当前位置:文档之家› 浅谈电子设备散热技术发展.docx

浅谈电子设备散热技术发展.docx

浅谈电子设备散热技术发展.docx
浅谈电子设备散热技术发展.docx

浅谈电子设备散热技术发展

1引言

当前,热失效已经成为电子设备的主要失效形式之一。据统计,电子设备的失效有55%是温度超过允许值而引起的[1]。根据推测,未来芯片的热流密度将与太阳表面的热流密度相当。相关研究表明高温对计算机芯片性能的影响机理主要是“电子迁移”现象。高强度的电流会使得电子具有较大的动量,而金属原子也受到电子流动的影响而产生移动,移动的金属原子就会在原本光滑的金属导线表面到处流窜,从而造成了其表面凹凸不平,对集成电路内部造成永久性的损害[2]。著名的10℃法则指出[3]:电子器件的可靠性与温度是密切相关的,当温度为70℃~80℃时,每上升10℃,其可靠性下降50%。因此,如果不能有效地解决电子器件的散热问题,对电子设备的整体性能的影响是非常巨大的。如何通过热设计使电子设备在所处的工作环境条件下以不超过稳定运行要求的最高温度运行,保证产品正常运行的安全性、长期运行的可靠性,成为了电子设备的可靠性设计中不可忽略的一个重要环节。本文以电子设备的散热技术为主要研究方向,介绍电子设备的散热设计原理以及散热技术,分析相关技术在国内外的发展情况,对电子设备未来的散热技术的发展趋势和发展需求进行了展望。

2散热技术现状

散热技术是采取有效措施来散发或传导电子设备热量的技术。热量一般通过三种方式进行传递:热传导、热传递以及热辐射[4]。热传导是指相互接触的物体各部分之间依靠分子、原子和自由电子等微

观粒子的热运动来传递热量的过程。热对流是指流体流经固体时,流体与固体表面之间的热量传递现象,它是依靠流体质点的移动进行热量传递的,与流体的流量情况密切相关。辐射传热是依靠电磁波辐射实现的热量传递过程,是一种非接触式传热,在真空中也能进行。通过散热设计以完成热量的传导,是电子设备设计的一个重要命题。以抗恶劣环境计算机的机箱散热为例,抗恶劣环境计算机组成模块通过金属盖板和锁紧装置把热量导至机箱内壁,再通过其他辅助散热方式将热量传导出去。抗恶劣环境计算机机箱级散热系统设计,基本采用可靠性高、成本低、不需要外部驱动装置的自然冷却法,因此散热方式主要为热传导和自然对流方式。抗恶劣环境计算机的整体散热主要是按如图1所示的热量传递路径来进行设计的[5]。从图1中可以看到,抗恶劣环境计算机的热量传递的路径主要有两条,一条是主路径,另一条是辅路径。散热途径主要通过主路径实现,主路径的热阻主线分布成串联状态。根据传导散热的原理,散热的效果取决于热量传递路径上的热阻,对路径上的热阻进行分析后可以发现,主路径中发热器件到盖板的传递热阻比重大,这个方面主要是与加工精度及导热间隙填料传导率有关,其中间隙填料传导系数低所占的比重比较大,另外电子元器件的设计日趋微型化使换热面积减小,热量密集度过高且不易传递也是重要的因素,因此可以通过提高加工精度和使用高传导系数的间隙填料的方法提高散热效果。但同时这也会直接造成生产成本的提高,因此在实际的设计过程中还要结合应用对成本的要求进行综合考虑[6]。当前,电子元件的集成度越来越大,微型化程度越来

越高,因此电子设备的散热技术也呈现出多元化的发展。从散热技术上看,电子元件散热技术可分为传统散热技术和新型散热技术两种。传统散热技术的特点是技术成熟,可靠性高,应用的范围广,但是散热效果比较普通。而新型散热技术则在散热效率上有了很大的提高,散热手段先进,散热效果好,但其技术出现时间较短,有些地方不够成熟,可靠性还无法得到完全的保证,使用范围目前还比较小。毫无疑问,后者更有利于提高元件的工作性能,但其可靠性可能低于前者,并且可能需要更多的能耗,经济成本普遍较高。因此在散热技术的选择上,需要综合考虑散热效果和经济成本问题。常见的电子设备散热技术主要包括空冷散热、液冷散热、热管散热,半导体散热等几种比较成熟、传统的散热方法。空冷散热技术主要分为自然对流散热和强迫对流散热两种方式,一般利用空气流动来散热,加大电子元件周围的空气流动,进而能够对功率型计算机进行散热处理。液冷散热技术的散热介质主要是以去离子水为主,充分利用水的循环流动来进行散热。液冷散热分为直接液冷散热(也即浸入式冷却)和间接液体散热。直接液体散热方式对元器件的绝缘性、封装、可靠性等要求较高。美国3M公司对浸入式冷却在元器件和燃料电池等领域进行了应用研究,[7]研究表明浸入式冷却比传统液体散热方式更具有优势。热管散热技术,1965年Cotter首次提出了较完整的热管理论,奠定了热管散热研究的理论基础,也成为热管性能分析和热管设计的依据。这种散热技术的原理主要是利用工质的相变来传导热量,在热导能力方面,它甚至比铜都还要高出几百倍,远远超过常规散热手段。由于热管技

术具有极高的导热性、优良的等温性、热流密度可变性、热流方向可逆性、恒温性、环境的适应性等优良特点,可以满足电子设备对散热装置紧凑、可靠、控制灵活、高散热效率、不需要维修等要求,因此热管散热技术在电子设备领域运用开来。半导体散热技术,又称之为热电制冷技术。该种散热方式是基于半导体Peltier效应诞生而来,在直流电通过不同种类半导体串联组成的电偶时,电偶两端会吸收、释放热量,这就可以达到冷却的目的。因其制冷片不需要任何制冷剂,可连续工作,没有污染源,没有旋转部件,不会产生回转效应,工作时没有震动、噪音、寿命长,安装容易,因此在电子设备散热设计中被引用。

3新型散热技术

传统散热方式经济性强,散热技术成熟、可靠、安全,但其散热能力相对较差。比如传统的气体强迫对流冷却,已经走到了它散热能力的极限[8],特别是在计算机运行大型软件时容易产生热尖峰现象从而导致死机的现象。且随着散热风扇功率的不断加大,噪声问题也愈显突出。当前,新型电子设备集合了高性能,微型化和集成化的三大特点,热流密度越来越大,常见的散热手段已经不能很好地满足电子设备的散热需求。因此,围绕着电子设备的散热问题也产生了许多新的观点和技术。

3.1液态金属散热技术

金属一般具有远高于非金属材料的热导率,因而在一些特殊场合具有重要用途。中国科学院理化技术研究所刘静研究员和周一欣研究

员于20XX年首次提出一种以低熔点金属或其合金作为流动工质的计算机芯片冷却方法[9]。这种散热技术主要是利用了低熔点的金属(如Na、K、Li)或其合金(如Pb-Bi)等来构成一种冷却介质,利用这种介质的高比热容、大热导率、低熔点、高沸点且具有流动性等特性来现实给计算机芯片散热的作用。常见的液态金属冷却剂有钠钾合金、铅铋合金和镓铟合金等。作为一种同时兼有高效导热和对流散热特性的技术,液态金属散热有望成为新一代比较理想的超高功率密度热传输技术之一,成为未来电子设备散热的主要使用方法之一。

3.2微槽群复合相变散热技术

微槽群复合相变散热技术是在毛细微槽群复合相变取热器内表面加工许多槽道,形成微槽群结构,利用微细尺度复合相变强化换热机理,实现在狭小空间内,对小体积的高热流密度及大功率器件(如LED灯)的高效率地取热。这种主要是利用了相变散热的散热技术,受到了国内外学者关注和研究。从理论上来看,水冷却微槽道散热能力可以达到1000W/cm2,其导热能力是铝基板的10000倍,导热系数大于106W/(m•℃),超导热能力强,同时具有体积小,重量轻,无功耗冷却,可靠性高,成本低等诸多的优点。从20世纪90年代开始,美国一些著名的大学开展了相关的实验,截止到目前,已经取得了突破性的研究进展。如国外的矩形和三角形微槽群相变散热系统已经被设计出,国内也出现了开放式的矩形微槽群相变散热系统,它们都已经在理论和实验方面取得了较大的发展。目前,有些学者还实现了将它与平板换热器的结合,而获得了更加优良的散热效果。

3.3纳米流体散热技术

纳米流体作为一种新型的高效、高传热性能的能量输运工质,可有效提高热系统的传热性能,提高热系统的高效低阻紧凑等性能指标,满足热系统高负荷的传热冷却要求,满足一些特殊条件(微尺度条件)下的强化传热要求,在强化传热领域具有十分广阔的应用前景和潜在的重大经济价值,被称之为未来的冷却散热技术。研究人员在开展纳米流体流动与强化传热的基础研究的同时,也在积极探索纳米流体技术的应用研究。例如,航天器热控工质的强化散热,纳米流体工质热管、纳米流体在微通道中的传热强化和纳米流体强化传质过程等。近年来,有许多科学研究工作者对纳米流体在微型管道中的传热性能进行了大量的研究,并取得一定的成果。最近,国外已经利用纳米流体强化传热技术研制出了微管道散热器高强度制冷系统,显示出纳米流体在在强化换热领域具有十分广阔的应用前景[10],并为解决计算机领域的热交换系统的高温元件冷却问题提供导向作用。

3.4冲击射流散热技术

冲击射流散热是一种极其有效的强化传热方法,由于其独特的换热作用,近年来受到工程界学术界特别重视,成为传热学的热门课题。Robinson[11]等对比研究了浸没射流和自由射流的换热特性。将冲击射流与相变传热这两种强化换热方式结合到一起,可以处理具有极高热流密度元器件的散热问题。MYUNGKS[12]等采用自由射流与沸腾换热相结合的方式解决热流密度为1127W/cm2的散热;JUNGCHULL[13]等研究发现这种换热方式热流密度可达2900W/cm2

电子设备的散热问题与新型冷却技术的应用分析

电子设备的散热问题与新型冷却技术的应用分析 摘要:文章结合当前现代电子设备应用面临的各类问题,综合分析常用的电子 散热冷却方法以及新型热管技术在电子冷却中的应用前景,旨在能够通过有效的 散热操作解决电子设备散热问题,提升电子设备性能。 关键词:电子设备;散热问题;新型冷却技术;应用分析 从当前各类电子设备的应用发展实际情况来看,电子及其相关产业的发展体 现出两个发展趋势,一个是追求小型化和集成化发展,另外一个则是追求高效率 和高运算发展。在电子设备的广泛应用发展下,一些单位容积范围内的电子元器 件发热量不断增加,电子设备的散热问题成为当前制约整个微电子工程发展的重 要问题。为此,需要相关人员结合实际积极思考和探究电子设备的散热策略,旨 在能够在实际应用操作中进一步增强电力电子产品的功能。 一、电子散热技术的发展 在社会经济和科技的快速发展下,电子散热技术也发生了深刻的变革。在最早,电子散热技术发展处于真空管时代,电子散热功率较大,电子器械的体积也 较大。之后,伴随晶管体的出现,使得电子散热功率、体积在一定程度上减小。 再之后,受CMOS技术应用的影响,电子设备的运行速度提升,散热技术的应用 发展面临前所未有的发展调整,在电子散热技术方面开始着重研究新型冷却技术。 二、热管的诞生和传热特性 在1942年的时候,美国学者提出在不用动力的情况下,利用介质的变化和毛细吸力能够在较小温差环境下传递大功率热量的构想。在上个世纪六十年代的时候,人们为了解决人造微卫星仪器温度控制问题,应用实践证明了热管这种装置 的导热性能是其他零部件导热性能的几千倍,在一时间,国家对热管的研究得到 了快速发展。从实际应用情况来看,热管的应用具有以下几方面的特点:第一, 热管的传热能力。从热管的传热能力来看,热管在进行传热操作的时候所应用的 材料数量和构件相对较少。第二,热管本身对热度和温度变化反应速度灵敏、快速,传热速度理想。第三,整个热管的表面温度控制均匀,能够在几千米以上进 行传热操作,且传热过程中温度降低较小。第四,整个热管的散热系统结构组成 灵活,热源和散热部分往往能够各自独立存在,在进行吸收散热的时候各个零部 件往往互不影响,使得电力电子产品的设计灵活多样。 近几年,热管技术开始在电器设备、电子元器件冷却、半导体冷却、大规模 集成电路板散热方面得到了广泛的应用,且取得了良好的效果,其中小型散热管、回路热管、脉动热管等体现出良好的发展潜力。 三、电子设备新型冷却方式和冷却介质的选择 (一)冷却方式的选择 电子设备新型冷却方式有自然风冷、强迫风冷、强迫液冷等三部分,其中, 自然风是一种最为理想的冷却方式,在进行冷却操作的时候往往不需要其他冷却 辅助设备的支持,但是冷却能力较差,仅仅适合在热流密度在每平方厘米0.04W 的电子元器件中进行冷却操作。强迫风冷冷却系统的构成则是较为简单,且开发 使用成本费用较低,但是受外形尺寸大小的影响,这类设备所能够为人们提供的 风量较小。液体冷却系统的构造则是较为复杂,设备运行所需要花费和消耗的成 本较高,但是在实际应有中所能够承受的热流密度较大,散热效率较高。 (二)冷却介质的选择 风冷电子设备运行所选择的冷却介质是空气,在选择这类设备的时候还需要

【CN110099548A】一种电子器件散热装置与方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910359479.0 (22)申请日 2019.04.30 (71)申请人 西安交通大学 地址 710049 陕西省西安市咸宁西路28号 (72)发明人 魏进家 袁博 张永海  (74)专利代理机构 西安通大专利代理有限责任 公司 61200 代理人 安彦彦 (51)Int.Cl. H05K 7/20(2006.01) (54)发明名称一种电子器件散热装置与方法(57)摘要一种电子器件散热装置与方法,包括设置在流动通道内的电子器件,电子器件布置在流动通道的底面上;流动通道顶面上开设有第一出口与第二出口,与第一出口相连的第一管道上设置有第一电磁阀,与第二出口相连的第二管道上设置有第二电磁阀,流动通道底面上开设第一入口和第二入口,与第一入口相连的第三管道上设置有第三电磁阀;与第二入口相连的第四管道上设置有第四电磁阀。由一台PLC控制四枚电磁阀两两一组进行交替的开启与闭合,通过往复流动的液体对电子器件表面气泡的进行持续高效冲击,促使气泡脱离加热表面,并离开流道,显著提升了换热系数和临界热流密度,达到高热流密度条件 下电子器件散热的需求。权利要求书1页 说明书4页 附图3页CN 110099548 A 2019.08.06 C N 110099548 A

权 利 要 求 书1/1页CN 110099548 A 1.一种电子器件散热装置,其特征在于,包括设置在流动通道(5)内的电子器件,电子器件布置在流动通道(5)的底面上;流动通道(5)顶面上开设有第一出口与第二出口,与第一出口相连的第一管道(13)上设置有第一电磁阀(1),与第二出口相连的第二管道(14)上设置有第二电磁阀(2),流动通道(5)底面上开设第一入口和第二入口,与第一入口相连的第三管道(15)上设置有第三电磁阀(7);与第二入口相连的第四管道(16)上设置有第四电磁阀(11)。 2.根据权利要求1所述的一种电子器件散热装置,其特征在于,流动通道(5)的横截面为矩形。 3.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一入口与第二入口之间的距离以及第一出口与第二出口之间的距离均大于电子器件的长度10mm。 4.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一电磁阀(1)、第二电磁阀(2)、第三电磁阀(7)与第四电磁阀(11)均与可编程逻辑控制器相连。 5.根据权利要求1所述的一种电子器件散热装置,其特征在于,第三电磁阀(7)与第四电磁阀(11)的入口均与流量计(6)相连。 6.根据权利要求5所述的一种电子器件散热装置,其特征在于,流量计(6)与离心泵(12)相连。 7.根据权利要求1所述的一种电子器件散热装置,其特征在于,电子器件连接有直流电源(10)。 8.根据权利要求1所述的一种电子器件散热装置,其特征在于,当第一电磁阀(1)与第四电磁阀(11)开启时,第二电磁阀(2)与第三电磁阀(7)闭合;当第二电磁阀(2)与第三电磁阀(7)开启时,第一电磁阀(1)与第四电磁阀(11)闭合。 9.一种基于权利要求1-8中任意一项所述散热装置的散热方法,其特征在于,通过可编程逻辑控制器相连控制第一电磁阀(1)与第四电磁阀(11)开启,第二电磁阀(2)与第三电磁阀(7)闭合,流动通道(5)内液体从右向左流过电子器件表面,进行流动沸腾换热;在经过一个动作周期后,第二电磁阀(2)与第三电磁阀(7)开启,第一电磁阀(1)与第四电磁阀(11)闭合,液体反向,从左向右流过电子器件表面;如此反复切换电磁阀工作状态,实现液体的高频往复流动,从而实现对电子器件的散热。 10.一种根据权利要求(9)所述的散热方法,其特征在于,一个动作周期为50ms。 2

一、信息与信息技术的概念

课题:信息与信息技术 教学要求: 1、使学生了解信息和信息技术的基本概念。 2、了解信息技术的发展变化及其对现代社会的影响。 教学的重点和难点 1、理解信息和信息技术的概念。 2、了解信息技术的快速发展、强化信息意识。 教学器材:投影仪、演示用计算机。 授课地点:电教室 教学过程 1、什么是信息? 信息在我们的学习与生活中无处不在。信息已经和物质、能量一样,成为人类社会赖以生存和发展的重要资源。物质资源为人们提供生产和生活所需要的必要材料,能量资源为人们提供各种形式的动力。信息则为人类的学习和各个领域的生产提供了素材和知识来源。因此,物质、能量和信息是构成世界的三大要素。 所谓信息,通常是指对人们有用的消息。 2、什么是信息技术 一般说来,信息技术是指获取信息、处理信息、存储信息、传输信息的技术。广义地说,凡是与信息的获取、加工、存储、传递和利用等有关的技术都可以称为信息技术,它包括微电子技术、感测技术、计算机技术、通信技术等。

人们获取信息的途径有很多,可以直接从生产、生活、科研活动中收集和获取信息,也可以从网络、电视、广播、报刊杂志等获取间接的信息。其中计算机网络上收集和获取信息是极其重要的一条途径。 3、信息技术的发展自从有了人类就有信息技术,人类发展的历史中已经历了五次信息技术的革命: 第一次信息技术革命是语言的使用; 第二次信息技术革命是文字的使用; 第三次信息技术革命是印刷技术的应用; 第四次信息技术革命是电报、电话、广播、电视的发明和普及应用; 第五次信息技术革命是计算机的普及应用及计算机与现代通信技术的结合。 4、讨论思考 (1)什么是信息技术? (2)人们获取信息的途径主要有那些途径?

电子设备常用散热方式的散热能力分析

电力电子设备常用散热方式的散热能力分析1 引言 随着电子组装技术的不断发展,电子设备的体积趋于微型化,系统趋于复杂化,高热密度成了一股不可抗拒的发展趋势。为了适应高热密度的需求,风扇、散热器等传统的散热手段不断推陈出新,新颖高效的散热方法层出不穷。在众多散热方式面前,区分各种散热方式的散热能力,从而选择既经济又可靠的散热方法成为设计人员极为关注的问题。本文针对风冷和水冷两种常用的散热方式,综合国内外文献中对这两种散热方式的研究结果,总结出这两种散热方式的散热能力,为热设计人员选择经济合理的散热方式提供参考依据。 2 各种传热方式的传热能力分析 各种传热方式传热系数的大致范围如附表所示[1]。对空气而言,自然风冷时的传热系数是很低的,最大为10w/(m2k),如果散热器表面与空气的温差为50℃,每平方厘米散热面积上空气带走的热量最多为0.05w。传热能力最强的传热方式是具有相变的换热过程,水的相变过程换热系数的量级为103~104。热管的传热能力之所以很大,就是因为其蒸发段和冷凝段的传热过程都是相变传热。 附表各种传热方式的传热系数

文献[2]给出了根据散热体积和热阻选择散热方式的参考依据,如图1所示。例如对于热阻要求为0.01℃/w的散热方式,如果体积限制在1000 in3(1in3=16.4 cm3),可以选择风冷散热方式,但必须配备高效的风冷散热器;而如果体积限制在10 in3,只能选择水冷的散热方式。 图1 散热体积与热阻的大致关系 3 风冷 风冷散热方式成本低,可靠性高,但由于散热能力小,只适用于散热功率小而散热空间大的情况下。目前风冷散热器的研究热点是将热管与散热器翅片集成在一起,利用热管的高传热能力,将热量均匀地传输到翅片表面,提高翅片表面温度的均匀性,进而提高其散热效率。 空气强制对流冷却方式是目前电力电子元件常用的散热方式,其普通结构是散热器加风扇的形式。该结构虽然实施方便,成本较低,但其散热能力有限。以int

第一章信息与信息技术

第一章信息与信息技术 一教学目标: 具体要求: 1.知识方面:理解信息的含义及特征;理解信息技术及计算机与信息技术的关系;了解当今信息技术发展的情况。 2.能力方面:通过本课的教学,培养学生进行辩证逻辑思维能力、提高学生理论联系实际的分析和解决问题的能力。 二教学重点:信息及信息技术的理论和实际。 三教学难点:信息技术的发展中涉及到的有关概念及其具体的应用。 四教学准备:该课在多媒体教室上. 五教学方法:阅读法讲授法提问法讨论法比喻法 六教学安排:一课时 七教学过程: 第一章:信息与信息技术(板书) 第一节:信息与信息技术 在初中我们学了有关信息技术的知识从现在起我们要继续学习<信息技术>这门课请看(蓝底白字投影) (教师)从这我们可以看出信息技术教育是多么的重要。世纪之交,千年更迭,人类进入了以知识经济和信息技术为主要特征的新的时代,所以我们一定要学好《信息技术》这门课。 哪我们看一下今天所要讲的内容:(打出投影片,此投影内容的说明如下)谈到信息技术那我们就要谈“信息” 一:什么是信息? (点击主链接图中的相应超链接,则此片蓝底从上到下打开)

1、什么是信息? A:共享信息的人越多,信息的价值就越大 比如我有一个科技成果,它是以文字或语言的方式表示的,是一条信息,知道的人越多它的价值就越大。它能够产生巨大的社会或经济效益。信息是一种资源。物质、能量和信息是共同构成世界的三大要素。但信息与物质和能源不同的是物质和能源使用后减少,信息使用以后却不会减少,共享信息的人越多,信息的价值就越大,这就是信息的共享性。 B:信息无处不在无时不有 大家谁能举出一个信息不存在的例子(设问)。不论你说不说话,睡不睡觉,你都给别人一个信息。由于宇宙中没有绝对静止的事物,任何事物都在不断地发展变化中。信息是事物运的状态和方式,因此,信息是普遍存在的,也是不断发展变化的。 C:信息也会过时 (提问)大家谁能举出一个例子来说明这个问题。 总结:信息的时效性要求及时获得和利用信息,这样才能体现信息的价值。 D:信息离不开载体 信息是事物运动的状态和方式,不是事物本身,因此,它不能独立存在,必须借助某种符号和物体才能表现出来,而且同一信息还可以借助不同的载体来表现。比如新闻通过广播、电视、报纸等来表现。信息离开载体就不能存储和传递。掌握了信息的定义和特征,对信息进行观察、了解和利用这就是信息活动,它与我们的是日常生活是紧密联系的。 二:信息活动(板书) 信息收集-------------信息加工---------------信息存储--------------------信息传递(板书) (点击主链接图中的相应超链接,则此片蓝底以百叶窗形式打开) 在此可以让一位同学上来指出计算机的各个部位。(检测一下学生的掌握情况)

电子产品散热技术最新发展(上)

堇查壁蔓ij三翌隧阉固电子产品散热技术最新发展(上) 最近几年LSI、数码相机、移 动电话、笔记本电脑等电子产品. 不断朝高密度封装与多功能化方向发展.散热问题成为非常棘手的课题。LSI等电子组件若未作妥善的散热处理.不但无法发挥LSI的性能.严重时甚至会造成机器内部的热量暴增等。然而目前不论是LSI组件厂商.或是下游的电子产品系统整合业者.对散热问题大多处于摸索不知所措的状态.有鉴于此.介绍一下国外各大公司散热对策的实际经验.深入探索散热技术今后的发展动向.是很有必要的=.散热技术的变迁 如图1所示由于“漏电”问题使得LSI的散热对策是系统整合的责任.这种传统观念正面临极大的变革。此处所谓的漏电是指晶体管(仃彻sjs【or)的source与drain之间.施加于leal(电流的电源电压大晓而言。理论上leak电力会随着温度上升不断增加.如果未有效抑制热量意味着1eal【电力会引发更多的热量.造成1eak电力持续上升恶性循环后果。 以Intel新推出的微处理器“ni唧process)而言,它的消费电力之中60%~70%是属于1eak电力+一般认为未来1~2年leak电力仍然扮演支配性角色。 图1电子组件散热对策的变化趋势 高弘毅 在此同时系统整合业者.由于 单位体积的热最不断膨胀.使 得如何将机器内部的热量排除 更是雪上加霜.因此系统整合 业者转因而要求LsI组件厂商, 提供有效的散热对策参考模式, 事实上Imel已经察觉事态的严重 性,因此推出新型微处理器的 同时.还提供下游系统整合业 者有关LsI散热设计的model case.因此未来其他电子组件厂 商未来势必跟进。 如上所述LSI等电子组件的散 热对策.成为电子业界高度嘱目 焦点.主要原因是电子产品性能 快速提升所造威。以往计算机与 数字家电业者大多忽视漏电电力 问题的存在.甚至采取增加电力 的手法补偿漏电电力造成的损失, H…1U¨o『¨Ⅸ■} ◆以往:委由系统业者自行处理 今后:组件厂商夸力支持 可再啄■面i而n22.  万方数据

9电子产品散热技术最新发展

散热设计(九)电子产品散热技术最新发展晨怡热管https://www.doczj.com/doc/b46693339.html,/news/42/2006-10-2 1:29:47 日期:2005-11-6 23:45:04 来源:电子设计资源网查看:[大中小] 作者:刘君恺热度: 最近几年包含LSI、数字相机、行动电话、笔记型计算机等电子产品,不断朝高密度封装与多功能化方向发展,使得散热问题成为非常棘手的课题,其中又以LSI等电子组件若未作妥善的散热对策,不但无法发挥LSI的性能,严重时甚至会造成机器内部的热量暴增等后果。然而目前不论是LSI组件厂商,或是下游的电子产品系统整合业者,对散热问题大多处于摸索不知所措的状态,有鉴于此本文将介绍国外各大公司,针对电子产品实施的散热对策实际经验,同时还要深入探索散热技术今后的发展动向。 散热技术的变迁 如图1所示由于「漏电」问题使得LSI的散热对策是系统整合的责任,这种传统观念正面临极大的变革。此处所谓的漏电是指晶体管(transistor)的source与drain之间,施加于leak 电流的电源电压大晓而言。理论上leak电力会随着温度上升不断增加,如果未有效抑制热量意味着leak电力会引发更多的热量,造成leak电力持续上升恶性循环后果。 以Intel新推出的微处理器(micro process)而言,它的消费电力之中60%~70%是属于leak电力,一般认为未来1~2年leak电力仍然扮演支配性角色。在此同时系统整合业者,由于单位体积的热量不断膨胀,使得如何将机器内部的热量排除更是雪上加霜,因此系统整合业者转因而要求LSI组件厂商,提供有效的散热对策参考模式,事实上Intel已经察觉事态的严重性,因此推出新型微处理器的同时,还提供下游系统整合业者有关LSI散热设计的model case,因此未来其它电子组件厂商未来势必跟进。

电子产品散热技术最新发展(下)

电子产品散热技术最新发展(下) .38,僵虿丽Fi蕊面 日本IBM基于可靠性优先等考 虑仍然采用空冷方式.它是利用 小型heatpipe与冷却风扇的组合, 将微处理器产生的热量排至外部。 该公司在2003年4月推出动作频率 为3,06GHz微处理器的膝上型计算 机,就是采用冷却性能比heatpipe 更高的vapor与冷却风扇构成的散 热器,这种新型散热器可将消费电 力为84W的微处理器的热量排至机 体外部(图11)。IBM未采用水冷 方式的理由有两项,第一是可靠 性问题,由于p砌p等组件数量增 高弘毅 加,不但可靠性令人质疑.而且还 会成本上升等后果:第二是采用水 冷方式整体设计自由度相对受到限 制,因为水冷模块必需附设热交换 器,为了获得最佳化散热效率,反 而造成其它单元的1avout受到极大 限制。有关冷却风扇的噪音,IBM 认为冷却风扇的大型化可以降低转 速,进而减缓旋转造成的噪音。不 过该公司也承认未来必需开发空冷 以外的新技术。 随着数码摄影机的CCD像素 增加与记录媒体的进步,轻巧小型  万方数据

已经成为无法避免的潮流趋势。类似上述数字产品属于可携式精密电子设备,所以防尘、防水的密封性,以及防止记录时噪音混入都是必备特性,换言之未来无冷却风扇的散热设计,势必成为市场主流。 日立公司针对DVD读写头的散热设计进行整体检讨,采用全新组件控制温度,以此稳定雷射的输出.使读写头的温度能抑制于70℃以下。该公司的散热对策可分为三大项。分别是: (1)将基板产生的热量扩散至外筐散热。 (2)利用遮屏将高发热基板与读写头隔离。 (3)将基板与基板物理性距离分隔。 有关第(1)项,将热量扩散至外筐散热,具体方法是使用铜质板材外筐。 有关第(2)项,隔离高发热基板与读写,具体方法是使用葡锈钢遮屏,以此减少热量传导至读写头。 第(1)项述及的铜质板材外筐厚度与形状,根据日立表示经过最佳化模拟分析,成本可降至石墨膜片的l/5以下(图12)。 ⅣC新推出的高像素数码摄影机,由于消费电力从以往的2~3W暴增至9.7W,加上摄影机使用MPEG压缩/解压缩单芯片LSI,传统铜质外筐显然无法有效达成散热要求,因此改采小型heatpipe(图13),根据实验结果小型heatpipe可使上述LSI的工作温度降至66℃以下。 SONY的211万像素数码摄影机,基于小型化与CcD取像组件散热等考虑,同样是使用小型heatpipe,将CCD的热量传至铝质舶me,进而获得铜板无法比拟的 热传导效率(图14)。 有关平面显示器(FPD:Flat PanelDisplay)的散热设计,不论 是液晶电视与等离子电视.目前大 多延用传统散热方法,不过内建 图13数码摄影机的内部散热结 构(JVC) tuner基板,亦即所谓的tLmer一体 型FPDTV,未来若要达成无冷却 风扇目标,tuIler基板上的组件散热 对策就非常重要。SHARP的液晶 电视,设计阶段便非常积极利用热 模拟分析,仔细评估主要组件的实 际动作温度,并检讨各电路板冷却 设计,试图以此手法事先防范散热 问题(图15)。根据SHARP表示经 过散热模拟分析的tuIler一体型FPD TV,两个冷却风扇可减少一个. 散热效果则完全相同。PIONEER 颞琢i了菊石硇3璺.  万 方数据

第一章 信息与信息技术 习题练习

第一章信息与信息技术 一、信息及其特征 1.1.1丰富多彩的信息:信息是事物的运动状态及其状态变化的方式;物质存在的一种方 式、状态或运动状态,也是事物的一种普遍属性,一般指数据、消息中所包含的意义。 信息是用语言、文字、数字、符号、图像、声音、情景、表情、状态等方式传递的内容。 1.1.2信息的一般特征 (1)载体依附性:信息不能独立存在,需要依附于一定的载体,而且同一个信息可以依附于不同的载体。比如,交通信息既可以通过信号灯显示,也可以通过交通警察的手势来传递;文字信息既可以印刷在书本上,也可以利用计算机来存储和浏览。可见,信息可以转换成不同的载体形式而被存储下来或传播出去。因此,信息的载体依附性也同时使信息具有可存储、可传递和可转换等特点。 (2)价值性:信息是有价值的,它并不能给人们直接带来物质上的满足,其价值主要体现在两方面:一方面,可以满足人们精神领域的需求,如学习材料、娱乐信息等;另一方面,可以促进物质、能量的生产和使用,如利用全球定位系统GPS获取准确的方位信息实现导弹的精确制导。另外,信息又是可以增值的。在加工与使用信息的过程中,经过选择、重组、分析、统计以及其它方式的处理,可以获得更重要的信息,使原有信息增值。招聘信息、油价信息、高考信息等等 例子:朝鲜战争前,兰德公司向美国国防部推销一份秘密报告,其主题词只有7个字,要价150万美元。美国国防部认为是敲诈,不予理睬,结果“在错误的时间,在错误的地点,与错误的敌人进行了一场错误的战争”。战争结束之后,国防部才想起那份报告,要来一看,追悔莫及。 问题:那7个字是什么? 中国将出兵朝鲜 (3)实效性:信息往往反映的只是事物某一特定时刻的状态,会随着时间的推移而变化,比如,交通信息、股市信息、天气预报、会议通知、求职报名、市场动态等都在不断地变化。 (4)共享性:信息可以被多个信息接收者接收并且多次使用,而且一般情况下,信息共享不会造成信息源信息的丢失,也不会改变信息的内容,即信息可以无损使用。 (5)不完全性。如盲人摸象

散热器高效散热技术及应用研究阚宏伟

散热器高效散热技术及应用研究 摘要:随着电子技术的发展,使得电子器件的热流密度不断增加,这样势必对电子器有更高的散热要求,因此有效地解决散热问题已成为电子设备必须解决的关键技术。针对现代电子设备所面临的散热问题,就散热基本原理以及各种主流散热技术,包括自然对流散、强制风冷散热、液体冷却、热管、微槽道冷却、集成热路、热电致冷等常用的电子设备散热技术及某些前沿的研究现状、发展趋势及存在问题分别予以阐述。 关键词:热传递自然对流强制风冷热管散热热电制冷 引言:据统计,55%的电子设备失效是由温度过高引起的。可见,电子设备的主要故障形式为过热损坏,因此对电子设备进行有效的散热是提高产品可靠性的关键。电子设备的主要散热技术电子设备的高效散热问题与传热学(包括热传导、对流和热辐射)和流体力学(包括质量、动量和能量守恒三大定律)等原理的应用密切相关。 一:热传递主要有三种方式: 传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。 热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。 对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。 具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。

电子器件散热技术现状及进展

电子器件散热技术现状及进展 随着电子及通讯技术的迅速发展,高性能芯片和集成电路的使用越来越广泛。电子器件芯片的功率不断增大,而体积却逐渐缩小,并且大多数电子芯片 的待机发热量低而运行时发热量大,瞬间温升快。高温会对电子器件的性能产 生有害的影响,据统计电子设备的失效有55 %是温度超过规定值引起的,电子器件散热技术越来越成为电子设备开发、研制中非常关键的技术。电子器件散 热的目的是对电子设备的运行温度进行控制(或称热控制),以保证其工作的稳 定性和可靠性,这其中涉及了与传热有关的散热或冷却方式、材料等多方面内容,目前主要有空气冷却技术和液体冷却技术两大类。 1 空气冷却技术 空气冷却技术是目前应用最广泛的电子冷却技术,包括自然对流空气冷却技 术和强制对流空气冷却技术。自然对流空气冷却技术主要应用于体积发热功率 较小的电子器件,利用设备中各个元器件的空隙以及机壳的热传导、对流和辐 射来达到冷却目的。 自然对流依赖于流体的密度变化,所要求的驱动力不大,因此在流动路径中 容易受到障碍和阻力的影响而降低流体的流量和冷却速率。对于体积发热功率 较大的电子器件,如单一器件功耗达到7 W(15~25 W-cm-2),板级(印制电路板) 功耗超过300 W(2~3W-cm-2)时,一般则采用强制对流空气冷却技术。强制散热或冷却方法主要是借助于风扇等设备强迫电子器件周边的空气流动,从而将 器件散发出的热量带走,这是一种操作简便、收效明显的散热方法。提高这种 强迫对流传热能力的方法主要有增大散热面积(散热片)以及提高散热表面的强 迫对流传热系数(紊流器、喷射冲击、静电作用)。对一些较大功率的电子器件,可以根据航空技术中的扰流方法,通过在现有型材散热器中增加小片扰流片,

基于快速热响应相变材料的电子器件散热技术

华南理工大学学报(自然科学版) 第35卷第7期Journal of Sou th C hina U n iversity of Technology V ol .35 N o .7 2007年7月 (N atu ral Science Edition )July 2007 文章编号:10002565X (2007)0720052205    收稿日期:2006209226 3基金项目:广东省自然科学基金资助项目(05006551) 作者简介:尹辉斌(19802),男,博士生,主要从事传热强化与数值模拟研究.E 2mail:peppy222@https://www.doczj.com/doc/b46693339.html, 通讯作者:高学农,副教授,E 2mail:cexngao@scut .edu .cn 基于快速热响应相变材料的电子器件散热技术 3 尹辉斌1  高学农1  丁 静2  张正国 1 (1.华南理工大学传热强化与过程节能教育部重点实验室,广东广州510640;2.中山大学工学院,广东广州510006) 摘 要:以石蜡为相变材料,利用膨胀石墨的高导热系数和多孔吸附特性,制备出高导热系数的快速热响应复合相变材料,其导热系数可达41676W /(m ?K ).将该材料应用于电子器件散热装置,在不同的发热功率条件下,储热材料散热实验系统的表观传热系数是传统散热系统的1136~2198倍,其散热效果明显优于传统散热系统,可有效提高电子元器件抗高负荷热冲击的能力,保证电子电器设备运行的可靠性和稳定性.关键词:相变材料;热性能;电子器件;散热 中图分类号:TK124;T Q 021.3 文献标识码:A 随着电子及通讯技术的迅速发展,高性能芯片和大规模及超大规模集成电路的使用越来越广泛.电子器件芯片的集成度、封装密度以及工作频率不断提高,而体积却逐渐缩小(例如,微处理器的特征尺寸在1990至2000年内从0135μm 减小到0118μm ),这些都使得芯片的热流密度迅速升高 [1] .由于高温会 对电子元器件的性能产生有害的影响,如过高的温度会危及半导体的结点,损伤电路的连接界面,增加导体的阻值和形成机械应力损伤 [2] .随着温度的升 高,其失效率呈指数增长趋势,甚至有的器件在环境温度每升高10℃,失效率增大1倍以上,被称为10℃法则.据统计,电子设备的失效率有55%是温度超过规定的值引起的 [3] .同时,大多电子芯片的待机 发热量低而运行时发热量大,使瞬间温升快.因此抗热冲击和散热问题已成为芯片技术发展的瓶颈.相变储热材料由于具有蓄能密度大、蓄放热过程近似等温、过程易控制等优点,备受研究者的关注,而提高其热性能更成为了研究热点 [426] .近年来,将相变 储热材料应用于电子元件的散热技术在国外已受到 广泛重视,并在航空、航天和微电子等高科技系统及军事装备中 [7211] 得到一定应用. 将快速热响应复合相变储热材料应用于电子器件的散热器中,针对大多数电子器件满负荷工作时间短而待机时间长的特点,对电子器件及芯片因散热而引起的表面温度升高可起到移峰填谷的作用.当电子器件满负荷工作时可将部分热量储存起来,而在其待机发热量低时再释放出储存的热量,这样可有效提高电子器件抗高负荷热冲击的能力,保证电子电器设备运行的可靠性和稳定性,同时在低温环境中电子器件可不经过预热便能正常工作.复合相变储热材料的散热技术可广泛应用于各类电子产品中,具有良好的应用前景. 1 复合相变材料的热性能 与传统的散热方式不同,对于基于快速热响应储热材料的散热技术除要求相变材料的储热密度大之外,还要求材料具有较高的导热系数,传热速率快.为解决传统相变材料高储热密度和低导热系数之间的矛盾,根据电子元件散热技术领域对快速热响应相变储热材料的性能(如密度、相变温度、储热密度)要求,实验选定导热系数高且密度低的膨胀石墨作为无机支撑材料,石蜡作为有机相变材料,利用石蜡与膨胀石墨间的固、液表面张力,孔隙结构的

电子设备热设计散热技术与方法选择数据分析

龙源期刊网 https://www.doczj.com/doc/b46693339.html, 电子设备热设计散热技术与方法选择数据分析 作者:唐田 来源:《科学与信息化》2016年第31期 摘要热设计关系到电子设备是否能安全可靠的运行。本论文根据热力学散热理论,从散热方法的选择以及基板上器件的布局等方面说明了电子设备结构设计中热设计的方法及重要性,介绍了最新的散热技术与方法。 关键词电子设备;可靠;散热 1 概述 近些年,微电子技术突飞猛进,多功能、高密度封装、高速运转、体积小等特点的器件在电子设备中应该越来越广泛,引起了相应电子设备的热流密度集中放大。要保证电子设备可靠、稳定工作,必须对整个设备有良好的热设计,提高散热能力和速度,从而提高产品的可靠性和安全性。电子设备的热设计是指通过元器件选择、电路设计、结构设计和布局来减少温度对产品可靠性的影响,使设备能在较宽的温度范围内工作。热设计的目的是:保证电器性能稳定,避免或减小电参数的温度漂移;降低元器件的基本失效率,提高设备的平均无故障工作时间;减缓机械零部件氧化、老化、疲劳以及磨损等进程,从而延长电子设备的使用寿命[1]。 2 热设计的基础 电子设备的热设计应根据所要求的设备可靠性和分配给每个器件的失效率,利用元器件应力分析预计法,确定元器件的最高允许工作温度和功耗,使热设计满足可靠性的要求;另外,充分考虑设备预期工作的热环境,包括环境温度和压力的极限值、变化率、太阳或周围其他物体的辐射热载荷、可利用的热沉状况以及冷却剂的种类、温度、压力和允许的压降等。最后,热设计还应符合相关的标准和规范规定的要求[2]。 3 冷却技术应用的条件 目前冷却方法分为直接冷却、间接冷却(即把内部的热源导到散热片上)、蒸发冷却、自然冷却(包括导热、自然对流、辐射换热)、热管传热、强迫冷却(强迫风冷和强迫液体冷却)等[3]。 3.1 当温升条件为40℃时,不同冷却方法带来的热流密度和体积功率密度值如图1和图2所示。 3.2 温升要求不同的各类设备冷却,可参照热流密度和温升的要求(图3)进行选择。

浅谈电子设备散热技术发展.docx

浅谈电子设备散热技术发展 1引言 当前,热失效已经成为电子设备的主要失效形式之一。据统计,电子设备的失效有55%是温度超过允许值而引起的[1]。根据推测,未来芯片的热流密度将与太阳表面的热流密度相当。相关研究表明高温对计算机芯片性能的影响机理主要是“电子迁移”现象。高强度的电流会使得电子具有较大的动量,而金属原子也受到电子流动的影响而产生移动,移动的金属原子就会在原本光滑的金属导线表面到处流窜,从而造成了其表面凹凸不平,对集成电路内部造成永久性的损害[2]。著名的10℃法则指出[3]:电子器件的可靠性与温度是密切相关的,当温度为70℃~80℃时,每上升10℃,其可靠性下降50%。因此,如果不能有效地解决电子器件的散热问题,对电子设备的整体性能的影响是非常巨大的。如何通过热设计使电子设备在所处的工作环境条件下以不超过稳定运行要求的最高温度运行,保证产品正常运行的安全性、长期运行的可靠性,成为了电子设备的可靠性设计中不可忽略的一个重要环节。本文以电子设备的散热技术为主要研究方向,介绍电子设备的散热设计原理以及散热技术,分析相关技术在国内外的发展情况,对电子设备未来的散热技术的发展趋势和发展需求进行了展望。 2散热技术现状 散热技术是采取有效措施来散发或传导电子设备热量的技术。热量一般通过三种方式进行传递:热传导、热传递以及热辐射[4]。热传导是指相互接触的物体各部分之间依靠分子、原子和自由电子等微

观粒子的热运动来传递热量的过程。热对流是指流体流经固体时,流体与固体表面之间的热量传递现象,它是依靠流体质点的移动进行热量传递的,与流体的流量情况密切相关。辐射传热是依靠电磁波辐射实现的热量传递过程,是一种非接触式传热,在真空中也能进行。通过散热设计以完成热量的传导,是电子设备设计的一个重要命题。以抗恶劣环境计算机的机箱散热为例,抗恶劣环境计算机组成模块通过金属盖板和锁紧装置把热量导至机箱内壁,再通过其他辅助散热方式将热量传导出去。抗恶劣环境计算机机箱级散热系统设计,基本采用可靠性高、成本低、不需要外部驱动装置的自然冷却法,因此散热方式主要为热传导和自然对流方式。抗恶劣环境计算机的整体散热主要是按如图1所示的热量传递路径来进行设计的[5]。从图1中可以看到,抗恶劣环境计算机的热量传递的路径主要有两条,一条是主路径,另一条是辅路径。散热途径主要通过主路径实现,主路径的热阻主线分布成串联状态。根据传导散热的原理,散热的效果取决于热量传递路径上的热阻,对路径上的热阻进行分析后可以发现,主路径中发热器件到盖板的传递热阻比重大,这个方面主要是与加工精度及导热间隙填料传导率有关,其中间隙填料传导系数低所占的比重比较大,另外电子元器件的设计日趋微型化使换热面积减小,热量密集度过高且不易传递也是重要的因素,因此可以通过提高加工精度和使用高传导系数的间隙填料的方法提高散热效果。但同时这也会直接造成生产成本的提高,因此在实际的设计过程中还要结合应用对成本的要求进行综合考虑[6]。当前,电子元件的集成度越来越大,微型化程度越来

小论文-PCB散热技术及发展

PCB散热技术及发展 摘要:现代功率电子设备功耗越来越大,高度集成后体积越来越小,对散热的要求也越来越高。电子散热关系到电子设备的可靠性和寿命,是影响当今电子工业发展的一个瓶颈。伴随着电子产业高性能、微型化、集成化的三大发展趋势,散热问题越来越突出。尤其是对于热负荷敏感度较高的CPU 而言,热量在芯片处的累积将严重影响其稳定性和使用寿命。本文章介绍了目前常用于功率电子设备的自然冷却、强迫通风冷却、液体冷却、热管技术、微管道散热器、芯片冷却技术等散热技术,阐述了各种散热技术的原理、特点,并介绍了最新的国内外学者的研究成果。 关键字:风冷;水冷;热管技术; 微通道;芯片冷却技术;制冷芯片 Abstract:Modern power electronics the power consumption increases, smaller and smaller height after integration, heat dissipation requirements are increasingly high.Electronic cooling related to the reliability and life of electronic equipment, is affecting the development of today's electronics industry, a bottleneck.With the high performance of the electronics industry, miniaturization, integration of the three major trends, cooling issues become more and more prominent.Especially for CPUs with high heat load sensitivity, the accumulation of heat at the chip will seriously affect its stability and service life. This article describes the currently used in power electronic equipment, natural cooling, forced air cooling, liquid cooling, heat pipe technology, micro-pipe radiators, chip cooling technology and other cooling technology, described a variety of cooling technology principles, features, and introduced The latest domestic and foreign scholars research results. Key word:Air-cooled; water-cooled; heat pipe technology; microchannel; chip cooling technology 1 引言 PCB产业大致与晶体管的诞生时期相同,并且与半导体产业并驾齐驱的迅速成长。PCB 的构造或者制造工艺取得了许多发展,引领PCB发展的是IC的迅速技术进步和低价格化,尤其是电子设备的巨大市场需求。PCB的首要任务是从IC引出的高密度线路。由于PCB的技术开发适应了逐年进步的IC高集成化,所以PCB正在向着线路的高密度化和降低成本的方向发展。随之展现出了一些其他问题,比如由于现代功率电子设备正在迅速地向高集成度、

电子器件温度控制技术

电子器件温度控制技术 王文李庆友 (上海交通大学制冷与低温工程研究所上海 200030) wenwang@https://www.doczj.com/doc/b46693339.html, 摘要:随着电子器件的高频、高速以及集成电路技术的迅速发展和MEMS(Micro Electronical Mechanical System)技术的进步,电子元器件的总功率密度大幅度增长而物理尺寸却越来越小,热流密度也随之增加,所以高温的温度环境势必会影响电子元器件的性能,这就要求对其进行更加高效的热控制。因此,有效解决电子元器件的散热问题已成为当前电子元器件和电子设备制造的关键技术。本文针对电子元器件的散热与冷却问题,综述了当前应用研究中不同的散热和冷却方法,并进行了适当的分析。 关键词:散热,冷却,电子器件 1、引言 近几年来特别是微电子机械(MEMS)技术发展十分迅猛,并逐渐拓展于多个应用场合,微小型化已成为当代科技发展的重要方向之一。微型制冷技术既依赖于MEMS技术的发展,也同时是MEMS技术发展的需要。众所周知,集成电路技术的快速发展,导致各种电子器件和产品的体积越来越小,集成器件周围的热流密度越来越大,以计算机CPU为例,其运行过程中产生的热流密度已经达到60-100W/cm2,半导体激光器中甚至达到103 W/cm2数量级。另 ?水平上每增加一方面,电子器件工作的可靠性对温度却十分敏感,器件温度在70-80C ?,可靠性就会下降5%。较高的温度水平已日益成为制约电子器件性能的瓶颈,而高效1C 电子器件的温度控制目前已经渐渐成为一个研究热点。 电子器件的温度控制(或称热控制)的目的是保证其工作的稳定性和可靠性,其中涉及的传热学、流体力学、材料等多个学科背景。从实施的角度看,电子器件的温度控制一般可分为被动控制和主动控制。 2、被动温控技术 被动控制指利用高导热材料作为热桥与热沉或热源形成一个传热通道,从而使热桥另一端的器件维持在某个设计温度范围内,大多数情况下这里的热沉是依靠自然对流或辐射换热向环境散热的金属框架、具有专门的散热片等;或者根据对象的需要,在局部设计绝热结构以隔绝温度敏感元件与一些热源的主要传递途径;也有根据需要在一些局部设计相变材料作为储能和释能的单元维持温控需要的能量。 2.1 自然散热或冷却方法 自然散热或冷却方法是指不使用任何外部辅助能量的情况下,实现局部发热器件向周围环境散热达到温度控制的目的,这其中通常都包含了导热、对流和辐射三种主要传热方式,其中对流以自然对流方式为主,自然散热或冷却往往适用对温度控制要求不高、器件发热的热流密度不大的低功耗器件和部件,以及密封或密集组装的器件不宜(或不需要)采用其它冷却技术的情况下。有时,也因地制宜利用被控部件自身特点增强与邻近热沉的导热或辐射、通过结构设计强化自然对流,在一定程度上提高系统向环境散热能力。 2.2 辐射换热 在空气稀薄、环境温度较高和较低温度的场合辐射换热则在其中占较大比重。辐射换热的换热量主要与换热体之间的温度水平以及温度差、换热体表面吸收率和发射率、换热体之间的相对位臵关系等。以航天领域电子器件温度控制为例,由于带有电子器件的物体大多处于空气稀薄环境,辐射换热是其主要手段,在热控设计时,需要考虑辐射换热面的表面涂层、

相关主题
文本预览
相关文档 最新文档