当前位置:文档之家› 理解离散傅立叶变换 三 复数

理解离散傅立叶变换 三 复数

理解离散傅立叶变换 三 复数
理解离散傅立叶变换 三 复数

理解离散傅立叶变换三复数

复数扩展了我们一般所能理解的数的概念,复数包含了实数和虚数两部分,利用复数的形式可以把由两个变量表示的表达式变成由一个变量(复变量)来表达,使得处理起来更加自然和方便,我们知道傅立叶变换的结果是由两部分组

成的,使用复数形式可以缩短变换表达式,使得我们可以单独处理一个变量(这个在后面的描述中我们就可以更加确切地知道),而且快速傅立叶变换正是基于复数形式的,所以几乎所有描述的傅立叶变换形式都是复数的形式。但是复数

的概念超过了我们日常生活中所能理解的概念,要理解复数是较难的,所以我

们在理解复数傅立叶变换之前,先来专门复习一下有关复数的知识,这对后面

的理解非常重要。一、复数的提出在此,先让我们看一个物理实验:把一个球

从某点向上抛出,然后根据初速度和时间来计算球所在高度,这个方法可以根

据下面的式子计算得出:

h=-gt2/2+vt

其中h表示高度,g表示重力加速度(9.8m/s2),v表示初速度,t表示时间。现在反过来,假如知道了高度,要求计算到这个高度所需要的时间,这时

我们又可以通过下式来计算:

t=1+-square(1-h/4.9)

经过计算我们可以知道,当高度是3米时,有两个时间点到达该高度:球

向上运动时的时间是0.38秒,球向下运动时的时间是1.62秒。但是如果高度

等于10时,结果又是什么呢?根据上面的式子可以发现存在对负数进行开平方

运算,我们知道这肯定是不现实的。第一次使用这个不一般的式子的人是意大

利数学家Girolamo Cardano(1501-1576),两个世纪后,德国伟大数学家Carl Friedrich Gause(1777-1855)提出了复数的概念,为后来的应用铺平了道路,

他对复数进行这样表示:复数由实数(real)和虚数(imaginary)两部分组成,虚数中的根号负1用i来表示(在这里我们用j来表示,因为i在电力学中表示电流的意思)。我们可以把横坐标表示成实数,纵坐标表示成虚数,则坐标中的每个点的向量就可以用复数来表示,如下图:

上图中的ABC三个向量可以表示成如下的式子:A=2+6j B=-4– 1.5j C=3

– 7j这样子来表达方便之处在于运用一个符号就能把两个原来难以联系起来

的数组合起来了,不方便的是我们要分辨哪个是实数和哪个是虚数,我们一般

是用Re()和Im()来表示实数和虚数两部分,如:Re A=2 Im A=6 Re B=-4 Im

B=-1.5 Re C=3 Im C=-7复数之间也可以进行加减乘除运算:

这里有个特殊的地方是j2等于-1,上面第四个式子的计算方法是把分子和分母同时乘以c– dj,这样就可消去分母中的j了。复数也符合代数运算中的

交换律、结合律、分配律:A B=B A(A+B)+C=A+(B+C)A(B+C)=AB+AC二、复数的

极坐标表示形式前面提到的是运用直角坐标来表示复数,其实更为普遍应用的

是极坐标的表示方法,如下图:

上图中的M即是数量积(magnitude),表示从原点到坐标点的距离,θ是相位角(phase angle),表示从X轴正方向到某个向量的夹角,下面四个式子是计算方法:

我们还可以通过下面的式子进行极坐标到直角坐标的转换:a+jb=M(cosθ

+j sinθ)上面这个等式中左边是直角坐标表达式,右边是极坐标表达式。还有一个更为重要的等式--欧拉等式(欧拉是瑞士的著名数学家,Leonhard Euler,1707-1783):ejx=cos x+j sin x这个等式可以从下面的级数变换中得到证明:

上面中右边的两个式子分别是cos(x)和sin(x)的泰勒(Taylor)级数。这样子我们又可以把复数的表达式表示成指数的形式了:a+jb=M ejθ(这便是复数

的两个表达式)指数形式是数字信号处理中数学方法的支柱,也许是因为用指数形式进行复数的乘除运算极为简单的缘故吧:

三、复数是数学分析中的一个工具为什么要使用复数呢?其实它只是个工具而已,就如钉子和锤子的关系,复数就象那锤子,作为一种使用的工具。我们

把要解决的问题表达成复数的形式(因为有些问题用复数的形式进行运算更加方便),然后对复数进行运算,最后再转换回来得到我们所需要的结果。有两种方法使用复数,一种是用复数进行简单的替换,如前面所说的向量表达式方法和

前一节中我们所讨论的实域DFT,另一种是更高级的方法:数学等价(mathematical equivalence),复数形式的傅立叶变换用的便是数学等价的方法,但在这里我们先不讨论这种方法,这里我们先来看一下用复数进行替换中

的问题。用复数进行替换的基本思想是:把所要分析的物理问题转换成复数的

形式,其中只是简单地添加一个复数的符号j,当返回到原来的物理问题时,

则只是把符号j去掉就可以了。有一点要明白的是并不是所有问题都可以用复

数来表示,必须看用复数进行分析是否适用,有个例子可以看出用复数来替换

原来问题的表达方式明显是谬误的:假设一箱的苹果是5美元,一箱的桔子是

10美元,于是我们把它表示成5+10j,有一个星期你买了6箱苹果和2箱桔子,我们又把它表示成6+2j,最后计算总共花的钱是(5+10j)(6+2j)=10+70j,结果

是买苹果花了10美元的,买桔子花了70美元,这样的结果明显是错了,所以

复数的形式不适合运用于对这种问题的解决。四、用复数来表示正余弦函数表

达式对于象M cos(ωt+φ)和A cos(ωt)+B sin(ωt)表达式,用复数来表示,可以变得非常简洁,对于直角坐标形式可以按如下形式进行转换:上式中余弦

幅值A经变换生成a,正弦幅值B的相反数经变换生成b:A=a,B=-b,但要注

意的是,这不是个等式,只是个替换形式而已。对于极坐标形式可以按如下形

式进行转换:

上式中,M=M,θ=φ。这里虚数部分采用负数的形式主要是为了跟复数傅

立叶变换表达式保持一致,对于这种替换的方法来表示正余弦,符号的变换没

有什么好处,但替换时总会被改变掉符号以跟更高级的等价变换保持形式上的

一致。在离散信号处理中,运用复数形式来表示正余弦波是个常用的技术,这

是因为利用复数进行各种运算得到的结果跟原来的正余弦运算结果是一致的,

但是,我们要小心使用复数操作,如加、减、乘、除,有些操作是不能用的,

如两个正弦信号相加,采用复数形式进行相加,得到的结果跟替换前的直接相

加的结果是一样的,但是如果两个正弦信号相乘,则采用复数形式来相乘结果

是不一样的。幸运的是,我们已严格定义了正余弦复数形式的运算操作条件:1、参加运算的所有正余弦的频率必须是一样的;2、运算操作必须是线性的,如两个正弦信号可以进行相加减,但不能进行乘除,象信号的放大、衰减、高低通

滤波等系统都是线性的,象平方、缩短、取限等则不是线性的。要记住的是卷

积和傅立叶分析也只有线性操作才可以进行。下图是一个相量变换(我们把正弦或余弦波变成复数的形式称为相量变换,Phasor transform)的例子,一个连续信号波经过一个线性处理系统生成另一个信号波,从计算过程我们可以看出采

用复数的形式使得计算变化十分的简洁:前一节中我们描述的实数形式傅立叶

变换也是一种替换形式的复数变换,但要注意的是那还不是复数傅立叶变换,

只是一种代替方式而已。下一节我们就会知道复数傅立叶变换是一种更高级的变换,而不是这种简单的替换形式。

本文来自CSDN博客,转载请标明出处:

离散傅里叶变换的分析与研究

XXXX大学 2012届学士学位论文 离散傅里叶变换的分析与研究 学院、专业物理与电子信息学院 电子信息工程 研究方向数字信号处理 学生姓名XX 学号 XXXXXXXXXXX 指导教师姓名XXX 指导教师职称讲师 2012年4月26日

离散傅里叶变换的分析与研究 XX 淮北师范大学物理与电子信息学院 235000 摘要离散傅里叶变换是连续傅里叶变换在时域和频域上都离散的形式,是对连续时间信号频谱分析的逼近。离散傅里叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 本文首先介绍了离散傅里叶变换的定义及性质,然后介绍了离散傅里叶变换的应用,主要包括对线性卷积的计算和对连续信号的谱分析。在理解理论的基础上,在matlab环境下实现了线性卷积和对连续信号频谱分析的仿真。仿真结果表明:当循环卷积长度大于或等于线性卷积长度时,可利用循环卷积计算线性卷积;利用DFT对连续信号进行频谱分析必然是近似的,其近似的结果与信号带宽,采样频率和截取长度都有关。 关键词离散傅里叶变换;线性卷积;谱分析

The Analysis and Research of Discrete Fourier Transform XX School of Physics and Electronic Information, Huai Bei Normal University, Anhui Huaibei, 235000 Abstract The discrete Fourier transform is the form that the continuous Fourier transform are discrete both in the time domain and frequency domain,it is a approach to the analysis of continuous time signal spectrum . The discrete Fourier transform not only has important significance in theory, but also plays a central role in all kinds of signal processing . This paper introduced the definition and properties of the discrete Fourier transform first of all.Then introduced the application of the discrete Fourier transform, which mainly including the calculation of linear convolution and analysis of continuous signal the spectral. On the basement of understanding theory, we realized the linear convolution and analysis of continuous signal spectrum on the Matlab environment . The simulation results show that when the length of the cyclic convolution is equal to or greater than linear convolution,we can use cyclic convolution to calculate linear convolution;It is approximately use continuous DFT spectrum to analyze the frequency domain of continuous time signal, the approximation of the results is related to the signal bandwidth, sampling frequency and intercept length. Keywords The discrete Fourier transform; Linear convolution; Spectrum analysis

离散傅立叶变换及谱分析

数字信号处理实验 实验二、离散傅立叶变换及谱分析 学院:信息工程学院 班级:电子101班 姓名:*** 学号:******

一、实验目的 1.掌握离散傅里叶变换的计算机实现方法。 2.检验实序列傅里叶变换的性质。 3.掌握计算序列的循环卷积的方法。 4.学习用DFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT。 二、实验内容 1.实现序列的离散傅里叶变换并对结果进行分析。(自己选择序列,要求包括复序列,实序列,实偶序列,实奇序列,虚奇序列) 本例检验实序列的性质DFT[xec(n)]=Re[X(k)] DFT[xoc(n)]=Im[X(k)] (1)设 x(n)=10*(0.8).^n(0<=n<=10),将x(n)分解为共扼对称及共扼反对称部分 n=0:10; x=10*(0.8).^n; [xec,xoc]=circevod(x); subplot(2,1,1);stem(n,xec); title('Circular -even component') xlabel('n');ylabel('xec(n)');axis([-0.5,10.5,-1,11]) subplot(2,1,2);stem(n,xoc); title('Circular -odd component') xlabel('n');ylabel('xoc(n)');axis([-0.5,10.5,-4,4]) figure(2) X=dft(x,11); Xec=dft(xec,11); Xoc=dft(xoc,11); subplot(2,2,1);stem(n,real(X));axis([-0.5,10.5,-5,50]) title('Real{DFT[x(n)]}');xlabel('k'); subplot(2,2,2);stem(n,imag(X));axis([-0.5,10.5,-20,20]) title('Imag{DFT[x(n)]}');xlabel('k'); subplot(2,2,3);stem(n,Xec);axis([-0.5,10.5,-5,50]) title('DFT[xec(n)]');xlabel('k'); subplot(2,2,4);stem(n,imag(Xoc));axis([-0.5,10.5,-20,20]) title('DFT[xoc(n)]');xlabel('k'); 实验说明: 复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量,复数序列虚数部分的离散傅立叶变换是原来序列离散傅立叶变换的反对称分量,复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的实数部分,复序列反对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。

离散时间傅里叶变换.

第3章 离散时间傅里叶变换 在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。本章将介绍离散时间系统的频域分析方法。 3.1 非周期序列的傅里叶变换及性质 3.1.1 非周期序列傅里叶变换 1.定义 一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为: 正变换: ∑∞ -∞ =ω-ω = =n n j j e n x e X n x DTFT )()()]([ (3-1-1) 反变换: ? π π -ωωω-ωπ = =d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2) 记为: )()(ω?→←j F e X n x 当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。 [例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得 ωω=--=--== = ω-ω-ωω-ω-ωω-ω -ω-ω-=ω-∞ -∞ =ω ∑∑ 2 1sin 3sin )() (11)()(2 521 212133365 6j j j j j j j j j n j n n j n j e e e e e e e e e e e n R e X 2.离散时间序列傅里叶变换存在的条件: 图3-1

离散信号的傅里叶变换(MATLAB实验)

离散信号的变换(MATLAB 实验) 一、实验目的 掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。 二、实验内容 1、已经系统函数为 5147.13418.217.098.2250 5)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定; (2)检查系统是否稳定; (3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147]; subplot(2,1,1);zplane(b,a);title('零极点分布图'); z=roots(a); magz=abs(z) magz = 0.9000 0.9220 0.9220 0.9900 n=[0:1000]; x=stepseq(0,0,1000); s=filter(b,a,x); subplot(2,1,2);stem(n,s);title('稳态输出'); (1)因为极点都在单位园内,所以系统是稳定的。 (2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。 (3)稳定时间为570。 2、综合运用上述命令,完成下列任务。 (1) 已知)(n x 是一个6点序列: ???≤≤=其它,050,1)(n n x

计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。 要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。 n=0:5;x=ones(1,6); k=-200:200;w=(pi/100)*k; X=x*(exp(-j*pi/100)).^(n'*k); magX=abs(X);angX=angle(X); subplot(2,1,1);plot(w/pi,magX);grid;title('幅度'); subplot(2,1,2);plot(w/pi,angX);grid;title('相位'); (2) 已知下列序列: a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ; b .)4sin()(πn n x =是一个N =32的有限序列; 试绘制)(n x 及它的离散傅立叶变换 )(k X 的图像。 a . n=[0:1:100];x=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,1,1);plot(n,x);title('x(n)的图像'); X=dft(x,101); magX=abs(X); subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

傅里叶变换 讲解最通俗易懂的一片

【纯技术帖】为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶 变换?来源:胡姬的日志 写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,内容非我所原创。在此 向多位原创作者致敬!!! 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得 非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.doczj.com/doc/b43736095.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角 波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,

离散序列傅里叶变换习题教学教材

1、 2、 11、 试求以下各序列的时间傅里叶变换(1)1()(3)x n n δ=- (2)211 ()(1)()(1)22 x n n n n δδδ= +++- (3)3()(),01n x n a u n a =<< (4)4()(3)(4)x n u n u n =+-- 12、 设()j X e ω 是序列()x n 的离散时间傅里叶变换,利用离散时间傅里叶变换的定义与性 质,求下列各序列的离散时间傅里叶变换。 (1)()()(1)g n x n x n =-- (2)()*()g n x n = (3)()*()g n x n =- (4)()(2)g n x n = (5)()()g n nx n = (6)2 ()()g n x n = (7)(), ()2 0, n x n g n n ??=???为偶数为奇数 13、 试求以下各序列的时间傅里叶变换 (1)1()(),||1n x n a u n a =< (2)2()(),||1n x n a u n a =-> (3)||3, ||()0, n a n M x n n ?≤=? ?为其他 (4)4()(3),||1n x n a u n a =+< (5)50 1 ()()(3)4n m x n n m δ∞ == -∑ (6)6sin(/3)sin(/4)()n n x n n n ππππ???? =????????

14、 设()x n 是一有限长序列,已知 1,2,0,3,2,1,0,1,2,3,4,5()0, n x n n --=?=? ?为其他 它的离散傅里叶变换为()j X e ω 。不具体计算()j X e ω ,试直接确定下列表达式的值。 (1)0 ()j X e (2)()j X e π (3)()j X e d π ωπ ω- ? (4) 2|()|j X e d π ω πω- ? (5)2 ()| |j dX e d d ωπ πωω -? 15、 试求以下各序列的时间傅里叶变换 (1)11,||()0, n N x n n ≤?=? ?为其他 (2)21||/,||()0, n N n N x n n -≤?=? ?为其他 (3)3cos(),||()20, n n N x n N n π?≤? =???为其他 6、证明:若()j X e ω 是序列()x n 的离散时间傅里叶变换,而 1(), ()0, n n x x n k k ??=???为整数 其他 则1()()j j X e X e ωω =。 7、设序列()()x n u n =,证明()x n 的离散时间傅里叶变换为 1 ()(2)1j j l X e l e ω ω πδωπ∞ -=-∞ =+--∑ 8、如图所示四个序列,已知序列1()x n 的离散时间傅里叶变换为1()j X e ω,试用1()j X e ω 表示其

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: N?1?2?kn)(nx j?W W NN e?0?n N X(k)=DFT[x(n)]=,k=0,1,...,N-1N?11?kn?)(WXk N N0?n x(n) =IDFT[X(k)]= 逆变换:,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t); figure(1); subplot(211); plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z) axis([0,1,-2,2]); title('方波信号时域波形');grid;

理解离散傅立叶变换

理解离散傅立叶变换(一) ------傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.doczj.com/doc/b43736095.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 一、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,否定了傅立叶的工作成果,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因怕会被推上断头台而一直在逃避。 直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。 用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真

实验2 离散时间傅里叶变换

电 子 科 技 大 学 实 验 报 告 学生姓名:项阳 学 号: 2010231060011 指导教师:邓建 一、实验项目名称:离散时间傅里叶变换 二、实验目的: 熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。 三、实验内容: 1. 求下列序列的离散时间傅里叶变换 (a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n = 2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。 3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。 4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。 5. 已知连续时间信号为t a e t x 1000)(-=,求: (a) )(t x a 的傅里叶变换)(Ωj X a ; (b) 采样频率为5000Hz ,绘出1()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论; (c) 采样频率为1000Hz ,绘出2()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论。 四、实验原理:

1. 离散时间傅里叶变换(DTFT)的定义: 2.周期性:()j X e ?是周期为2π的函数 (2)()()j j X e X e ??π+= 3.对称性:对于实值序列()x n ,()j X e ?是共轭对称函数。 *()() Re[()]Re[()] Im[()]Im[()]()() ()() j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ??????????-----===-=∠=-∠ 4.线性:对于任何12,,(),()x n x n αβ,有 1212[()()][()][()]F x n x n F x n F x n αβαβ+=+ 5.时移 [()][()]()j k j j k F x n k F x n e X e e ωωω---== 6.频移 00()[()]()j n j F x n e X e ωωω-= 7.反转(翻褶) [()]()j F x n X e ω--= 五、实验器材(设备、元器件): PC 机、Windows XP 、MatLab 7.1 六、实验步骤: 本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。 [()]()()(), ()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

离散系统分析和离散傅里叶变换讲解

第四章 离散系统分析和离散傅里叶变换 4-1概述 在上一章中我们已经介绍了连续时间信号(周期的或非周期的)的傅里叶变换。在第一、二章中介绍了离散信号和离散系统的概念,在这一章中主要讨论离散信号的傅里叶变换。 4-2离散信号的傅里叶变换 时域抽样定理告诉我们,连续时间信号可以由它的样本值恢复出来,即 ]2 ) ([ )()(∑ ∞ -∞ =-Ω= n s nT t Sa nT f t f 当抽样频率s Ω给定时,抽样函数]2 ) ([ nT t Sa s -Ω就确定了,唯一与信号相关的是信号的样本值)(nT f ,换句话说传载)(t f 中信息的是样本值)(nT f 。因此研究连续时间信号)(t f 中的信息,就转 变为研究样本值)(nT f 中的信息。当抽样频率s Ω给定时,T 也就一定了,样本值)(nT f 就可以抽象为序列)(n f ,也就是说离散信号的数学抽象是序列。以后我们就用序列)(n f 表示离散信号(样本值)。 由于序列的变量是整数变量,与连续信号的变量不同,因此对序列的处理方法与连续时间变量的处理方法也必定不同。先来看看序列的傅里叶变换,连续非周期时间信号)(t f 的傅里叶变换为 ? ∞ ∞ -Ω-= =Ωdt e t f t f F t j )(])([)(F ? ∞ ∞ -ΩΩΩ= Ω=d e F F t f t j -)(21 )]([)(1 π F 假定)(n f 是非周期的,仿照连续时间信号的傅里叶变换形式可以定义序列的傅里叶变换: ∑∞ -∞ =-= n jn j e n f e F ω ω )()( (4-1) ?- = π πωω ωπ d e e F n f jn j )(21 )( (4-2) 式中ω为数字角频率。(4-1)式和(4-2)式构成了序列的傅里叶变换对,前者称为序列的傅里叶正变换,后者称为序列的傅里叶逆变换。注意到序列傅里叶正变换公式是个和式,这是因为序列)(n f 的变量是离散的整数,序列的傅里叶逆变换公式是个积分式,由此也说明序列的傅里叶变换是ω的连续函数,也就是说,离散信号的傅里叶变换是频域中连续的函数。此外因

傅里叶变换公式

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。 非确定性信号(随机信号):给定条件下 取值是不确定的 按取值情况分类:模拟信号,离散信 号

数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号 频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。 §2-2 周期信号与离散频谱 一、周期信号傅里叶级数的三角函数形式 周期信号时域表达式 T:周期。注意n的取值:周期信号“无始

无终” # 傅里叶级数的三角函数展开式 (n=1, 2, 3,…) 傅立叶系数: 式中T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式: 周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图 周期信号的频谱三个特点:离散性、谐波性、收敛性 例1:求周期性非对称周期方波的傅立叶级数并画出频谱图 解:

解: 信号的基频 傅里叶系数 n次谐波的幅值和相角 最后得傅立叶级数 频谱图 幅频谱图相频谱图 二、周期信号傅里叶级数的复指数形式 欧拉公式 或 傅立叶级数的复指数形式

复数傅里叶系数的表达式 其中a n,b n的计算公式与三角函数形式相同,只是n包括全部整数。 一般c n是个复数。 因为a n是n的偶函数,b n是n的奇函数,因此# 即:实部相等,虚部相反,c n与c-n共轭。 c n的复指数形式 共轭性还可以表示为 , 即:c n与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0 (等于三角函数模的一半) (与三角函数形式中的相角相等)

连续时间傅立叶变换与离散时间傅里叶变换之间的关系

连续时间傅立叶变换与离散时间傅里叶变换之间的关系 对于连续限带(B )的时间信号x (t),在满足奈奎斯特抽样定理的条件下进行抽样(抽样频率f s =1/T s = 2B'>2B ),其样点为x n =x (nT s )。可以由样点序列进行内插来恢复原始信号x (t): ()()()sin 2')s n x t x nT c B t n = -∑ (1) 证明: 抽样采用理想冲击脉冲串:()()s T s t t nT δδ= -∑ ()()()s s T x t x t t δ= ()()s s n x nT t nT δ= -∑ (2) 其中2B'=1/T s 。由傅里叶变换的频域卷积性质,理想抽样信号x s (t)的傅里叶变换为: 1()()s k s s k X f X f f T T δ?? =* - ??? ∑ (3) 其中*表示连续的卷积运算。于是得到 ()1s k s s k X f X f T T ??= - ?? ?∑ s k s k f X f T ?? =- ?? ?∑ (4) 即理想抽样信号在频域是原信号x (t)傅里叶变换(频谱密度)的周期性位移,周 期为1/T s 。其中更详细的原理请参看经典课本:奥本海姆(《信号与系统》)/樊昌信先生(《通信原理》)/周炯盘先生(《通信原理》)。本文目的是架起连续时间傅里叶变换和离散时间傅里叶变换的桥梁,这在很多课本中都是省略掉的;对抽样定理不再赘述。 在频域k=0处对抽样信号进行理想低通滤波,滤波器带宽为B'>B 。理想低通滤波器的频率响应为矩形窗函数H(f)=( )2' f B ∏,它对应的时域单位冲激响应函数

参考文献(第三章离散时间信号的傅里叶变换)

参考文献(第三章离散时间信号的傅里叶变换) (来自:胡广书, 数字信号处理导论. 北京: 清华大学出版社, 2005年第1版, 2010年1月第6次印刷.) [1] Oppenheim A V, Schafer R. Discrete-time signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [2] Oppenheim A V, Willsky A S, Young I t. Signals and systems. Englewood Cliffs, NJ: Prentice-Hall, 1983. [3] Bracewell R N. The Fourier transform and its applications (2nd ed.). New York: McGraw-Hill, 1986. [4] Proakis J G, Manolakis D G. Introduction to digital signal processing. New York: Macmillan publishing company, 1988. [5] Roberts R A, Mullis C T. Digital signal processing. Reading, MA: Addison-Wesley publishing company, 1987. [6] Sophocles J G. Introduction to signal processing. Prentice-Hall, 1996; 清华大学出版社, 1999(影印). [7] Brigham E O. The fast Fourier transform and its applications. Englewood Cliffs, NJ: Prentice-Hall, 1988. [8] Papoulis A. Signal analysis. New York: McGraw-Hall, 1977. [9] Marple S L. Digital spectral analysis with applications. Englewood Cliffs, NJ: Prentice-Hall, 1987. [10] Dudgeon D E, Mersereau R M. Mulidimensional digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1983. [11] Lim J S. Two-dimensional digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [12] Sanjit K. Digital signal processing: A computer-based approach (2nd ed.). New York: McGraw-Hill, 2001. [13] 郑君里等. 信号与系统. 北京: 人民教育出版社, 1981. [14] 胡广书. 数字信号处理----理论、算法与实现(第二版). 清华大学出版社, 2003.

离散傅里叶变换和快速傅里叶变换

实验报告 课程名称:信号分析与处理 指导老师 成绩: 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握DFT 的原理和实现 2. 掌握FFT 的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。 二、实验内容和原理 2.1 DTFT 和DFT 序列x (n )的离散事件傅里叶变换(DTFT )表示为:n j n j e n x e X Ω-∞ -∞ =Ω ∑= )()( , 如果x (n )为因果有限长序列,n =0,1,...,N-1,则x (n )的DTFT 表示为:n j N n j e n x e X Ω--=Ω ∑=1 )()( , x(n)的离散傅里叶变换(DFT )表达式为:)1,...,1,0()()(21 -== --=∑N k e n x k X nk N j N n π , 序列的N 点DFT 是DTFT 在 [0,2π]上的N 点等间隔采样,采样间隔为2π/N 。通过DFT ,可以完成由一组有限个信号采样值x (n )直接计算得到一组有限个频谱采样值X (k )。X (k )的幅度谱为)()()(22k X k X k X I R +=,X R (k)和X I (k)分别为X(k)的实部和虚部。X (k )的相位谱 为) () (arctan )(k X k X k R I =?。

离散傅里叶反变换(IDFT )定义为)1,...,1,0()(1 )(21 -== ∑-=N n e k X N n x nk N j N n π 。 2.2 FFT 快速傅里叶变换(FFT )是DFT 的快速算法,它减少了DFT 的运算量,使数字信号的处理速度大大提高。 三、主要仪器设备 PC 一台,matlab 软件 四、实验内容 4.1第一题 求有限长离散时间信号x (n )的离散时间..傅里叶变换(DTFT )X (e j Ω )并绘图。 (1)已知?? ?≤≤-=其他 0221)(n n x ;(2)已知1002 )(≤≤=n n x n 。 4.1.1理论分析 1) 由DTFT 计算式, ()25 2.5 2.52 0.50.52 e 1e e e sin(2.5) ()()e e 1e e e sin(0.5) j j j j j n j n j j j n n X x n Ω-ΩΩ-Ω+∞ -Ω-Ω-Ω Ω-Ω=-∞ =---ΩΩ= = = == --Ω∑∑ X (Ω)是实数,可以直接作出它的图像。

相关主题
文本预览
相关文档 最新文档