当前位置:文档之家› 碾压混凝土非绝热温升试验及分析

碾压混凝土非绝热温升试验及分析

碾压混凝土非绝热温升试验及分析
碾压混凝土非绝热温升试验及分析

混凝土热工计算精编版

混凝土热工计算: 依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。 砼强度为:C40 砼抗渗等级为:P6 砼供应商提供砼配合比为: 水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂 155: 205 : 110 : 10.63 : 110 : 1141 : 727 一、温度控制计算 1、最大绝热温升计算 T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ 式中: T MAX——混凝土的最大绝热温升; W——每m3混凝土的凝胶材料用量; m c——每m3混凝土的水泥用量,取205Kg/m3; FA——每m3混凝土的粉煤灰用量,取110Kg/m3; SL——每m3混凝土的矿粉用量,取110Kg/m3; UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3; K1——粉煤灰折减系数,取0.3; K2——矿粉折减系数,取0.5; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3);

T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400 T MAX=303.63×375/0.97×2400=48.91(℃) 2、各期龄时绝热温升计算 Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt); Th——混凝土的t期龄时绝热温升(℃); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。根据商砼厂家提供浇注温度 为20℃,m值取0.362 Th(t)=48.91(1-e-mt) 计算结果如下表: 3、砼内部中心温度计算 T1(t)=T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土 温度最高值; T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃; ξ(t)——t 龄期降温系数,取值如下表

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

碾压混凝土配合比设计试验

碾压混凝土实验室配合比设计试验 1 试验目的 测定碾压混凝土配合比设计试验所用原材料的物理力学性能指标,然后进行碾压混凝土实验室的配合比设计。 2 试验方案 本试验根据配合比设计所需的技术资料,首先对选定的材料进行物理力学性能指标的测定试验,再依据配合比设计规程及原则来进行配合比的设计,对于碾压混凝土,设计时主要考虑其三大参数的要求。本试验流程图如图2.1所示。

图2.1 试验流程图 3 试验方法 3.1 原材料的物理力学性能试验 本试验配合比设计所用的原材料主要有:水泥、粉煤灰、石灰、粗细集料、

水及外加剂等。 3.1.1水泥试验 水泥试验主要包括:水泥细度试验、水泥标准稠度用水量试验、水泥凝结时间试验、水泥体积安定性试验、水泥胶砂强度试验等。 水泥细度试验采用手工干筛法来检验水泥细度;水泥标准稠度用水量试验、水泥凝结时间试验及水泥体积安定性试验(雷氏夹法)按GB/T 1346-1989《水泥标准稠度用水量、凝结时间、安定性检验方法》,用沸煮法,对该水泥进行了安定性试验;水泥胶砂强度试验通过ISO法来测定水泥的强度等级。 通过试验,得到本试验所用水泥的物理性能见表1.1。 表1.1 水泥的物理性能表 水泥品种 初凝 (h:min) 终凝 (h:min) 安定性 (mm) 筛余量 (%) 标准稠 度(%) 抗压 (Mpa) 抗折 (Mpa) 3d 28d 3d 28d P.C32.5R 2.1 3.1.2 粉煤灰试验 根据《用于水泥和混凝土中的粉煤灰》GB1596—91以及国家标准GB175—1999,GB1344—1999,GB12958—1999中的规定,需对粉煤灰的细度、密度、凝结时间、体积安定性和强度及强度等级等主要技术性质经行测定。 通过试验,该粉煤灰的物理性能见表1.2。 表1.2 粉煤灰的物理性能表 粉煤灰等级 密度 (g/cm3) 堆积密度 (g/cm3) 细度 (%) 比表面积 (g/cm2) 需水量 (%) 28d抗压 强度比 (%) Ⅱ级 2.302 26 3.1.3集料试验 集料试验主要包括测定砂、石的近似密度试验、砂、石的堆积密度试验、砂、石的空隙率计算和砂、石的筛分析试验等。 通过试验,测得所用砂子、石子的物理性能见表1.3、表1.4。 表1.3 砂子的物理性能表

碾压混凝土在道路建设中的应用及施工技术

碾压混凝土在道路建设中的应用及施工技术 道路建设作为建筑行业中较为重要的一部分,对于建筑行业的发展有着极为重要的作用和帮助,并且道路建设还是我国社会基础设施中的一部分,能够有效的推动社会的发展和前进,但是在当前的道路建设过程中却出现了一系列的问题,对道路建设工作的开展起到了严重的阻碍,其中最为显著和突出的问题就是碾压混凝土难以在道路建设中得到良好的应用。因此,本文就道路建设为研究方向,对碾压混凝土在道路建设中的应用以及施工技术展开了分析和探索。 标签:碾压混凝土;道路建设;施工技术及应用 引言:随着科学技术的不断创新和应用,各个行业在发展过程中出现了一系列新的需求,尤其是在道路建设行业中,对于混凝土的应用提出了全新的要求,这就使得碾压混凝土应运而生,成为当前道路建设中较为广泛应用的一种全新混凝土技术。碾压混凝土之所以能够超过传统的普通水泥混凝土成为当前道路建设中应用最为广泛的混凝土技术,最为主要和关键的因素就是其具有较高的技术优势,是传统混凝土无法相媲美的,运用了当前社会中较为先进的科学技术,拥有极高的稳定性,不容易在应用过程中出现一些突发问题,而且可以在各个不同的路面情况中进行应用,所以对碾压混凝土在道路建设中的应用进行完善,促进碾压混凝土的应用已经成为了当前社会中较为广泛关注的问题之一,具有十分重要的意義。 一、道路碾压混凝土在应用过程中存在的问题 (一)应用经验的缺乏 当前我国虽然在道路建设过程中对碾压混凝土技术进行了一定程度的普及和应用,但是由于应用时间较为短暂,对其的应用经验依然停留在一个较为缺乏的阶段,无法有效的对碾压混凝土技术进行良好的应用,在具体的落实过程中出现了一系列的问题,不仅不能够发挥碾压混凝土技术的优势作用,还产生了相反的效果,导致我国的道路路面建设出现了较多的问题,影响了道路建设的施工质量,其中最为显著的问题就是道路建设容易出现裂缝现象[1]。而造成这种情况发生最为主要的原因就是由于在对碾压混凝土技术进行应用的过程中,还停留在传统的修筑方式中,用水泥混凝土的修筑经验来对碾压混凝土进行利用,这就导致在道路建设中裂缝问题频发,对道路的行车流畅性产生了极为严重的阻碍,无法碾压混凝土的技术优势进行充分的发挥和应用。根据实际的调查研究显示,在碾压混凝土技术的应用过程中,要想对碾压混凝土进行有效的应用,提升碾压混凝土的强度,避免裂缝现象的产生,就必须要对碾压混凝土的压实度进行提高,两者之间是因果的关系,只有碾压混凝土的压实度得到了提升,才能够有效的促进碾压混凝土的强度,提高碾压混凝土所修筑的路面质量,提高行车舒适性。 (二)对路面的平整度给予重视

碾压混凝土坝的发展趋势

碾压混凝土坝的发展趋势漫谈 摘要:碾压混凝土坝的迅速发展是与其优越的技术、经济特点紧密相关的。本文主要分析了碾压混凝土坝的发展趋势,对于今后我国碾压混凝土坝的发展具有一定帮助。 关键词:碾压混凝土坝发展趋势新特点筑坝技术 1.引言 碾压混凝土坝是近30年来发展起来的一项筑坝技术,与常态混凝土筑坝用振捣器插入振捣密实的方法不同,其主要特点是使用水泥含量低,高掺粉煤灰的干硬性混凝土,采用与土石坝相同的运输和铺筑设备,薄层摊铺振动碾压、层层上升填筑。这实质是把混凝土坝结构与材料和土石坝施工方法两者的优越性加以综合,经过择优改进,相结合而成的一种筑坝新技术。这种筑坝方式能节省水泥,有利于大规模机械化作业,因而能缩短工期,降低工程造价1,2]。 2.碾压混凝土坝的地区分布较广泛规模日益扩大 碾压混凝土坝可修建在各种不同气候条件下的世界各个地区。在高气温地区,阿尔及利亚的贝利哈罗恩坝(坝高121m,碾压混凝土量169万m3),所处地区最高气温可达43℃;在低气温地区,美国的上静水坝(Upper Stillwater)(坝高91m,碾压混凝土量11客万ma)和加拿大的拉克罗伯森坝(坝高40m,碾压混凝土量2.8万m3),两坝所处地区冬季最低气温可达-37.5℃以下;在多雨地区,智利的潘戈坝(Pangue)(坝高113mm,碾压混凝土量66万m3),在13个月的施工期内总降水量达4436mm,最集中时3个月的降水量就达3130mm。碾压混凝土坝的设计者,对于工程的安全运行极为重视,经过10年设计、施工和运行方面的经验积累,碾压混凝土重力坝才突破了坝高50m左右的筑坝高度,并且也经过了同样长的时间,人们才有足够的信心去修建除重力坝之外的其他碾压混凝土坝型。2001年开工的我国龙滩碾压混凝土重力坝,坝高216.5m,坝体混凝土量为730万m3,已成为21世纪兴建的第一座、目前碾压混凝土筑坝史上最高的碾压混凝土坝。 3.碾压混凝土材料与筑坝技术在发展中相互促进 早期的碾压混凝土坝多采用低胶凝材料用量的贫浆碾压混凝土,而从目前较为稳定的发展趋势看,当今的碾压混凝土坝多采用高胶凝材料用量的富浆碾压混凝土。自1992年以来采用不同胶凝材料用量修建的碾压混凝土坝占总数的比例,稳定在以下的范围内:富浆碾压混凝土坝(胶凝材料用量150kg/m3以上)占(45±2)%;中等胶凝材料用量碾压混凝土坝(胶凝材料用量100-149 kg/m3)占(23±2)%;(日本)RCD坝占(16±2)%;贫浆碾压混凝土坝(胶凝材料用量低于

碾压混凝土试验大纲

坝体填筑碾压试验大纲 一概况 1.1 工程概况 托口水电站右岸为粘土心墙堆石坝,坝顶高程253.00m,最大坝高58.285m,坝顶长155.50m,坝顶宽8.0m,坝顶上游侧设有1.2m高的防浪墙。堆石坝采用粘土心墙防渗,坝基采用帷幕灌浆进行防渗。粘土心墙顶厚3.0m,两侧均以1:0.2的斜坡至坝基;心墙底部最大宽度为25.30m。粘土心墙外设反滤带及过渡区。反滤带宽1.50m;过渡区宽3.00m。堆石坝上游坝坡1:1.8,下游坝坡1:1.7。上游坝坡从坝顶至232.00m(死水位235.00m)采用0.3m厚的干砌石护坡。下游设2级马道,马道宽均为2.0m,第一级马道高程235.00m,第二级马道高程218.00m。高程218.00m以下设排水层。土石坝下游高程218.00m以上采用0.3m厚的干砌石护坡,土石坝下游高程218.00m以下用6.00×5.00m(长×宽)厚30cm~60cm混凝土板护面和用粒径较大的 石渣抛石护坡,混凝土护面与堆石坝间用5.0m长锚杆连接;堆石坝下部设混凝土挡墙座落至基岩,挡墙底部设锚筋,入岩5.0m。 堆石坝与混凝土重力坝连接采用混凝土刺墙插入式接头,接头段坝顶长95.0m,分5个坝段。粘土心墙与混凝土坝连接采用插入式,混凝土接头段插入粘土防渗体内5.0m,刺墙端上、下游外包粘土防渗体厚3.5m。外部堆石坝采用圆锥形裹头与混凝土重力式刺墙相接。 1.2 试验的目的 通过室内试验和现场碾压工艺性试验,确定以下几个方面: ⑴核查坝料的质量是否满足设计要求; ⑵核查现场碾压的压实机具性能是否满足施工质量的要求; ⑶通过现场碾压工艺性试验,根据设计提供的压实参数:压实方法、铺土厚度和压实遍数,核查土石料压实后能否够达到设计指标要求; ⑷通过现场工艺性试验,制定出相关质量控制要求、施工工艺参数和检验方法。 1.3 试验料源及试验场地布置 ⑴试验料源 ①粘土心墙料采用厂房区杨梅山转料场回采料; ②反滤料采用主坝天然砂石骨料或加工厂供应; ③过渡料采用柳洲洲头或清水清天然砂砾石料;

混凝土计算时的常用公式

混凝土计算时的常用公式 混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)Th=(mc+k·F)Q/c·ρ (2)Th=mc·Q/c·ρ(1-e-mt) 式中Th——混凝土最大绝热温升(℃); mc——混凝土中水泥(包括膨胀剂)用量(kg/m3);F——混凝土活性掺合料用量(kg/m3); K——掺合料折减系数。粉煤灰取0.25~0.30;Q——水泥28d水化热(kJ/kg)查表; c——混凝土比热、取0.97[kJ/(kg·K)]; ρ——混凝土密度、取2400(kg/m3); e——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。 T1(t)=Tj+Th·ξ(t) 式中T1(t)——t龄期混凝土中心计算温度(℃);Tj——混凝土浇筑温度(℃); ξ(t)——t龄期降温系数 3.混凝土表层(表面下50~100mm处)温度 1)保温材料厚度(或蓄水养护深度)

δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2) 式中δ——保温材料厚度(m); λx——所选保温材料导热系数[W/(m·K)] T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m·K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m?K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 传热系数修正值 保温层种类K1K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子)2.63.0 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料2.02.3

碾压混凝土拱坝特点

某某河碾压砼拱坝设计特点 摘要:本文系统地从枢纽布置、拱坝布置、砼设计和筑坝材料、结构设计、温度控制措施和基础处理等方面介绍了某某河碾压砼拱坝的设计和特点。 关键词:某某河水电站碾压砼拱坝设计 1 工程概况 某某河水电站位于某某省某某土家族自治县付家堰乡境内,是清江一级支流泗洋河梯级开发的一个骨干工程,坝址以上承雨面积392.9 km2,水库正常蓄水位290.0m,死水位270.0m,总库容0.246亿m3。电站总装机容量30 MW,多年平均年发电量0.731亿k W·h,是一座以水电开发为主,兼有水库短途运输、人蓄饮水等综合效益的中型水库。 工程为Ⅲ等工程,主要建筑物为3级建筑物,洪水标准按50年一遇设计,500年一遇校核,地震基本烈度为6度,枢纽工程主要由99m高的碾压砼拱坝、坝顶泄洪表孔、左岸发电引水隧洞、右岸放空洞、发电厂房及尾水隧洞等建筑物组成。 2 枢纽布置 该电站坝址位于梅湖次级陡立背斜南翼,岩层大部分较陡,且倾向上游,建基面主要为二叠系栖霞组和茅口组灰岩,其中左岸、右岸285m高程以下和河床出露栖霞组第十一段至第十四段,岩性为灰岩夹少量炭质和泥质灰岩,右岸335~400m高程分布有龙潭组页岩。坝轴线处河床高程217.6m,河床宽46m,属“V”字型峡谷。左岸岸坡平顺完整,右岸岸坡较陡,上游有梅子溪冲沟分布。 综上所述,该坝址两岸山体雄厚,岸坡稳定,建 基面岩体强度高,质量好,满足修建拱坝的条件。经 技术经济比较确定采用抛物线双曲拱坝方案:将泄洪 表孔和交通桥布置在拱坝坝顶,放空洞布置于右岸, 发电引水系统布置在拱坝左岸,引水至坝下左岸200m 的河边阶地上建半地下厂房发电。主体工程施工期采 用断流围堰挡水、隧洞导流、坝体枯水期施工,汛期 预留缺口度汛的导流方案。具体枢纽布置见图1。

碾压混凝土工艺试验作业指导书

碾压混凝土工艺试验作业指导书 1.1 第一次碾压混凝土现场生产性试验 (1)试验目的及要求 1)摸拟大坝低温季节实际施工条件进行生产工艺试验。 2)主要施工机械和原材料与主体混凝土施工时一致。 3) 确定碾压混凝土拌和工艺参数。 4) 确定碾压施工工艺参数,包括平仓方式、碾压层厚度、碾压遍数和振动行进速度等。 5)碾压混凝土配合比以及稠度与振动碾的适应性,骨料分离和控制措施,层面处理技术等。 (2)试验用混凝土强度等级及配合比 1)常态混凝土: C15(找平混凝土); 2)碾压混凝土: 三级配碾压混凝土R90150F50 、二级配富胶碾压混凝土R90200F100W8、三级配变态混凝土R90150和二级配变态混凝土R90200F100W8。 3)配合比: 经监理工程师批准的混凝土配合比。 4)碾压混凝土性能: 满足大坝低温季节施工。

(3)试验场地及时间 本次试验在2009年12月进行,试验场地大小为40m×25m,现场试验时先浇筑C15找平混凝土,在10天后铺填砂浆,然后再浇筑不同级配及强度的碾压混凝土,碾压混凝土铺筑分四个条带,由于BW202AD的轮宽为1.2米,条带之间的搭接0.2米,为便于碾压,确定每个条带宽5米,其中A、B 条带宽15米浇筑三级配碾压混凝土R90150F50, C、D条带宽10米浇筑二级配富胶碾压混凝土R90200F100W8,靠模板边缘0.5米宽的三级配变态混凝土R90150和二级配变态混凝土R90200F100W8,共浇筑五层,总高度约为150cm。整个现场试验平面布置图如下图19-2。 40m

(4)工艺试验内容 1)碾压混凝土拌和工艺参数的试验确定 在现场试验前35天,在右岸Ⅰ号混凝土拌和系统进行碾压混凝土投料顺序和拌和时间试验;投料试验选择三级配碾压混凝土R90150F50、富胶碾压混凝土R90200F100W8碾压混凝土进行,其中三级配碾压混凝土R90150F50选择三种投料顺序,富胶碾压混凝土R90200F100W8碾压混凝土选择二种投料顺序,拌和时间选择120s、150s和180s进行试验。各强度等级碾压混凝土投料顺序和拌和时间均需进行罐头和罐尾的VC值、含气量、7d、14d、28d抗压强度以及砂浆密度试验。最后根据试验结果选择确定碾压混凝土拌和投料顺序和拌和时间。 2)低温季节碾压混凝土施工工艺参数试验 第一到第三浇筑层,进行碾压参数与压实密度及连续升层允

混凝土绝热温升

混凝土的绝热温升 T⑴止仔少 cP 式中:T(t)――混凝土龄期为t时的绝热温升「C) W——每m3混凝土的胶凝材料用量,取520kg/m3 Q――胶凝材料水化热总量,取:P.O42.5 286KJ/kg C――混凝土的比热:取0.96KJ/(kg.C) P ――混凝土的重力密度,取2420kg/ m3 m――与水混品种浇筑强度系有关的系数,取0.4d- 1。 t――混凝土龄期(d) 经计算: T (3) = 520 286 1 -e』43=45.38C 0.96 汉2420 T (7) = 520 286 1 -e—0.4 7=60.67C 0.96 x 2420 其中,胶凝材料水化热Q的计算如下: Q=kQ° °7/Q7—3/Q a 取0.955, 取0.93; 取296KJ/Kg, 取266 KJ/Kg 代入上式可得Q=286 KJ/Kg

注:表中揺量为扭合料占总陵礙材料用量的百分比. B.1混凝土的绝热溫升 B ?l ?l 水泥的水化热可按下列公式计算: _ n . t Q? Qo Qo 式中 Q,——龄期r 时的累积水化热(kj/kg), Qo —水泥水化热总量(kj/kg), t ——龄期(d): ?——常数,随水泥品种、比表面积等因素不同而异. B.1.2胶凝材料水化热总竄应在水泥、掺合料、外加剂用量确定 后根据实际配合比通过试验得出。当无试验数据时,可按下式计 算: Q=? (B. 1.2) 式中 Q 一胶凝材料水化热总K(kJ/kg); k ——不同掺量掺合料水化热调整系数。 B.1.3当现场采用粉煤灰与矿渣粉双揍时,不同掺童掺合料水 化热调整系数可按下式计算: 上=怡】+島一1 (B. 1.3) 式中 虹——粉煤X??对应的水化热调整系数可按表B. L3取 值; k z ——矿渣粉摻;&对应的水化热调整系数,可按表B. 1.3 取値。 (B. 1.1-2) Q O = 7TQ^3/Q ; (B. 1. 1-3)

碾压混凝土坝施工工艺应用

碾压混凝土坝施工工艺应用 摘要:碾压混凝土大坝具有工艺简单、上坝强度高、工期短、造价低、适应性强等特点,能产生较大的经济和环境效益,目前这种坝型在国内水利水电建设中已得到广泛应用。该文结合马堵山水电站工程碾压混凝土施工技术,比较全面地介绍了碾压混凝土坝施工工艺要点。 关键词:水电站大坝施工,碾压混凝土,施工工艺 abstract: rcc dam has the simple process, the intensity is high, the dam short time, low cost, strong adaptability and other characteristics, can produce larger economic and environmental benefits, the current in the domestic water conservancy and hydropower dam type construction has been widely used. combining with the horse plugging landscape power engineering rcc construction technology, quite comprehensively introduces rcc dam construction process points. keywords: hydropower station dam construction, rcc, construction technology 中图分类号: tu528文献标识码:a文章编号: 一、工程概况 马堵山水电站位于红河干流下游红河州的个旧市、金平县境内,

混凝土拌合物性能试验方法标准学习记录

混凝土拌合物性能试验方法标准学习记录 学习普通混凝土拌合物性能试验方法标准的检测项目、检测方法、判定依据、仪器设备、检测环境条件、检测程序等。 2、检测环境条件的变化 制备混凝土拌合物时,试验环境相对湿度不宜小于50%,试验室的温度应保持在20±5℃,所用材料、试验设备、容器及辅助设备的温度宜与试验室温度保持一致。 3、取样与试样的制备 20L。 混凝土拌合物的取样应具有代表性,宜采用多次采样的方法。一般在同一盘混凝土或同一车混凝土中的约1/4处、1/2处和3/4处之间分别取样,并搅拌均匀;第一次取样和最后一次取样的时间间隔不宜超过15min。 宜在取样后5min内开始各项性能试验。 试验室制备混凝土拌合物的搅拌应符合下列规定: 3.4.1、混凝土拌合物应采用搅拌机搅拌。拌和前应将搅拌机冲洗干净,并预拌少量同种混凝土拌合物或水胶比相同的砂浆,搅拌机内壁挂浆后将剩余料卸出。 3.4.2、应将称好的粗骨料、胶凝材料、细骨料和水(外加剂一般先溶于水)依次加入搅拌机,难溶和不溶的粉状外加剂宜与胶凝材料同时加入搅拌机,液体和可溶外加剂宜与拌合水同时加入搅拌机 3.4.3、混凝土拌合物宜搅拌2min以上,直至搅拌均匀; 3.4.4、混凝土拌合物一次拌和量不宜少于搅拌机公称容量的1/4;不应大于搅拌机容量,且不应少于20L; 试验室搅拌混凝土时,材料用量应以质量计。骨料的称量精度应为± 外加剂的称量精度均应为±在试验室制备混凝土拌合物时,拌合时试验室的温度应保持在20±3℃,所用材料的温度宜与试验室温度保持一致。 4 坍落度及经时损失试验试验应按下列步骤进行: )、坍落度筒内壁和底板应润湿无明水;底板应放置在坚实水平面上,并把坍落度筒放在底板中心,然后用脚踩住二边的脚踏板,坍落度筒在装料时应保持在固定的位置; 2)、混凝土试样应分三层均匀地装入坍落度筒内,捣实后每层高度应约为筒高的三分之一。每装一层,应用捣棒在筒内由边缘到中心按螺旋形均匀插捣25次; 3)、插捣底层时,捣棒应贯穿整个深度,插捣第二层和顶层时,捣棒应插透本层至下一层的表面; 4)、顶层混凝土装料应高出筒口,插捣过程中,如果混凝土低于筒口,则应随时添加; 5)、顶层插捣完后,取下装料漏斗,应将混凝土拌合物沿筒口抹平; 6)、清除筒边底板上的混凝土后,应垂直平稳地提起坍落度筒,并轻放于试样旁边。当试样不再继续坍落或坍落时间达30s时,用钢尺测量出筒高与坍落后混凝土试体最高点之间的高度差,即为该混凝土拌合物的坍落度值。 4.1.3 坍落度筒的提离过程宜控制在3s~7s以内;从开始装料到提坍落度筒的整个过程应连续进行,并应在150s 内完成。

大体积砼温度计算

5.1.4热工计算如下: 1)混凝土绝热温升 T h(t)=[m c×Q/(c×p)](1-e-mt) 其中t为龄期 m c――混凝土中水泥 (含膨胀剂) 用量(kg/ m3); Q――水泥28天水化热; 不同品种、强度等级水泥的水化热表 c――混凝土比热,一般为—,计算时一般取(kJ/ p――混凝土密度,一般取2400(Kg/m3) e――常数,为 t――混凝土的龄期(天); m――系数,随浇筑温度改变,查表可得。 系数 m 本工程C35S8混凝土拟采用配合比(经验配合比,根据实际配

合比在制定实施方案时重新计算): 经计算得出不同龄期下的混凝土绝热升温T h,见下表: 2)t龄期混凝土中心计算温度 混凝土中心计算温度按下式计算: T1(t)= T j+ T h(t)×ξ(t) T1(t)―― t龄期混凝土中心计算温度 T h(t)―― t龄期混凝土绝热升温温 T j――混凝土浇筑温度,取值根据浇筑时的大气温度确定,根据预计浇筑时的气候条件,取T j=30℃ ξ(t)―― t 龄期降温系数 ξ(t)取值表

本工程ST1、ST2及裙楼底板厚度分别为4m、3.5m、1.5m,分别经计算T1(t)取值见下表: T1(t)取值表 3)保温材料计算厚度 保温材料计算厚度按下式计算: δ=×λx(T2-T q)×K b/λ(T max-T2) h――筏板厚度 λx ――所选保温材料的导热系数[W/()] T2――混凝土表面温度 T q――施工期大气平均温度,取30℃ λ――混凝土导热系数,取[W/()] T max――计算得混凝土最高温度 计算时取:T2-T q = 15--20oC,

江垭碾压混凝土大坝主要施工技术和特点

江垭碾压混凝土大坝主要施工技术和特点 江垭碾压混凝土大坝主要施工技术和特点 唐国进凌玉标 摘要江垭水利枢纽是湖南省澧水流域上第一个防洪骨干工程,在碾压混凝土大坝施工中,充分利用当今施工技术,大胆创新,采用深槽式高速皮带机和负压溜槽联合输送混凝土、碾压混凝土斜层铺筑法和变态混凝土等技术,在提高工程质量的同时,加快了施工进度,取得了显著的经济效益,将我国的碾压混凝土施工技术向前推进了一步。 关键词碾压混凝土大坝施工新技术质量 江垭水利枢纽位于湖南省澧水支流娄水中游,距张家界市江垭镇5km,是澧水流域上第一个关键性防洪控制工程,工程以防洪为主,兼有发电、灌溉、航运、供水和旅游等综合效益。水库总库容18.5亿m3,其中正常水位以下防洪库容7.4亿m3,水库建成后,澧水下游防洪标准将由原来的4~7年一遇提高到17~20 年一遇,大大减轻洞庭湖区的防洪压力;电站装机容量3×lOOMW,年发电量7.56亿度。 江垭工程由碾压混凝土拦河坝、右岸地下厂房、地面升压站和左岸升船机等建筑物组成。主体工程于1995年7月2日正式开工,1998年10月18日下闸蓄水,1999年5月18日第一台机组并网发电,1999年底整个工程基本完工。 江垭大坝建基面高程为114m,坝高131m,是当今世界上已建的最高全断面碾压混凝土坝。坝体断面碾压混凝土分两区,上游部位为I区,为二级配富浆碾压混凝土,主要用于坝体防渗,下游部位为II区,为三级配碾压混凝土,这是大坝主体。坝体混凝土总量为137万m3,其中碾压混凝土为110万m3。 江垭水利枢纽工程由水利部和湖南省共同投资兴建,是国家重点建设工程,工程总投资33.1372亿元人民币,其中利用世界银行贷款9700万美元。

大坝碾压混凝土现场碾压试验技术要求

红水河龙滩水电站 大坝碾压混凝土现场碾压试验技术要求 1 总则 1.1 工程概况及现场试验的必要性 龙滩水电站大坝为碾压混凝土重力坝,设计坝顶高程406.5m,最大坝高为216.50m;初期设计时,坝顶高程为382.00m,最大坝高为192.00m,坝轴线长761.26m;共分31个坝段,坝体混凝土总量约580万m3(其中RCC约为385.4万m3)。根据坝体结构要求,除基础垫层、引水坝高程300.00m以上部位、通航坝段、底孔周边、溢流面、导墙及闸墩等部位为常态混凝土外,其余均为碾压混凝土。坝体防渗结构的二级配碾压混凝土和变态混凝土沿高程各分为一个区(RⅣ和CbⅠ区),混凝土设计强度等级为C18;内部混凝土沿高程划分为3个区(RⅠ、RⅡ、RⅢ),混凝土设计强度等级分别为C18、C15、C10。 龙滩碾压混凝土重力坝是目前世界上已建和在建的高度最高、碾压混凝土方量最大的碾压混凝土坝。由于工程规模巨大,施工质量要求高、混凝土浇筑强度大、工期紧,要求全年施工,因此龙滩高碾压混凝土坝的施工质量控制标准及措施,特别是高温和多雨环境下的施工质量控制标准及措施尤为重要,应在大坝碾压混凝土浇筑前针对本工程实际选用的材料和施工设备,室内试验确定的混凝土配合比,拌和预冻方式,常温和高温及多雨环境条件的施工措施等,分别在常温和高温季节各进行一次现场试验,为大坝施工积累经验,确定并提出适合龙滩高碾压混凝土坝的施工质量控制标准及措施。 为便于承包人进行试验安排,特提出本试验技术要求。承包人应根据本本试验技术要求编制完整详细的现场试验大纲报监理人审批。 1.2 本技术要求系根据LT/C-Ⅲ-1《红水河龙滩水电站主体土建工程Ⅲ-1招标文件(右岸大坝工程)》第二卷技术条款和DL/T 5144-2001《水工混凝土施工规范》、DL/T 5112-2000《水工碾压混凝土施工规范》、DL/T 5150-2001《水工混凝土试验规程》、SL 48-94《水工碾压混凝土试验规程》的有关条款规定,结合现场碾压混凝土试验的具体要求编写而成。因此,在混凝土试验中,除应遵守本技术要求外,凡技术要求未提及或不够详尽之处,仍应遵守上述文件的相关规定执行。 1.3 在试验过程中,如需采用新技术、新工艺和新材料时,必须预先向监理人申报原因、对策措施等有关事宜,经监理人批准后方可实施。

碾压混凝土筑坝技术的应用

碾压混凝土筑坝技术的应用 碾压混凝土筑坝技术在我国于80年代开始进行研究并应用,经过这么长时间的深入研究和发展,目前我国碾压混凝土筑坝技术已位居世界前列。目前碾压混凝土筑坝技术以其水泥用量少、水化热低、温控措施简单、施工速度快、投资节省等优点被广泛应用于水电大坝的建设,并取得了可喜的成绩。文中分析了碾压混凝土筑坝技术的发展,并进一步对碾压混凝土筑坝的设计及施工技术进行了具体的阐述。 标签:碾压混凝土筑坝;技术;应用 1 碾压混凝土筑坝技术的发展 碾压混凝土筑坝技术于20世纪70年代始于国外,我国于80年代才开始对碾压混凝土筑坝技术进行研究,并在深入的研究和实践中,使碾压混凝土筑坝技术不断的得以提高和完善,目前我国的碾压混凝土坝已有一百多座,且坝高位居世界之首。目前我国的碾压混凝土筑坝技术已达到世界先列,且部分指标已达到世界领先水平。现在我国的碾压混凝土坝已打破了重力坝的局限,出现了重力拱坝、薄拱坝等。现阶段碾压混凝土筑坝技术主要有二种,一种是RCD,即是以中心部分为碾压混凝土填筑,外部则是常态混凝土;另一种是RCC,即为全碾压混凝土坝,结构简单,对施工的机械化强度要求较高。在施工中主要以硅酸盐水泥、粉煤灰、水、外加剂、砂和各种级配的碎石骨料拌制成无坍落度的干硬性混凝土,采用类似土石坝施工的运输及铺筑设备,用振动碾分层压实。具有较高的强度,和很好的防渗性,同时施工程序较为简单,施工快速经济,在施工中应用大型机械,有效的提高了施工的进度,施工中对水泥的用量较少,有效的节约了工程的投资。 2 碾压混凝土筑坝的设计 碾压混凝土坝在设计之初时在土石坝的基础上以干硬性混凝土进行施工,从而有效的提高施工的进度,但随着施工技术的不断发展,碾压混凝土筑坝技术越来越完善,发展具有自己独有特点的施工技术。 2.1 碾压混凝土配合比 在早期的碾压混凝土筑坝技术中,以贫浆碾压混凝土为主,即胶凝材料用量较低,以水泥+活性掺合料在100kg/m3以下为标准。但经过长期以来的发展及实践证明,使用胶凝材料较高的富浆碾压混凝土,水泥+活性掺合料在150kg/m3以上的效果要好于胶凝材料用量低的贫浆碾压,因此在水电行业中得以广泛的应用,同时也将是碾压混凝土筑坝的发展趋势。 目前我国建成的碾压混凝土筑胶凝用量多在150kg/m3以上,低于100kg/m3胶凝用量的碾压混凝土坝较少。随着技术的不断发展,胶凝材料也出现了较大的

大体积混凝土施工中混凝土温度计算

大体积混凝土施工中混凝土温度计算 1、混凝土拌和温度 1.1混凝土不加冰拌和温度 设砼拌合物的热量系有各种原材料所供给,拌和前砼原材料的总热量与拌合后流态砼的总热量相等。 g s w c g s g g w s s w w w w c c c g g g s s s o m m m m T C T C m T C m T C m T C m T C T ωωωω++++++++++= o T --砼拌和温度(℃) w c g T T T T 、、、s --砂、石子、水泥、拌和用水的温度(℃) g s c m m m 、、--水泥、扣除含水量的砂及石子的重量(kg ) g s ωω、、w m --水及砂、石中游离水的重量(kg ) w c g C C C 、、、s C --砂、石、水泥及水的比热容(kJ/kg ·K ) 若c g C C 、、s C 取0.84,w C 取4.2,则公式简化为: g s w c g s g g s s w w c c g g s s o m m m m T T m T m T m T m T T ωωωω++++++++++= )(22.0)(22.0 也可用表格计算法,∑∑= mC mC T T i o 2、砂、石的重量是扣除游离水分后的净重。 1.2混凝土加冰拌和温度 为降低砼入模温度和砼的最高温度,常将部分水以冰屑代替,冰屑融解时要吸收335kJ/kg 的潜热(隔解热),可降低砼拌和温度。

g s w c g s w g g s s w w c c g g s s o m m m m Pm T T m T P m T m T m T T ωωωω+++++-++-+++= )(22.080)1()(22.0 P —加冰率,实际加水量的%,经验加冰率一般控制在25%~75% 砼拌和水中加冰量也可根据需要降低水温按下式计算: w w wo T T T X +?-= 801000 )( X —每吨水需加冰量(kg) T wo —加冰前水的温度(℃) T w --加冰后水的温度(℃) 2、混凝土出罐温度 3、混凝土浇筑温度 砼浇筑温度为砼拌和出机后,经运输平仓振捣等过程后的温度。 n o s o p T T T T θθθθ+??????+++-+=321)(( p T --砼浇筑温度 o T --砼拌和温度 ????n 321θθθθ、、--温度损失系数 4、混凝土绝热升温 假定结构四周无任何散热和热损失条件,水泥水化热全部转化成温升后的温度值,则砼的水化热绝对温升值: )1()(mt c t e C Q m T --= ρ )max ρ C Q m T c = )(t T --浇筑一段时间t ,砼的绝热温升值(℃) c m --每立方米砼水泥用量(kg/m 3 ) Q --每千克水泥水化热量(J/kg ) C --砼的比热 在0.84~1.05kJ/kg ·K 之间,一般取0.96kJ/kg ·K ρ--砼的质量密度。取2400 kg/m 3 e --常数为2.718

混凝土温度计算公式

混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)Th=(mc+k·F)Q/c·ρ (2)Th=mc·Q/c·ρ(1-e-mt) 式中Th——混凝土最大绝热温升(℃); mc——混凝土中水泥(包括膨胀剂)用量(kg/m3);F——混凝土活性掺合料用量(kg/m3); K——掺合料折减系数。粉煤灰取0.25~0.30;Q——水泥28d水化热(kJ/kg)查表; c——混凝土比热、取0.97[kJ/(kg·K)];ρ——混凝土密度、取2400(kg/m3); e——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。 T1(t)=Tj+Th·ξ(t) 式中 T1(t)——t龄期混凝土中心计算温度(℃);Tj——混凝土浇筑温度(℃); ξ(t)——t龄期降温系数 3.混凝土表层(表面下50~100mm处)温度 1)保温材料厚度(或蓄水养护深度) δ=0.5h·λx(T2-Tq)Kb/λ(Tmax-T2) 式中δ——保温材料厚度(m); λx——所选保温材料导热系数[W/(m·K)]

T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m·K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 T2——混凝土表面温度(℃); Tq——施工期大气平均温度(℃); λ——混凝土导热系数,取2.33W/(m?K); Tmax——计算得混凝土最高温度(℃); 计算时可取T2-Tq=15~20℃ Tmax=T2=20~25℃ Kb——传热系数修正值,取1.3~2.0 传热系数修正值 保温层种类K1K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子)2.63.0 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料2.02.3 3在易透风保温材料上铺一层不易透风材料1.61.9 4在易透风保温材料上下各铺一层不易透风材料1.31.5 5纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)1.31.5 注:1.K1值为一般刮风情况(风速<4m/s,结构位置>25m);2.K2值为刮大风情况。 2)如采用蓄水养护,蓄水养护深度

大坝混凝土的绝热温升试验与数据拟合分析

大坝混凝土的绝热温升试验与数据拟合分析 周振为1,李红建2,陈国荣1 1.河海大学土木工程学院工程力学系,南京 (210098) 2.温州市水利局,浙江温州 (325000) E-mail :weipang1983@https://www.doczj.com/doc/b46997144.html, 摘 要:碾压混凝土目前被广泛应用于水工大坝中,大体积碾压混凝土以及常态混凝土的绝热温升对温控设计非常重要,对大体积混凝土坝的早期防裂具有重要的指导意义。文中对某碾压混凝土重力坝所采用的几种混凝土的热力学性能以及绝热温升进行了测试,多级配高掺和料碾压混凝土的绝热温升速率较慢,绝热温升较低,可以有效降低混凝土的最终温度。双曲线型数学回归模型对文中所举几种碾压、常态混凝土的拟合效果均很好,优于指数Ⅰ型和指数Ⅱ型回归模型的拟合效果,可以应用于混凝土坝的温控设计中,对混凝土绝热温升进行预测。 关键词:碾压混凝土;绝热温升;数学回归模型;数据拟合 混凝土的绝热温升是大体积混凝土坝温控设计中重要参数,测定绝热温升通常有两种方法,一种是直接法,用绝热温升试验设备直接测定;另一种是间接法,先测定水泥水化热,再根据水化热及混凝土的比热、容重和水泥用量来推算绝热温升[1]。由于水泥水化放热是一个漫长的过程以及测试手段等诸多因素的影响, 要测得混凝土的最终绝热温升值几乎是不可能的。因此, 只能在室内进行混凝土绝热温升模拟试验, 获得所需的不同类型或配合比混凝土在龄期内的温升值以及对应时间的数据, 对试验资料作数学拟合,从而确定混凝土绝热温升值与时间之间相应的最佳拟合数学表达式, 以供温控设计参考用。 1. 常用混凝土绝热温升表达式 混凝土的绝热温升(T)物理意义是指由于混凝土中胶凝材料的水化产生的热量而使混凝土内部温度逐步上升最终达到稳定值,绝热温升是时间(τ)的函数,并且根据其物理意义其数学表达式应该具有以下几个特点[2]: 1) 混凝土出搅拌机时混凝土绝热温升值为零,即τ=0时,T=F(0)= 0; 2)当τ=∞时,T=F(∞) =T 0 (定值); 3)T=F(τ)在(0,∞)区间单调递增; 4) )(ττ g d dT =在(0,∞)区间单调递减; 目前常用的绝热温升数学表达式主要有双曲线型、指数Ⅰ型、指数Ⅱ型(复合指数型)几种 [1],如式(1)~(3),用最小二乘法原理对试验数据作数据拟合,求出有关参数和拟合公式。这三个式子均满足混凝土绝热温升的三个特点,对于不同的混凝土由于其水泥、混合料的种类性质、配比不同,拟合效果也不相同,不能一概而论。本文对某大坝所采用的几种碾压、常态混凝土在龄期内进行绝热温升试验,获得混凝土绝热温升数据,分别使用(1)~(3)式对所有数据进行数学拟和,分析三种表达式得拟和优劣,得出最佳拟和数学模型,并对其进行分析。 双曲线型: τ ττ+=n T T 0)( (1) 式中0T 为最终水化热,τ为龄期,n 为由试验数据拟合确定的常数 指数Ⅰ型: )1()(0ττm e T T ??= (2)

相关主题
文本预览
相关文档 最新文档