当前位置:文档之家› 高效气液分离技术在克拉2气田的应用及评价

高效气液分离技术在克拉2气田的应用及评价

高效气液分离技术在克拉2气田的应用及评价
高效气液分离技术在克拉2气田的应用及评价

高效气液分离技术在克拉

2气田的应用及评价

X

王金山,贺江波,王亚军,唐洪军,赵 鹏,罗梓洲

(中国石油塔里木油田公司,新疆库尔勒 841000)

摘 要:气液分离技术作为天然气处理工艺中的关键技术,分离效率的高低不仅可能造成后续设备工作异常,而且会影响到天然气品质。由于克拉2气田原来选用的气液分离设备内构件简单,效率低,造成了装置运行出现了一些问题。为改善分离效率,引进了Shell 公司专利技术的高效气液分离元件对分离器分离元件进行了改造。改造后通过多方面验证,表明改造大大提高了气液分离设备的分离效率,缓解了预冷器管程结蜡,保证外输天然气的质量。

关键词:天然气处理;气液分离;装置考核

中图分类号:T E644 文献标识码:A 文章编号:1006—7981(2012)05—0095—021 天然气处理工艺简介

克拉2气田中央处理厂采用JT 阀节流制冷低温分离脱水脱烃工艺,设有6套日处理量为500万方的处理装置,同时还设有乙二醇再生、凝析油稳定等

其它辅助装置。

图1 天然气处理工艺流程

气田内部集输采用气液混输工艺,从井口来的天然气进入中央处理厂后,经过气液分离器完成原料气中的游离水分离,进入预冷器管程和壳程经低温膨胀后的干气换热降温。温度从40℃降至-5℃后经JT 阀做等含膨胀,温度进一步降低至-15℃的天然气中的气液两相进入低温分离器内进行分离。完成脱水脱烃后的干气和预冷器管程中原料气换热升温至32℃,然后作为产品气外输。

2 天然气处理装置存在的问题及分析

脱水脱烃装置在运行过程中,出现了预冷器管程压降增大,T 阀前温度达不到设计温度,低温分

离器运行温度高于设计的-15℃的要求,进而导致产品气烃、水露点不达标。

经过对装置的深入分析,确认气液分离器分离效率不高,天然气中携带大量的重组分进入脱水脱烃装置。这些组分在预冷器中温度降低后在管程形成厚厚的蜡膜,使得管程直径变小,热阻增加,预冷器换热效率降低。是造成生产装置不能正常运行的主要原因。低于32℃时就会凝固。中央处理厂气液分离器和低温分离器使用了重力式两相分离器,依靠液滴与气体的密度差把液滴从气体中沉降下来,液滴的沉降速度大小对分离效果起着决定性的作用。

克拉2气田天然气中重组分在低于32时凝固,由于分离效率的原因,气液分离器分离后的天然气中大分子、大直径的液滴较多,在在低温分离器中,液体(凝析油、蜡、注入的乙二醇)经过JT 阀的节流,液滴进一步被粉碎,造成在低温分离器中分离效果较差,烃露点得不到有效控制。3 高效分离技术简介及实际应用

为了提高装置的气液分离效率,减少中央处理厂预冷器结蜡,降低烃露点,通过对现有气液分离技术的分析和对比,选取了苏尔寿公司的Shell 公司专利气液高效分离内构件对气液分离设备进行改造。

Shell 公司的包括SMMSM 技术,包含以下几个部分:Schoepentoeter,即叶片式入口分布管,具有承受较高进口动能,良好的气体分布和达到95%液体分离效率;Mellachevron,即叶片分离器,根据应用分为简单式和带预处理装置的高效式;Mistmat,即丝网,按应用可划分为泡沫去除和液滴起泛;Swirldeck,即旋风管,根据离心原理来分离气流中的颗粒,同时将分离后的液体沿降液管流入

95

 2012年第5期 内蒙古石油化工

X

收稿日期5

作者简介王金山()高级工程师;现从事天然气开发、净化的管理工作。

J :2012-01-1:1974-

气液分离

第四章气液分离知识点 概述: 本章主要讲述油气分离方式和操作条件的选择、油气两相分离器、油气水三相分离器等方面的知识。通过本章的学习,使学员能了解分离方式的选择对油田生产的影响,掌握分离器的结构、原理和设计方法,并且也应该对特殊场合应用的分离器有一个粗略的了解,了解其应用特点。本章的重点为多级分离与一级分离的比较、两相分离器的工艺计算(包括油滴的沉降速度计算、气体的允许流速和液体停留时间确定等)以及油气水三相分离器中液相停留时间的确定和其界面控制方法等部分的知识。 知识点1: 烟的粒径小于1μm,雾的粒径1~100μm,雨的粒径100~4 000μm。不同粒径的油滴,应有不同的有效分离方法,重力沉降:分离50μm以上的油滴;离心分离:2~1000 μm;碰撞分离:5μm以上油滴;布织物:0.5~50μm;空气过滤器:2~50μm的尘埃。 知识2:综合型卧式三相分离器的结构 下图为综合型卧式三相分离器。下表是综合型卧式三相分离器主要内部构件及其作用特点。综合型卧式三相分离器主要特点是增加内部构件并将其有效组合,提高分离器对油气水的综合处理能力。

1-入口;2-水平分流器;3-稳流装置;4-加热器;5-防涡罩;6-污水出口;7-平行 捕雾板; 8-安全阀接口;9-气液隔板;10-溢流板;11-天然气出口;12-出油阀;13-挡沫板 知识3:几种高效三相分离器 高效型三相分离器是将机械、热、电和化学等各种油气水分离工艺技术融合应用在一个容器,通过精选和合理布设分离器内部分离元件,达到油气水高效分离的目的。其优点是成撬组装,极大地减少现场安装的工作量和所需的安装空间,具有较大的机动性以适应油田生产情况变化的需要,使流程简化,方便操作管理,这些对海上油田显得尤为重要。 1、HNS三相分离器 图2-2-12为HNS型高效三相分离器简图。其内部结构进行了优化设计,有优良的分离元件,为油气水分离提供良好的内部环境,避免存在明显的短路流和返混现象,保证介质流动特性接近塞状流。表2-2-10是HNS型高效三相分离器的结构特点及其说明,主要技术特点是:

开放大学气液动技术及应用-形成性考核作业(三)答案

江苏开放大学 形成性考核作业 学号 姓名 课程代码110039 课程名称气液动技术及应用评阅教师 第 3 次任务 共 4 次任务 江苏开放大学

任务内容: 一、填空题(每空3分,共计18分) 1. 使液压泵输出的油液以很低的压力流回油箱的油路称为____卸荷回路_____________。 2. 在减压回路中可使用_____单向阀______来防止主油路压力低于支路时油液倒流。 3. 用节流阀的进油路节流调速回路的功率损失有___溢流损失__和___节流损失___两部分。 4. 调速阀能在负载变化时使通过调速阀的_流量_______不变。 5. 在速度控制回路中,如果既要求效率高,又要求速度稳定性好,则应选用___容积—节流_调速回路。 二、判断题(每题4分,共计20分) 1. 在旁油路节流调速回路中,液压泵的压力随液压缸的负载而变化。……………( 对 ) 2. 采用节流阀的进油路节流调速回路,其速度刚度与节流阀流通面积a 及负载F L 的大小有关,而与油泵出口压力p p 无关。……………………………………………………………( 错 ) 3. 在采用节流阀的回油路节流调速回路中,回油腔压力p 2将随负载减小而增大,但不会高于液压泵的出口压力。………………………………………………………………………( 错 ) 4. 容积调速回路没有节流损失和溢流损失,适用于大功率系统。……………………( 对 ) 5. 由限压式变量泵与调速阀(置于进油路)组成的容积节流调速回路中,液压缸进油压力越高,节流损失也越大,则回路效率越低。……………………………………………………( 错 ) 三、计算题 1、 液压泵输出流量Q p =10L/min 液压缸无杆腔面积A 1=50cm 2,有杆腔面积A 2=25cm 2。溢流阀 调定压力p Y =2.4MPa ,负载F =10000N 。节流阀按薄壁孔,流量系数C d =0.62,油液密度ρ=900kg/m 3,节流阀开口面积A T =0.01cm 2,试求: (1)液压泵的工作压力;(5分) (2)活塞的运动速度;(15分) (3)溢流损失和回路效率。(15分) 解:(1)求液压泵的工作压力 此油路为采用节流阀的回油节流调速回路 液压泵的工作压力由溢流阀调定。 MPa p p Y p 4.2== (2)求活塞的运动速度 列出液压缸的力平衡方程,求回油路压力p 2 F A p A p +=2211 MPa 8.0Pa 10810 25100001050104.254462112=?=?-???=-=--A F A p p 节流阀两端的压差 MPa 8.02==?p p 回油路流量 900 108.021001.062.026 42????=?=-ρp A C Q T d

气液分离器选型

7.8气液分离器 7.8.1概述 气液分离器的作用是将气液两相通过重力的作用进行气液的分离。 7.8.2设计步骤 (1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定 气体流速对分离效率是一个重要因素。如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。气速对分离效率的影响见下图: 图7-69 分离效率与气速的关系图 2) 计算方法 G u 5 .0)( G G L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kg

G K 为常数,通常107.0=G K 3) 尺寸设计 丝网的直径为5 .0)( 0188.0G G G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。 由于安装的原因(如支承环约为mm 1070/50?),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度 容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。低液位(LL )和高液位(HL )之间的距离由下式计算: 2 1.47D t V H L L = 式中 D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ; L H —低液位和高液位之间的距离,m ; 液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。 气体空间高度的尺寸见下图所示。丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。

膜过滤技术及其应用范围介绍

膜过滤技术及其应用范围介绍 北京陶普森膜应用工程技术有限公司孙永杰 过滤是分离液体中固体性颗粒的常用方法之一。我们熟悉的土壤就是一个天然过滤器,池塘、湖泊和河流中的地表水在通过不同类型的土壤之后,渗透聚积成相对洁净的地下水,土壤让水透过的时候截留了其它成分,如颗粒物和污染物等,而渗透到深处的地下水得到了净化。 过滤是实验室常用的物料分离技术。从筛网、滤纸到膜滤器等技术手段的延伸、发展,促进了产品提纯技术的提高,净化效果明显,分离精度大大提高。在能量消耗,过滤效果和操作简便方面,相比于传统的分离方法如蒸馏或结晶,膜过滤技术的表现优于其他分离过程。在许多分离领域,膜过滤克服了传统技术局限性,尤其对生化或药物的加工应用过程,膜技术的应用提高了产品品质和收率,因为其中的蛋白质和有效成分大多是热敏感的。因膜过滤为物理过滤方式,膜材质稳定性强,经验证的实验室过滤工艺,很容易被放大和改进,更易成功应用到实际的大规模生产中。 在生物和制药技术行业的许多领域,包括食品和饮料行业,生物技术和饮用水处理行业,都普遍使用过滤膜用于过滤。 过滤膜的工作原理:膜过滤器的原理类似于上面提到的地下水渗透过程,人工制备的膜相当于地表土层,待过滤的溶液中一部分的小分子物质可以通过薄膜的微孔,其渗透性取决于孔的大小。比滤膜孔更小的颗粒可透过滤膜,而比滤膜孔大的颗粒就被截留下来。

一般情况下,膜的孔径决定了应用,根据孔径的大小,将不同的过滤膜技术分为四类:微滤,超滤和纳滤以及反渗透。 1. 微滤膜技术 过滤膜的孔径一般在5μm和0.1μm之间。在微生物实验中经常被使用孔径为0.1μm至0.2μm的膜,可以分离出酵母菌和细菌,是一种温和快速的杀菌方法。在工业化生产上,这种滤膜技术通常为过滤器的滤芯,广泛应用在医药,食品和饮料工业生产线中。例如,生物制药厂用于生物反应器中微生物生长阶段之后的“收获”和细菌菌体的分离,废水处理或浑浊液的油水分离等。 2. 超滤膜技术 超滤技术常常用于大分子的浓缩和脱水,超滤膜过滤“孔径”在0.1μm和0.01μm之间。由于该技术主要用于分离或浓缩蛋白质分子,所以膜的过滤孔径被定义为“分子量切断”(MWCO)或“标称分子量切断”(NMWC),单位为道尔顿(质量单位,等于一氧原子的1/16)。MWCO值表示可被膜截留的球状分子的小分子量。为了安全起见,应总是选择MWCO值至少比要分离的大分子的分子量高20%。这种膜过滤技术的应用操作压力,通常在2-10巴之间。 3.纳滤技术 是纳米级过滤技术的简称,纳米级过滤的膜过滤器,其孔径小于0.005μm,可截留更小的有机分子和大部分盐类物质,以及重金属离子等。陶普森纳米级过滤需要更高的外部压力,过滤压力一般在10-80巴之间。

气液分离技术

气液分离技术 气液分离技术是从气流中分离出雾滴或液滴的技术。该技术广泛的应用于石油、化工、( 如合成氨、硝酸、甲醇生产中原料气的净化分离及加氢装置重复使用的循环氢气脱硫), 天然气的开采、储运及深加工, 柴油加氢尾气回收, 湿法脱硫, 烟气余热利用, 湿法除尘及发酵工程等工艺过程, 用于分离清除有害物质或高效回收有用物质。气液分离技术的机理有重力沉降、惯性碰撞、离心分离、静电吸引、扩散等, 依据这些机理已经研制出许多实用的气液分离器, 如重力沉降器、惯性分离器、纤维过滤分离器、旋流分离器等。 一、重力沉降分离 气液重力沉降分离是利用气液两相的密度差实现两相的重力分离, 即液滴所受重力大于其气体的浮力时, 液滴将从气相中沉降出来, 而被分离。重力沉降分离器一般有立式和卧式两类,它结构简单、制造方便、操作弹性大,需要较长的停留时间,分离器体积大,笨重,投资高,分离效果差,只能分离较大液滴,其分离液滴的极限值通常为 100μm,主要用于地面天然气开采集输。经过几十年的发展,该项技术已基本成熟。当前研究的重点是研制高效的内部过滤介质以提高其分离效率。此类分离器的设计关键在于确定液滴的沉降速度,然后确定分离器的直径。气液重力沉降分离是利用气液两相的密度差实现两相的重力分离, 即液滴所受重力大于其气体的浮力时, 液滴将从气相中沉降出来, 而被分离。 二、惯性分离 气液惯性分离是运用气流急速转向或冲向档板后再急速转向,使液滴运动轨迹与气流不同而达到分离。此类分离器主要指波纹(折)板式除雾(沫)器,它结构简单、处理量大,气速度一般在 15~25 m/s,但阻力偏大,且在气体出口处有较大吸力造成二次夹带,对于粒径小于 25μm 的液滴分离效果较差,不适于一些要求较高的场合。其除液元件是一组金属波纹板,其性能指标主要有:液滴去除率、压降和最大允许气流量(不发生再夹带时),还要考虑是否易发生污垢堵塞。液滴去除的物理机理是惯性碰撞,液滴去除率主要受液滴自身惯性的影响。通常用于:(1)湿法烟气脱硫系统,设在烟气出口处,保证脱硫塔出口处的气流不夹带液滴;(2)塔设备中,去除离开精馏、吸收、解吸等塔设备的气相中的液滴,保证控制排放、溶剂回收、精制产品和保护设备。现在波纹板除雾器的分离理论和数学模型已经基本成熟,对其研究集中在结构优化及操作参数方面来提高脱液效率。国内学者杨柳等对除雾器叶片形式作了比较,发现弧形叶片与折板形叶片的除雾效率相近,弧形除雾器的压降明显小于折板形,故弧形叶片除雾器的综合性能比折板式除雾器要好。 三、介质过滤分离 通过过滤介质将气体中的液滴分离出来的分离方法即为过滤分离。由于过滤介质相对普通折流分离来说具有大得多的阻挡收集壁面积而且多次反复折流液体很容易着壁,所以其分离效率比普通的折流分离高而且结构简单只需制作一个过滤介质架,体积比普通的折流分离器要小但是它的分离负荷范围更窄超过气液混合物规定流速或者液气比后分离效率会急剧下降,过滤介质分离器的阻力比普通的折流分离器大而且还具有工作不稳定容易带液填料易碎易堵等缺点。过滤型气液分离器具有高效、可有效分离 0.1~10μm 范围小粒子等优点,当气速增大时,气体中液滴夹带量增加,甚至,使过滤介质起不到分离作用,无

气液分离器

气液分离器 气液分离器在热泵或制冷系统中的基本作用是分离出并保存回气管里的液体以防止压缩机液击。因此,它可以暂时储存多余的制冷剂液体,并且也防止了多余制冷剂流到压缩机曲轴箱造成油的稀释。因为在分离过程中,冷冻油也会被分离出来并积存在底部,所以在气液分离器出口管和底部会有一个油孔,保证冷冻油可以回到压缩,从而避免压缩机缺油。气液分离器的基本结构见图F.1,主要分为立式,卧式和带回热装置,在一些小系统如冰箱,会用一些铜管做一个简单的气液分离器,如图F.1右下角。气液分离器的工作原理是带液制冷剂进入到气液分器时由于膨胀速度下降使液体分离或打在一块挡板上,从而分离出液体。 F.1 气液分离器的设计和使用必须遵循以下原则: 1.气液分离器必须有足够的容量来储存多余的液态制冷剂。 特别是热泵系统,最好不要少于充注量的50%,如果有条件最好做试验验证一下,因为用节流孔板或毛细管在制热时节流,可能会有70%的液态制冷剂回到气液分离器。还有高排气压力,低吸气压力也会让更多的液态制冷剂进入气液分离器。用热力膨胀阀会少一些,但也可能会有50%流到气液分离器,主要是在除霜开始后,外平衡感温包还是热的,所以制冷剂会大量流过蒸发器而不蒸发从而进入气液分离器。在停机时,气液分离器是系统中最冷的部件,所以制冷剂会迁移到这里,所以要保证气分有足够的容量来储存这些液态制冷剂。 2.适当的回油孔及过滤网保证冷冻油和制冷剂回到压缩机。 回油孔的尺寸要尽量保证没液态制冷剂回流到压缩机,但也要保证冷冻油尽量可以回到压缩机。 如果是运行中气液分离器中存有的液态制冷剂,推荐使用直径0.040 in (1.02mm),,如果是因为停机制冷剂迁移到气液分离器推荐使用0.055 in (1.4mm)(谷轮的应用工程手册是直接给出

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

膜分离技术及其应用_童汉清

膜分离技术及其应用 童汉清 海金萍 (蚌埠高等专科学校食品系,蚌埠市233030) 摘 要 针对膜分离技术的一系列独特优点,介绍了工业中常用的各种分离膜的性能、材料及其各自的应用,并简述了世界上最新的膜分离技术及其发展方向。 关键词 膜分离技术 反渗透膜 超滤膜 微滤膜 0 前言 膜分离是用半透膜分离均相混合物中不同组分的一种方法。由于膜分离技术在生产中物料无相变过程,因而无需再沸器、冷凝器等设备,与蒸发、精馏等分离技术相比具有显著的节能、高效等特点,特别是对于食品工业,膜分离技术可以完好地保留食品原有色、香、味,而其营养成分又不会被高温破坏。因而膜技术在世界范围内引起人们极大关注,被誉为重大的新技术革命之一。 现代膜技术的开发还仅仅是近三十年的事情,虽然近年来有了较大的发展,但目前仍处于发展和完善的过程中。国内外膜分离技术已在许多不同行业得到应用,并取得了良好效果。 1 反渗透膜及其应用 1.1 反渗透膜的性能 反渗透膜的孔径在0.3~2nm之间,通常为非对称的微孔结构膜,压差作为操作推动力,工作压力可高达7.0~7.5M Pa,膜通量一般为0.5m3/(m2d)。 反渗透膜能截留住除水分子、氢离子、氢氧根离子以外的其它物质,因而主要用于水和其它物质的分离。 1.2 膜材料 最先开发并成功应用的反渗透膜材料是醋酸纤维素,70年代以来逐渐开发出一些新型反渗透膜材料,如芳香族聚酰胺、聚苯并咪唑、磺化聚苯撑氧、磺化聚磺酸盐、聚酰胺羧酸、聚乙烯亚胺、聚甲苯二异氰酸酯和等离子处理聚丙烯腈等。醋酸纤维素在强酸和弱碱条件下易发生水解且不耐高温,易受微生物和酶的作用,在正常使用时还会发生蠕变使透水速率降低。尽管存在这些缺点,但目前工业上最广泛使用的两种反渗透膜材料,还是首选醋酸纤维素,其次为聚酰胺。 1.3 反渗透膜的应用 1.3.1 海水淡化 反渗透膜分离技术被广泛应用于海水淡化。在全世界海水淡化装置中,约有30%用反渗透方式来实现。反渗透膜由极薄致密表层和多孔支撑层构成,具有高透水率及高脱盐率,可脱去海水中99%以上的盐离子。 1.3.2 果汁、果酒等产品的浓缩 膜浓缩是在常温下进行的。用反渗透膜对果汁、果酒进行浓缩,可保证维生素等营养成分不受破坏以及挥发质不损失,并可保留其原有的风味,这是其它浓缩技术难以做到的。另外,反渗透膜可以完全除去细菌和病毒,使产品不加任何防腐剂而延长储存期,食用更加卫生可靠。 19 《化工装备技术》第20卷第2期1999年

气液分离器的原理

气液分离器采用的分离结构很多,其分离方法也有: 1、重力沉降; 2、折流分离; 3、离心力分离; 4、丝网分离; 5、超滤分离; 6、填料分离等。 但综合起来分离原理只有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法 1、2、3、6)。气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以气体粒子比液体粒子小些。 一、重力沉降 1、重力沉降的原理简述 由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、重力沉降的优缺点 优点: 1)设计简单。 2)设备制作简单。

3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。 1)设计简单。 2)设备制作简单。 3)阻力小。 缺点: 1)分离效率最低。 2)设备体积庞大。 3)占用空间多。 3、改进 重力沉降的改进方法: 1)设置内件,加入其它的分离方法。 2)扩大体积,也就是降低流速,以延长气液混合物在分离器内停留的时间。

优点:4、由于气液混合物总是处在重力场中,所以重力沉降也广泛存在。由于重力沉降固有的缺陷,使科研人员不得不开发更高效的气液分离器,于是折流分离与离心分离就出现了。 二、折流分离 1、折流分离的原理简述 由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 2、折流分离的优缺点 优点: 1)分离效率比重力沉降高。 2)体积比重力沉降减小很多,所以折流分离结构可以用在(高)压力容器内。 3)工作稳定。 缺点: 1)分离负荷范围窄,超过气液混合物规定流速后,分离效率急剧下降。 2)阻力比重力沉降大。 3、改进 从折流分离的原理来说,气液混合物流速越快,其惯性越大,也就是说气液分离的倾向越大,应该是分离效率越高,而实际情况却恰恰相反,为什么呢? 究其原因: 1)在气液比一定的情况下,气液混合物流速越大,说明单位时间内分离负荷越重,混合物在分离器内停留的时间越短。 2)气体在折流的同时也推动着已经着壁的液体向着气体流动的方向流动,如果液体流到收集壁的边缘时还没有脱离气体的这种推动力,那么已经着壁的液体将被气体重新带走。在气液比一定的情况下,气液混合物流速越大,气体这种继续推动液体的力将越大,液体将会在更短的时间内

气液动技术及应用复习题(补充)20191128

气液动技术及应用复习题(补充) 一、填空题 1.一部完整的机器一般主要由三部分组成,即动力部分、执行部分、传动部分。 2.液体传动是主要利用压力能、位能、动能的液体传动。 3.空气压缩机简称空压机,是气源装置的核心,用以将原动机输出的机械能转化为气压 能。 4.空气压缩机按工作原理可分为容积型、速度型两种。 5.冷却器安装在空压机输出管路上,用于降低压缩空气的温度,并使压缩空气 中的大部分水汽、油汽冷凝成水滴、油滴,以便经油水分离器析出。 6.目前使用的干燥方法主要是加热和吸附。 7.过滤器用以除去压缩空气中的油污、水分和灰尘等杂质。 8.干燥器是为了进一步分离和吸收空气中的水分、油分,使之变为干燥 空气,以满足品质要求较高的气动仪表、射流元件组成的系统使用。 二、选择题 1.液压传动是利用液体的 B 来传递运动和动力的。 A 动能 B 压力能 C 位能 D 前三者都是 2.液压与气压传动都是利用密封容积的 A 来实现能量传递的。 A 变化B恒定C变大D变小 3.千斤顶的增力原理为 C 。 A 杠杆增力B液压增力C杠杆增力和液压增力 D 前三者都是 4.液压传动中的功率P可以用 C 乘积来表示。 A 压力p和速度v B速度v和流量q C压力p和流量q D前三者都不 是 5.液压与气压传动系统除工作介质外,由 C 部分组成。 A 二个B三个C四个 D 五个 6.动力元件是将原动机输入的机械能转换成流体的 C ,为系统提供动力。 A 动能B位能C压力能 D 压力 7.执行元件是将流体的 C 转换成机械能。 A 动能B位能C压力能 D 压力 8.控制元件可以控制系统的 D 。 A 压力B流量C流动方向D前三者都是 9.下列元件不是执行元件的是 D 。 A 油缸B气缸 C 液压马达 D 换向阀 10.液压传动可以实现大范围的A 。 A 无级调速B调速 C 有级调速 D 分级调速 11.液压传动不宜用于 C 的场合。 A 大传动比B小传动比 C 精确传动比 D 变传动比 12.气压传动中空气的粘度很小,因而空气流动时的 B 。 A 阻力损失大B阻力损失小C流量损失大 D 流量损失小 13.液体在流动时产生 C 的特性称为粘性。 A 摩擦力B外摩擦力C内摩擦力D静摩擦力 14.静止液体不显示 A 。 A 粘性B压力 C 温度 D 密度 15.常用的粘度有 D 。 A 动力粘度B运动粘度 C 相对粘度 D 前三者都是 16.流体的粘度随温度的增加而 B 。 A 变大B变小 C 不变 D 不确定 17.当系统的工作压力较高时,宜选用粘度 A 的液压油。 A 较高B较低 C 不变D不确定

气液分离器的种类与结构讲课讲稿

气液分离器的种类与 结构

气液分离器的种类与结构目录 一、研究目的 (2) 二、气液分离器的作用 (2) 三、气液分离器的原理和分类 (2) 四、气液分离器的结构及优缺点 (2) 1.重力沉降 (3) 2.折流分离 (4) 3.离心分离 (5) 4.填料分离 (6) 5.丝网分离 (7) 6.微孔过滤分离 (9) 五、实验分析 (10) 1.常规冷干机的气液分离器的除水效果 (10) 2.查阅相关资料 (12) 3.设备整改 (13) 4.C型冷干机气分测试 (15) 六、优化方案 (17) 仅供学习与交流,如有侵权请联系网站删除谢谢2

一、研究目的 增强公司冷干机、预冷机等设备上的气液分离器的效果,提升设备性能。 二、气液分离器的作用 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴,随气体一起流动。气液分离器作用就是处理含有凝液的气体,实现凝液回收或者气相净化。我们公司设备上的气液分离器作用主要是气相净化。 三、气液分离器的原理和分类 气液分离器采用的分离结构很多,其分离方法包括:1、重力沉降;2、折流分离;3、离心力分离;4、填料分离;5、丝网分离; 6、微孔过滤分离等。 但综合起来分离原理只有两种: 仅供学习与交流,如有侵权请联系网站删除谢谢3

1、利用组分质量(重量)的不同,对混合物进行分离(如分离方法1、 2、 3、4):气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 2、利用分散系粒子大小不同对混合物进行分离(如分离方法5、6):液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以液体粒子比气体粒子大。 四、气液分离器的结构及优缺点 1、重力沉降: 仅供学习与交流,如有侵权请联系网站删除谢谢4

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

浅析气液两相流及其应用

浅析气液两相流及其应用 浅析气液两相流及其应用 摘要:气液两相流存在于石油、天然气、动力、化工、水利、航天、环境保护等工业中,其研究已成为国内外学者广泛关注前沿学科。本文概要性的描述了气液两相流的应用背景、流动型式,并介绍了气液两相流参数检测的手段和两相流计算的基本方法。 关键词:气液两相流流动型式参数检测计算方法 1.气液两相流的应用背景 近些年来,石油、天然气、动力、化工、水利、航天、环境保护等工业的迅速发展促进了气液两相流的研究和应用。在实际应用中可以将凝析天然气简化的看作气相为甲烷,液相为水的气液两相流[3]。为了在实现天然气井口对凝析天然气气、液两相流量的实时在线测量,需要对其进行相应研究。再如,火力发电厂中锅炉的汽水分离、蒸发管中的汽水混合物的流动都属于气液两相流问题[1]。 2.气液两相流的流动型式 气液两相流中气液两相的分界面多变,其流动结构受各相的物理特性、各相流量、压力、受热、管道布置等影响。在不同的流型下,两相流的流体力学特性不同,因此为了研究两相流的运动规律,必须研究其运动型式。 在水平管道中,气液两相流常见流动形态如图1所示。 图1 水平管道中气液两相流流型 水平管中,气泡流的特征为液相中带有散布的细小气泡,由于受到重力的影响,气泡多位于管子上部。随着泡状流中的气相流量的增加,气泡聚结成为气塞,气塞一般较长,且多沿管子上部流动。当气、液两相流速均较小,会受到重力分离效应产生分层流,而当分层流动中气相速度较大时,气液的交界面将产生扰动波形成波状流。若气相速度再增大,则气液分界面由于剧烈波动将有一部分与管道顶部接触,分隔气相成为气弹,从而形成弹状流,大气弹则将在管道上部高速运动。

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

膜分离技术及其应用领域分析

膜分离技术及其应用领域分析 膜分离技术是指在分子水平上不同粒径分子的混合物在通过半透膜时,实现选择性分离的技术,半透膜又称分离膜或滤膜,膜壁布满小孔,根据孔径大小可以分为:微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)、反渗透膜(RO)等,膜分离都采用错流过滤方式。 一、膜分离技术原理及特点 膜分离技术以选择性透过膜为分离介质,如图1所示,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。膜分离技术以其低能耗、高效率被认为是理想的分离技术之一。 图1膜分离技术原理 利用膜分离技术进行分离所具有的特点包括:1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。 基于膜分离技术所具有上述特点,是现代生物化工分离技术中一种效率较高的分离手段,完全可以取代传统的过滤、吸附、蒸发、冷凝等分离技术,所以膜分离技术在生物化工分离工程中起着很大的作用。 二、膜分离技术种类分析 按照膜孔径和成膜材料分类,常用的膜分离技术主要有微滤、超滤、纳滤、反渗透以及气体分离等。各种膜过程具有不同的分离机理,可适用于不同的对象和要求。按分离原理和按被分离物质的大小区分的分离膜种类,从下表可以看出,几乎所有的分离膜技术均可应用于任何分离、提纯和浓缩领域。反渗透和纳滤作为主要的水及其它液体分离膜之一,在分离膜领域内占重要地位。

江苏开放大学气液动2020考试复习题答案

气液动技术及应用 一、填空题 1.一部完整的机器一般主要由三部分组成,即动力部分、执行部 分、传动部分。 2.液体传动是主要利用压力能、位能、动能的液体传动。 3.空气压缩机简称空压机,是气源装置的核心,用以将原动机输出 的机械能转化为气压能。 4.空气压缩机按工作原理可分为容积型、速度型 两种。 5.冷却器安装在空压机输出管路上,用于降低压缩空气的 温度,并使压缩空气中的大部分水汽、油汽冷凝成水滴、油滴,以便经油水分离器析出。 6.目前使用的干燥方法主要是加热和吸附。 7.过滤器用以除去压缩空气中的油污、水分和灰尘等杂质。 8.干燥器是为了进一步分离和吸收空气中的水分、 油分,使之变为干燥空气,以满足品质要求较高的气动仪表、射流元件组成的系统使用。 二、选择题 1.液压传动是利用液体的 B 来传递运动和动力的。 A 动能 B 压力能 C 位能 D 前三者都是 2.液压与气压传动都是利用密封容积的 A 来实现能量传 递的。 A 变化B恒定C变大D变小 3.千斤顶的增力原理为 C 。 A 杠杆增力B液压增力C杠杆增力和液压增力 D 前三者都是 4.液压传动中的功率P可以用 C 乘积来表示。

A 压力p和速度v B速度v和流量q C压力p和流 量q D前三者都不是 5.液压与气压传动系统除工作介质外,由 C 部分组成。 A 二个B三个C四个 D 五个 6.动力元件是将原动机输入的机械能转换成流体的 C ,为 系统提供动力。 A 动能B位能C压力能 D 压力 7.执行元件是将流体的 C 转换成机械能。 A 动能B位能C压力能 D 压力 8.控制元件可以控制系统的 D 。 A 压力B流量C流动方向D前三者都是 9.下列元件不是执行元件的是 D 。 A 油缸B气缸 C 液压马达 D 换向阀 10.液压传动可以实现大范围的A 。 A 无级调速B调速 C 有级调速 D 分级调速 11.液压传动不宜用于 C 的场合。 A 大传动比B小传动比 C 精确传动比 D 变 传动比 12.气压传动中空气的粘度很小,因而空气流动时的 B 。 A 阻力损失大B阻力损失小C流量损失大 D 流量损失小 13.液体在流动时产生 C 的特性称为粘性。 A 摩擦力B外摩擦力C内摩擦力D静摩擦力 14.静止液体不显示 A 。 A 粘性B压力 C 温度 D 密度 15.常用的粘度有 D 。 A 动力粘度B运动粘度 C 相对粘度 D 前三 者都是 16.流体的粘度随温度的增加而 B 。

气液分离器的种类与结构

气液分离器的种类与结构目录 一、研究目的...................................................、.........、、 (2) 二、气液分离器的作用……………………………………………、第2页 三、气液分离器的原理与分类 (2) 四、气液分离器的结构及优缺点……………………………、第2页 1.重力沉降…………………………………………………、、…、第3页 2.折流分离……………………………、……………………、…、第4页 3.离心分离………………………………………………、、……、第5页 4.填料分离………………………………………………、、……、第6页 5.丝网分离…………………………、……………………、……、第7页 6.微孔过滤分离………………………………………………、第9页 五、实验分析……………………………………………………………、、第10页 1.常规冷干机的气液分离器的除水效果…、第10页 2.查阅相关资料…………………………………、……、、、第12页 3.设备整改………………………………………………、、、、第13页 4.C型冷干机气分测试.................................、 (15) 六、优化方案……………………………………………………………、、第17页 一、研究目的 增强公司冷干机、预冷机等设备上的气液分离器的效果,提升设备性能。 二、气液分离器的作用

饱与气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴,随气体一起流动。气液分离器作用就就是处理含有凝液的气体,实现凝液回收或者气相净化。我们公司设备上的气液分离器作用主要就是气相净化。 三、气液分离器的原理与分类 气液分离器采用的分离结构很多,其分离方法包括:1、重力沉降;2、折流分离;3、离心力分离;4、填料分离;5、丝网分离;6、微孔过滤分离等。 但综合起来分离原理只有两种: 1、利用组分质量(重量)的不同,对混合物进行分离(如分离方法1、 2、 3、4):气体与液体的密度不同,相同体积下气体的质量比液体的质量小。 2、利用分散系粒子大小不同对混合物进行分离(如分离方法5、6):液体的分子聚集状态与气体的分子聚集状态不同,气体分子距离较远,而液体分子距离要近得多,所以液体粒子比气体粒子大。 四、气液分离器的结构及优缺点

膜分离技术及其应用和前景

膜分离技术概论 XXX 机械工程及自动化专业机械104班1003010414 摘要:膜分离是在20世纪60年代迅速发展起的一门分离技术,膜分离主要包括分离、浓缩、纯化和精制等功能且操作简单、易于操作,因此目前膜分离技术被广泛应用于供水、制药、食品、环保、废品回收、水的淡化等工业生产过程中,产生了巨大的经济效益和社会效益。本文首先介绍了膜分离技术中的一些概念、膜的种类及其原理,然后介绍了一些常见的膜分离过程在实际生产中的应用;最后介绍了我国膜分离技术的发展概况及前景。 关键词:膜分离,技术,前景,概况 Membrane-Seperating technology Abstract: Membrane-Seperating technology is a separating technology which developed fast in the 1960s. This technology involves in various functions like separating、concrntrating、purifying and refining,what else, for it’s easily to operate it’s now widely used in the fields of water supplyment、medicine production、food、environment protecting、waste water recycling and so on, make great economical and social benefits. This passage first explain some concepts membrane technology、main theory involved and sort of it. Key words: Membrane-Seperating,technology,introduction,prospect 1膜分离技术的原理 现代膜分离技术分离的根本原理在于膜具有选择透过性。膜分离法是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法,可用于液相和气相。对于液相分离,可用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系。以下重点介绍反渗透的基本原理、微滤原理及超滤原理。

相关主题
文本预览
相关文档 最新文档