的综合 类型一:圆与相似三角形的综合 1.如图,BC是⊙A的直径,△DBE的各个顶点均在⊙A上,BF⊥DE于点F.求证:BD·BE=BC·BF. 2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O 的切线,交BC于点E. (1)求证:点E是边BC的中点; (2)求证:BC2=BD·BA; (3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形. 解:(1)连结OD,∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD =90°.又∵OD=OC,∴∠ODC=∠OCD, ∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点 (2)∵AC为直径,∴∠ADC=∠ACB=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC=BCBD,∴BC2=BD?BA (3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-∠OCD=90°-45°=45°,∴Rt△ABC为等腰直角三角形 类型二:圆与解直角三角形的综合 3.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,

DE⊥AB,垂足为点E,交AC的延长线于点F. (1)求证:直线EF是⊙O的切线; (2)已知CF=5,cosA=25,求BE的长. 解:(1)连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD.∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线 (2)∵OD∥AB,∴∠COD=∠A,∴cos∠COD=cosA=25.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=ODOF=25.设⊙O的半径为r,则rr+5=25,解得r=103,∴AB=2OD=AC=203.在Rt△AEF中,∵∠AEF=90°,∴cosA=AEAF=AE5+203=25,∴AE=143,∴BE=AB-AE =203-143=2 4.(2015·资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连结DE. (1)求证:DE是⊙O的切线; (2)连结AE,若∠C=45°,求sin∠CAE的值. 解:(1)连结OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE =90°,∴DE是⊙O的切线 (2)过点E作EF⊥CD于点F,设EF=x,∵∠C=45°,∴△CEF,△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=2x,∴AB=BC=22x.在Rt△ABE中,AE=AB2+BE2=10x,∴sin∠CAE=EFAE=1010 5.如图,△ABC内接于⊙O,直径BD交AC于点E,过点O作FG⊥AB,交AC于点F,交AB 于点H,交⊙O于点G. (1)求证:OF·DE=OE·2OH; (2)若⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,求阴影部分的面积.(结果保留根号)解:(1)∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OF?DE=OE?AD.∵O是BD的中点,DA∥OH,∴AD=2OH,∴OF?DE=OE?2OH (2)∵⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,∴OE=4,ED=8,OF=6,∴OH=6.在Rt △OBH中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°,∴BH=BO?sin60°=12×32=63,∴S阴影=S扇形GOB-S△OHB=60×π×122360-12×6×63=24π-183 类型三:圆与二次函数的综合 6.如图,在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D. (1)求过A,B,C三点的抛物线的解析式; (2)求点D的坐标; (3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.

圆与相似、三角函数综合练习

圆与相似、三角函数综合练习 1、如图1,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A 重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x?y)的最大值是______. 2、如图2,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是______. 3、如图3,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x 轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是___. 图1 图2 图3 4、已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C. (1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧CD 的长 (2)⊙P移动到与边OB相交于点E,F,若EF=4cm,求OC的长

5、如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD 为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长 线于点F. (1)求证:BD=BF; (2)若CF=1,cos B=,求⊙O的半径。 6、如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3. (1)求证:点F是AD的中点; (2)求cos∠AED的值; (3)如果BD=10,求半径CD的长。 7、如图,⊙O的直径AC与弦BD相交于点F,点E是DB延长线上一点,∠EAB=∠ADB. (1)求证:EA是⊙O的切线; (2)已知点B是EF的中点,求证:以A、B、C为顶点的三角形与△AEF相似;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.

相关主题
文本预览
相关文档 最新文档