当前位置:文档之家› 透射电子显微镜基本知识

透射电子显微镜基本知识

透射电子显微镜基本知识
透射电子显微镜基本知识

透射电子显微镜基本知识

透射电子显微学介绍--人们观察物质微观结构能力的进程

俞大鹏

电子显微学是一门探索电子与固态物质结构相互作用的科学,电子显微镜把人眼睛的分辩能力从大约0.2 mm拓展至亚原子量级(<1 A),大大增强了人们观察世界的能力。电子显微学开始于上世纪30年代,经过几十年的不断发展和完善,现在已经成为凝聚态物理、半导体电子技术、材料、化学、生物、地质等多学科的非常重要的研究手段。尤其是,随着科学技术发展进入纳米科技时代,电子显微镜更是显示出其强大的威力。可以说,假如没有电子显微镜,现代科学技术是不可想象的,它的发展与其他学科的发展息息相关,密切联系在一块的。

以下是电子显微学发展史上一些重要的进程:

§世界上第一台电子显微镜始创于1932年,它由德国科学家Ruska研制,奠定了利用电子束研究物质微观结构基础;

§1946年,Boersch在研究电子与原子的相互作用时提出,原子会对电子波进行调制,改变电子的相位。他认为利用电子的相位变化,有可能观察到单个原子,分析固体中原子的排列方式。这一理论实际上成为现代实验高分辨电子显微分析方法的理论依据;

§1947年,德国科学家Scherzer提出,磁透镜的欠聚焦(即所谓的Scherzer最佳聚焦,而非通常的高斯正焦)能够补偿因透镜缺陷(球差)引起的相位差,从而可显著提高电子显微镜的空间分辨率;

§1956年,英国剑桥大学的Peter Hirsch教授等人不仅在如何制备对电子透明的超薄样品,并观察其中的结构缺陷实验方法方面有所突破,更重要的是他们建立和完善了一整套薄晶体中结构缺陷的电子衍射动力学衬度理论。运用这套动力学衬度理论,他们成功解释了薄晶体中所观察到的结构缺陷的衬度像。因此50~60年代是电子显微学蓬勃发展的时期,成为电子显微学最重要的里程碑;

晶体理论强度、位错的直接观察-50-60年代电子显微学的最大贡献;

§1957年,美国Arizona洲立大学物理系的Cowley教授等利用物理光学方法来研究电子与固体的相互作用,并用所谓“多层法”计算相位衬度随样品厚度、欠焦量的变化,从而定量解释所观察到的相位衬度像,即所谓高分辨像。Cowley教授建立和完善了高分辨电子显微学的理基础;

§1971年,Iijima等人首次获得了可解释的氧化物晶体的高分辨电镜像,证实了他们所看到的高分辨像与晶体结构具有对应关系,是晶体结构沿特定方向的二维投影;

§70~80年代,分析型电子显微技术兴起、发展,可在微米、纳米区域进行成分、结构等微分析;

§1982年,英国科学家Klug利用高分辨电子显微技术,研究了生物蛋白质复合体的晶体结构,因而获得了诺贝尔化学奖;

§1984年,美国国家标准局的Shechtman等科学家、中科院沈阳金属所的郭可信教授等,利用透射电子显微技术,发现了具有5次、8次、10次,及12次对称性的新的有序结构----准晶体,极大地丰富了材料、晶体学、凝聚态物理研究的内涵;

§1982年,瑞士IBM公司的G. Binning, H. Rohrer等人发明了扫描隧道显微镜(STM)。他们和电子显微镜的发明者Ruska一同获得1986年诺贝尔物理奖;

§1991年,日本的Iijima教授利用高分辨电子显微镜研究电弧放电阴极产物时,发现了直径仅几十纳米的碳纳米管。

最新进展:德国科学家利用计算机技术实现了对磁透镜进行球差矫正,可以实现零球差,以及负球差,从而大大提高了透射电镜的空间分辨本领,目前的最高点分辨率可以达到0.1纳米,估计5年内可以逼进0.05纳米的。此外,通过在电子束照明光源上加装单色仪,可以大大提高电镜的能量分辨率,目前最高可以获得70毫电子伏特的水平。

现代电子显微学已经发展的相当完备,从与固体作用方式上,可分为扫描电镜和透射电镜,本课程仅讲授相关的透射电子显微学部分。从实验方法上分,透射电子显微方法包括选区电子衍射(SAED)、衍射衬度分析、汇聚束衍射(CBED)、高分辨分析(HREM)、微区成分分析(EDS、EELs),及Z衬度分析等。现在还发展了电子全息分析和电子结构分析等。

现在,通过计算机辅助修正,可以实现零或负值的球差系数,大大提高了透射电镜的空间分辨率,达到低于0.1 纳米的点分辨率。另外,通过单色仪等,可以使电子束的能力分辨率低于0.1 eV,大大提高了能量分辩能力。

电子显微学的特点与可解决的问题

同其他结构表征手段相比,电子显微学具有以下几个方面的优点:

一、散射能力强:

和X射线相比,电子束的散射能力是前者的一万倍,因此可以在很微小区域获得足够的衍射强度,容易实现微、纳米区域的加工与成份研究。

二、原子对电子的散射能量远大于X-射线的散射能力

即使是微小晶粒(纳米晶体)亦可给出足够强的衍射

动力学衍射和吸收强,只能穿透薄样品

三、波长短:

Ewald球半径大,衍射图有如一个倒易点阵平面

直观,容易发生新衍射现象

d值精度差

四、束斑可聚焦:

会聚束衍射(纳米束衍射),可获得三维衍射信息,有利于分析点群、空间群对称性;

局域结构

五、成像:正空间信息:

直接观察结构缺陷

直接观察原子团(结构像)

直接观察原子(原子像),包括Z衬度像

六、衍射:倒空间信息:

选择衍射成像(衍衬像),获得明场、暗场像有利结构缺陷分析

从结构像可能推出相位信息

七、成分分析:微区分析

X射线能谱分析(EDS)

特征电子能量损失谱(EELS)

元素分布像(Element Mapping)

八、电子全息:

电子波全部信息(相位和振幅)

微观电场、磁场分布

微观应力场分布

九、全部分析结果的数字化

数据数字化,便于计算机存储与处理,与信息平台接轨

电子显微学不仅是X射线晶体学的强有力补充,特别适合微晶、薄膜等显微结构分析,对于局域微结构分析、尤其是纳米结构分析具有独特的优势。

电子显微学不足及未来发展展望

主要不足表现为:

由于电子散射能力极强,容易发生二次衍射等,解释困难;

由于为三维物体的二维平面投影像,有时像的不唯一性,解释必须谨慎;超薄样品(100纳米以下),制样过程复杂、困难,制样有损伤;

电子束对样品有辐照损伤,有时会产生非本征结构(假像);

未来发展展望:

1. 利用EELS精细结构研究电子结构;

2. 利用Z衬度,真正实现原子的化学成份的分辨;结合正空间、倒空间信息,进行三维重构,实现原子水平的空间分辨本领。

3. 最新进展:德国科学家利用计算机技术实现了对磁透镜进行球差矫正,可以实现零球差,以及负球差,从而大大提高了透射电镜的空间分辨本领,目前的最高点分辨率可以达到0.1纳米,估计5年内可以逼进0.05纳米的。此外,通过在电子束照明光源上加装单色仪,可以大大提高电镜的能量分辨率,目前最高可以获得70毫电子伏特的水平。清华大学朱静院士率先在北京建立了基于球差矫正的高性能透射电镜的北京国家电镜中心,显示中国在这方面努力的信心。

主要参考文献:

1、“近代物理实验技术”,吕斯华、朱印康编,高等教育出版社,第59页,1991。

2、“Electron Microscopy of Thin Crystals”, P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. Whelan, Robert E. Krieger Huntington press, 1977 (有中翻译本)。.

3、“Diffraction Physics”, J. Cowley, North Holland press, 1984.

4、“Experimental High-resolution Electron Microscopy”, J. C. H. Spence, Clarendon Press, Oxford, 1981.

5、郭可信、叶恒强:“高分辨电子显微学”,科学出版社,1987年。

6、朱静等编:“分析电子显微学”,科学出版社,1987年。

7、郭可信、叶恒强、吴玉琨:“电子衍射图”,1987年。

8、刘文西、黄孝英、陈玉如:“材料结构电子显微分析”,天津大学出版社,1989年。

透射电镜样品制备方法

透射电镜样品制备方法 由于电子束穿透能力限制,必须把标本切成厚度小于0.1um以下的薄片才适用,这种薄片称为超薄切片。常用的超薄切片厚度是50-70nm。 在透射电镜的样品制备方法中,超薄切片技术是最基本、最常用的制备技术。超薄切片的制作过程基本上和石蜡切片相似,需要经过取材、固定、脱水、渗透、包埋聚合、切片及染色等步骤。 一.取材的基本要求 组织从生物活体取下后,如果不立即进行适当处理,会由于细胞内部的各种酶作用,出现细胞自溶现象。此外还可能由于污染,微生物在组织内繁殖使细胞的微细结构遭受破坏,因此,为了细胞结构尽可能保持天然状态,必须做到快、小、准、冷。 (1)动作迅速,组织从活体取下后应在最短的时间内(争取1分钟内)投入2.5%戊二醛固定液。 (2)所取组织的体积要小,一般不超过1mm*1mm*1mm。也可将组织修成1mm*1mm*2mm大小长条形。因为固定剂的渗 透能力较弱,组织块如果太大,块的内部将不能得到良好的 固定。 (3)机械损伤要小,解剖器械应锋利,操作宜轻,避免牵拉、挫伤与挤压。 (4)操作最好在低温(0℃~4℃)下进行,以降低酶的活性,防

止细胞自溶。 (5)取材部位要准确。 二.取材方法 将取出的组织放在洁净的蜡版上,滴一滴预冷的固定液,用新的、锋利的刀片将组织切下并修小,然后用牙签或者镊子将组织块移至盛有冷的固定液的1.5ml离心管中。如果组织块带有较多的血液和组织液,应先用PBS洗几遍,然后切成小块固定。 1.动物及人体组织的取材(在冰浴上进行) 动物组织的取材,应麻醉(1%戊巴比铵5ml/kg体重腹腔注射)或断头急性处死,解剖出所需器官,用解剖剪刀剪取一 小块组织,放在干净的纸板上,滴一滴冷却的固定液,用新的、无油污的锋利双面刀片将材料切成大约1mm宽,2~3mm长的 小块并从中选出受损伤较小的小条,再将其切成1mm3的小块,最后用牙签将这些小块逐一放入盛有预冷的、新鲜固定液的 1.5ml管内,放入冰箱冷藏室低温固定(0~4℃)2-4小时或以 上。 *固定结束后,将固定液用PBS稀释三倍,样品于该溶液中在4℃冰箱保存。送样前请用PBS浸泡清洗3次,贴好标签 送至电镜室。 2.体外培养细胞的取材(在冰浴上进行) 培养在培养瓶中的细胞取材时,先倒出部分培养液,然后用刮刀轻轻刮下瓶壁上的细胞,将细胞悬液转移到离心管中,

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

TEM-透射电镜习题答案及总结

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体内向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成各系统之间关系如何 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统是其核心。其他系统为辅助系统。 2、照明系统的作用是什么它应满足什么要求 答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。它的作用是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场和暗场成像需求。 3、成像系统的主要构成及其特点、作用是什么 答:主要由物镜、物镜光栏、选区光栏、中间镜和投影镜组成. 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a.提高像衬度,b.减小孔经角,从而减小像差。C.进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a.控制电镜总放大倍数。B.成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜内孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏和底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并 画出光路图。 答:如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图(b)所示。

透射电镜的样品制备方法详解

透射电镜的样品制备 透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束"透明"的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好). 透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备. (1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可. (2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤: a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直

接切割. b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来. c预减薄使用凹坑减薄仪可将薄圆片磨至10μm厚.用研磨机磨(或使用砂纸),可磨至几十μm. d终减薄对于导电的样品如金属,采用电解抛光减薄,这方法速度快,没有机械损伤,但可能改变样品表面的电子状态,使用的化学试剂可能对身体有害.对非导电的样品如陶瓷,采用离子减薄,用离子轰击样品表面,使样品材料溅射出来,以达到减薄的目的.离子减薄要调整电压,角度,选用适合的参数,选得好,减薄速度快.离子减薄会产生热,使样品温度升至100~300度,故最好用液氮冷却样品.样品冷却对不耐高温的材料是非常重要的,否则材料会发生相变,样品冷却还可以减少污染和表面损伤.离子减薄是一种普适的减薄方法,可用于陶瓷,复合物,半导体,合金,界面样品,甚至纤维和粉末样品也可以离子减薄(把他们用树脂拌合后,装入φ3mm金属管,切片后,再离子减薄).也可以聚集离子术(FIB)对指定区域做离子减薄,但FIB很贵.对于软的生物和高分子样品,可用超薄切片方法将样品切成小于100nm的薄膜.这种技术的特点是样品不会改变,缺点是会引进形变.(3)金属试样的表面复型即把准备观察的试样的表面形貌(表面显微组织浮凸)用适宜的非晶薄膜复制下来,然后对这个复制膜(叫做复型)进行透射电镜观察与分析.复型适用于金相组织,断口形貌,形变条纹,磨损表面,第二相形态及分布,萃取和结构分析等. 制备复型的材料本身必须是"无结构"的,即要求复型材料在高倍成像时也

透射电子显微镜的结构、原理和衍衬成像观察

透射电子显微镜的结构、原理和衍衬成像观察实验报告 一、实验目的 1、了解透射电子显微电镜的基本结构; 2、熟悉透射电子显微镜的成像原理; 3、了解基本操作步骤。

二、实验内容 1、了解透射电子显微镜的结构; 2、了解电子显微镜面板上各个按钮的位置与作用; 3、无试样时检测像散,如存在则进行消像散处理; 4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 (一)、透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 (1)照明系统 照明系统主要由电子枪和聚光镜组成。

电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。 图1 热发射电子枪图2 场发射电子枪 聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。电镜一般都采用双聚光镜系统。 图3 双聚光镜的原理图 (2)成像系统 成像系统由物镜、中间镜和投影镜组成。 物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。物镜的质量好坏直接影响到整过系统的成像质量。物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。提高物镜分辨率是提高整个系统成像质量的关键。

透射电子显微镜(材料分析方法)

第九章透射电子显微镜 一、透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统、电源与控制系统及真空系统三部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它与光路原理与透射光学显微镜十分相似,如图1(书上图9-1)所示。它分为三部分,即照明系统、成像系统和观察记录系统。 图1 透射显微镜构造原理和光路 (a)透射电子显微镜b)透射光学显微镜) (1、照明源2、阳极3、光阑4、聚光镜5、样品6、物镜7、物镜光阑 8、选区光阑9、中间镜10、投影镜11、荧光屏或照相底片) (一)照明系统 照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。其作用是提供一束亮度高、照明孔径角小、平行度好、束流稳定的照明源。为满足明场和暗

场成像需要、照明束可在2°~3°范围内倾斜。电子枪是电镜的照明源,必须有很高的亮度,高分辨率要求电子枪的高压要高度稳定,以减小色差的影响。 1、电子枪 电子枪是透射电子显微镜的电子源,是发射电子的照明源。常用的是热阴极三极电子枪,它由发夹形钨丝阴极、栅极帽和阳极组成,如图2(书上图9-2)所示。(发射电子的阴极灯丝通常用0.03~0.1mm的钨丝,做成“V”形。电子枪的第二个电极是栅极,它可以控制电子束形状和发射强度。故有称为控制极。第三个极是阳极,它使阴极发射的电子获得较高的动能,形成定向高速的电子流。阳极又称加速极,一般电镜的加速电压在35~300kV之间。为了安全,使阳极接地,而阴极处于负的加速电位。由于热阴极发射电子的电流密度随阴极温度变化而波动,阴极电压不稳定会影响加速电压的稳定度。为了稳定电子束电流,减小电压的波动,在电镜中采用自偏压电子枪。) 图a为电子枪的自偏压回路,负的高压直接加在栅极上,而阴极和负高压之间因加上一个偏压电阻,使栅极和阴极之间有一个数百伏的电位差。图b中反映了阴极、栅极和阳极之间的等位面分布情况。因为栅极比阴极电位值更负,所以可以用栅极来控制阴极的发射电子有效区域。当阴极流向阳极的电子数量加大时,在偏压电阻两端的电位值增加,使栅极电位比阴极进一步变负,由此可以减小灯丝有效发射区域的面积,束流随之减小。若束流因某种原因而减小时,偏压电阻两端的电压随之下降,致使栅极和阴极之间的电位接近。此时,栅极排斥阴极发射电子的能力减小,束流又可望上升。因此,自偏压回路可以起到限制和稳定束流的作用。由于栅极的电位比阴极负,所以自阴极端点引出的等位面在空间呈弯曲状。在阴极和阳极之间的某一地点,电子束会汇集成一个交叉点,这就是通常所说的电子源。交叉点处电子束直径约几十个微米。 从图A中看出,自偏压是由束流本身产生的,自偏压U b将正比于束流I b即:U b=RI b。这样如果增加,会导致偏压增加,从而抵消束流的增加,这是偏压电阻引起负反馈的结果。它起着限制和稳定束流的作用。改变偏压电阻的大小可以控制电子枪的发身,当电阻R值增大时,控制极上的负电位增高,因此控制极排斥电子返回阴极的作用加强。在实际操作中,一般是给定一个偏压电阻后,加大灯丝电流,提高阴极温度,使束流增加。开始束流随阴极温度升高而迅速上升,然后逐渐减慢,在阴极温度达到某一数值时,束流不再随灯丝温度或灯丝电流变化而变化。此值称为束流饱和点,它是由给定偏压电子负反馈作用来决定的。在这以后再加大灯丝电流,束流不再增加,只能使灯丝温度升高,缩短灯丝寿命。另一种使束流饱和的方法是固定阴极发射温度,即选定一个灯丝电流值,然后加大偏压电阻,增大负偏压,使束流达到饱和点。当阴极温度比较高时,达到束流饱和所需要的偏压电阻要小些,当偏压电阻较大时,达到饱和所需要的阴极温度要低些。两者合理匹配使灯丝达到

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

透射电镜样品制作(2015-12-11)

透射电镜样品包埋块制作原理步骤 一、取材: 1、动作迅速:组织离体后,应将其快速放入4℃戊二醇固定液中,使组织细胞尽可能保持原来的生活状态。 2、减少损伤:选择锋利切割器械,减少牵拉或挤压组织。 3、组织块大小:取材医生可先切成长条形,然后再修成约1mm3大小。 二、固定: 固定目的是把细胞在活体状态时的超微结构细节尽可能完整地保存下来,避免自身酶的分解而出现自溶,或因外界微生物的入侵繁殖而产生腐败,致使细胞的超微结构遭受破坏。同时也使细胞内的各种成分固定下来,避免以后的冲洗和脱水时溶解和流失。理想的固定剂应具备以下特点:能够迅速又均匀地渗透到组织结构内;能够稳定细胞各种结构成分,使之在以后处理过程中不致溶解和丢失;对细胞超微结构没有损伤;能供细胞化学测定并能增强图像反差。当然,满足所有要求的固定剂是不存在的,目前常用固定剂有锇酸和戊二醇。 1.使用锇酸的注意事项: 锇酸即四氧化锇,它能和细胞内绝大多部分成分反应,且能够保护脂肪,但对碳水化合物、糖类和核酸保护作用差,锇酸渗透差,分子密度大,经锇酸固定的组织在电镜下能获得较好反差。锇酸为剧毒、极易挥发的试剂,对呼吸道有强烈刺激作用,必须在通风橱中操作,废液必须收集在密闭容器中。常用的锇酸溶液为2%的储备液,使用之前需用0.2MPBS稀释成1%的锇酸溶液。 2.戊二醇 戊二醇能够稳定糖原,同时保存某些锇酸保护作用差的蛋白质结构,对酶活性破坏小。对微管、滑面内质网等固定较好,对脂肪保护差,且反差小,因此必须和锇酸配合使用,即“双重固定法”。 3.固定方法: 样本先用2.5%戊二醇在4℃下固定2h,经PBS缓冲液多次清洗后再用1%锇酸固定2h。根据不同组织,可适当延长固定时间。由于戊二醇能够和锇酸反应产生电子致密的还原锇沉淀,组织经戊二醇固定后,必须将戊二醇清洗干净才能转入锇酸。此外,锇酸又能和乙醇作用生成沉淀,因此锇酸固定后也应用PBS清洗液进行清洗干净方能进行脱水处理。一般清洗3次,每次15min左右(或过夜)。 三、脱水:脱水是将组织中的游离水彻底清除的过程。由于常用的包埋剂,如环氧树脂,大多都是非水溶 性树脂,只有将生物组织中的游离水清除干净,包埋剂才能浸入组织,常用脱水剂是乙醇和丙酮。乙醇对细胞物质抽提少,组织收缩也少,但它和环氧树脂互溶性差,因此使用乙醇脱水时须用环氧丙烷作为中间溶剂。丙酮和酒精、环氧丙烷互溶,所以通常先用乙醇后再用丙酮的脱水方法。急剧脱水会引起细胞收缩,因此应采用逐级脱水(50%-70%-90%-100%乙醇)而不能急剧脱水。更换溶液时动作要快,特别是不要让组织离开溶液,否则会在组织内外产生气泡;脱水过程中若要长时间停留或过夜,应放在70%乙醇或丙酮中,并在4℃保存。 四、包埋 1.渗透:渗透就是用包埋剂逐渐取代组织中的脱水剂,使细胞内外空隙被包埋剂所填充。一般可先用环氧丙烷对半稀释的包埋剂浸透1-2h,再用纯包埋剂37℃烤箱渗透2h左右。包埋剂通常由树脂、硬化剂、增塑剂及催化剂4种试剂按一定比例配制而成。 2.包埋:目的是以包埋剂完全浸透到组织内部,经加温逐渐聚合成坚硬固体。理想包埋剂应具备的条件:黏稠适中,有良好切割性;能经受电子轰击;透明度较好;对人体无害。目前常用国产环氧树脂618、Epon812环氧树脂、及低黏度包埋剂Spurr。 3.环氧树脂:环氧树脂为热塑性树脂,主要有两种化学反应基团,即环氧基和羟基。末端环氧基易与其他含活性氢原子化合物如胺类反应,形成首尾相接的长链状聚合物。单体中羟基能与酸酐结合,形成分子间横桥连接。因此,把环氧树脂单体、胺类、酸酐等三者按一定比例混合,加上适当温度,可形成稳定的交 1

电镜切片样品制作步骤

扫描电镜样品的准备 A悬浮培养的细胞、细菌、血细胞、精子等; 细胞使用PBS或无血清培养基离心漂洗1~2次以去除血清,离心转速依据不同离心机、不同样品自定,总时间控制在5min内;细胞团根据预设浓度在适量 2.5%戊二醛吹悬,滴加在预先置入青霉素小瓶中的托盘,4℃静置沉降2~3天,在托盘周围加入PBS,以防止样品干燥。 B贴壁培养的细胞: 在培养皿中预先加入盖玻片,使细胞贴附于盖玻片上;PBS或无需请培养基漂洗后,放置在培养板室温固定1h,4℃3 h,注意放置干燥,自行转入青霉素小瓶中,加满PBS送检。 SEM标本处理必须使用玻璃容器,需明确所用盖玻片尺寸可以放入青霉素瓶。 C组织取材 样品观察表面可达8~10mm2,高度小于5mm左右; 样品表面在固定前必须清洁: 使用生理盐水或PBS冲洗掉表面的灰尘以及不需要观察的蛋白、粘液等。能够明确标识标本的观察面。消化道、呼吸道、血管、生殖器官、泌尿等官腔内表面,尤其要注意先清洗再固定。 如需要观察脏器内结构,应依照不同的实验目的,决定目的脏器是否需要灌注清洗;固定 2.5%戊二醛浸没标本,室温1h,4℃固定3h以上,换PBS送检。 附: 2.5%戊二醛的配制

Step 1: 0.2M磷酸缓冲液的配制:--------------------- 磷酸二氢钠(NaH2PO 4.H2O) 2.6xx 磷酸氢二钠(Na2HPO 4.12H2O)29xx 双蒸馏水加至500毫升pH调至 7.4 Step 2: 戊二醛固定液的配制: --------------------- 25%戊二醛1ml 双蒸馏水4ml 0.2mol/L磷酸缓冲液5ml 戊二醛最终浓度 2.5% pH值 7.3-

TEM制样方法及详细步骤

由透射电镜的工作原理可知,供透射电镜分析的样品必须对电子束是透明的;此外,所制得的样品还必须可以真实反映所分析材料的某些特征,因此,样品制备在透射电子显微分析技术中占有相当重要的位置,也是一个涉及面很广的题目。大体上透射电镜样品可分为间接样品和直接样品。我们下面将对间接样品的制备作简单介绍。 间接样品“复型”可以分为五步来进行: 第一步,在拟分析的样品表面滴一滴丙酮,将醋酸纤维素薄膜即A.C.纸覆盖其上,适当按压形成不夹气泡的一级复型; 第二步,待上述一级复型干燥后,小心地将其剥离,并将复制面向上平整地固定在玻璃片上; 第三步,将固定好复型地玻璃片连同一白瓷片置于真空镀膜室中,以垂直方向喷涂碳,以制备由塑料和碳膜构成地“复合复型”。白色瓷片表面在喷碳过程中颜色的变化可以表示碳膜的厚度。 第四步,将复合复型上要分析的区域剪为略小于样品台钢网的小方块后,使碳膜面朝里,贴在事先熔在干净玻璃片上的低熔点石蜡层上,石蜡液层冷凝后即把复合膜块固定在玻璃片上。将该玻璃片放入丙酮液中,复合复型的A.C.纸在丙酮中将逐渐被溶解,同时适当加热以溶解石蜡。 最后,待AC纸和石蜡溶解干净后,碳膜(即二级复型)将漂浮在丙酮液中,将其转移至清洁的丙酮液中清洗后,再转移至盛蒸馏水的器皿中。此时,由于水的表面张力,碳膜会平展地漂浮在水面,用样品铜网将其捞起,干燥后即可置于电镜下观察。

透射电镜的样品制备是一项较复杂的技术,它对能否得到好的TEM像或衍射谱是至关重要的.投射电镜是利用样品对如射电子的散射能力的差异而形成衬度的,这要求制备出对电子束"透明"的样品,并要求保持高的分辨率和不失真.电子束穿透固体样品的能力主要取决加速电压,样品的厚度以及物质的原子序数.一般来说,加速电压愈高,原子序数愈低,电子束可穿透的样品厚度就愈大.对于100~200KV的透射电镜,要求样品的厚度为50~100nm,做透射电镜高分辨率,样品厚度要求约15nm(越薄越好). 透射电镜样品可分为:粉末样品,薄膜样品,金属试样的表面复型.不同的样品有不同的制备手段,下面分别介绍各种样品的制备. (1)粉末样品因为透射电镜样品的厚度一般要求在100nm以下,如果样品厚于100nm,则先要用研钵把样品的尺寸磨到100nm以下,然后将粉末样品溶解在无水乙醇中,用超声分散的方法将样品尽量分散,然后用支持网捞起即可. (2)薄膜样品绝大多数的TEM样品是薄膜样品,薄膜样品可做静态观察,如金相组织;析出相形态;分布,结构及与基体取向关系,错位类型,分布,密度等;也可以做动态原位观察,如相变,形变,位错运动及其相互作用.制备薄膜样品分四个步骤: a将样品切成薄片(厚度100~200微米),对韧性材料(如金属),用线锯将样品割成小于200微米的薄片;对脆性材料(如Si,GaAs,NaCl,MgO)可以刀将其解理或用金刚石圆盘锯将其切割,或用超薄切片法直接切割. b切割成φ3mm的圆片用超声钻或puncher将φ3mm薄圆片从材料薄片上切下来.

透射电镜常规样品制备流程

透射电镜样品制备流程 由于透射电镜能观察的样品必须很薄(60~70nm),所以透射电镜的样品准备要求很严格,方法也很单一,仅有一下两种方法: 一.负染色技术 负染色技术简单快速,可以显示生物大分子、细菌、分离的细胞器以及蛋白晶体等样品的形态、结构、大小以及表面结构的特征。尤其在病毒学中,负染色技术有着广泛的应用。 样品要求:①样品悬液的纯度不要求很纯,但是如果杂质太多,如大量的细胞碎片,培养基残渣,糖类以及各种盐类结晶的存在都会干扰染色反应和电镜的观察。尤其是不能有过多的糖类,因为在电子束的轰击下,糖类容易碳化而有碍观察,因此样品要适当提纯。②样品悬液的浓度要适中,太稀在电镜下很难找到样品,太浓样品堆积影响观察。 操作流程:吸取样品悬液滴到有膜的铜网上,静置数分钟,然后用滤纸吸去多余的液体,滴上负染色液,染色1~2min后滤纸吸去负染色液,待干后用于电镜观察。 二、超薄切片技术 超薄切片技术是为透射电镜观察提供薄样品的专门技术,是生物学中研究细胞超微结构最常用的技术。广泛应用于生物体的各种细胞的超微结构观察。一般厚度在10~100nm的切片称为超薄切片,制作这种切片的技术叫做超薄切片技术。超薄切片制作的过程包括取材、固定、脱水、渗透、包埋、聚合、切片和染色等几个环节,和一般光学显微镜的石蜡切片过程相似。但是,超薄切片切片过程更为细致与复杂,要求更严格,而且所用的试剂比较昂贵、配制复杂、强致癌。具体操作步骤、注意事项如下: 1.取材和前固定:快速的切取大小为0.5~1.0mm3的样品块,一分钟内把组织(样品)块浸入2.5%戊二醛(进口品质)溶液(取样前来平台领取),每个离心管内装20个以上的样品块,作为一个样送到平台。要求:①取材前一定要和工作人员取得电话联系!②取材选择部位要准确可靠,确保每块材料都是要观察的部位。③所有植物样品一定要抽真空,能够沉底的样品也抽真空15mins,不能沉底的样品一定要抽真空致沉底!④细菌、散在细胞等不能成块的样品,加戊二醛固定液,离心沉淀后送到平台,由平台工作人员处理。⑤泡在前固定液的材料最多可以放2周。 2.漂洗:用1M PBS Buffer Ph 7.2冲洗3次,每次15mins。 3.后固定:加入1%锇酸处理到样品变黑。植物样品一般处理2.5hours,真菌、细菌一般处理2hours,动物样品处理1hours。注意事项:①锇酸剧毒物质,易挥发,操作时要在毒品柜中谨慎使用。②锇酸比较昂贵,需特别节约使用。

透射电镜粉末样品制备方法

一、样品要求 1.粉末样品基本要求 (1)单颗粉末尺寸最好小于1μm; (2)无磁性; (3)以无机成分为主,否则会造成电镜严重的污染,高压跳掉,甚至击坏高压枪; 2.块状样品基本要求 (1)需要电解减薄或离子减薄,获得几十纳米的薄区才能观察; (2)如晶粒尺寸小于1μm,也可用破碎等机械方法制成粉末来观察; (3)无磁性; (4)块状样品制备复杂、耗时长、工序多、需要由经验的老师指导或制备;样品的制备好坏直接影响到后面电镜的观察和分析。所以块状样品制备之前,最好与TEM的老师进行沟通和请教,或交由老师制备。 二、送样品前的准备工作 1.目的要明确:(1)做什么内容(如确定纳米棒的生长方向,特定观察分析某个晶面的缺陷,相结构分析,主相与第二相的取向关系,界面晶格匹配等等);(2)希望能解决什么问题; 2.样品通过X-Ray粉末衍射(XRD)测试、并确定结构后,再决定是否做HRTEM;这样即可节省时间,又能在XRD 的基础上获得更多的微观结构信息。 3.做HRTEM前,请带上XRD数据及其他实验结果,与HRTEM老师进行必要的沟通,以判断能否达到目的;同时HRTEM老师还会根据您的其他实验数据,向您提供好的建议,这样不但能满足您的要求,甚至使测试内容做得更深,提高论文的档次。 三、粉末样品的制备 1.选择高质量的微栅网(直径3mm),这是关系到能否拍摄出高质量高分辨电镜照片的第一步;(注:高质量的微栅网目前本实验室还不能制备,是外购的,价格20元/只;普通碳膜铜网免费提供使用。) 2.用镊子小心取出微栅网,将膜面朝上(在灯光下观察显示有光泽的面,即膜面),轻轻平放在白色滤纸上; 3.取适量的粉末和乙醇分别加入小烧杯,进行超声振荡10~30min,过3~5 min 后,用玻璃毛细管吸取粉末和乙醇的均匀混合液,然后滴2~3滴该混合液体到微

透射电镜样品的制备方法(精)

试验材料为经过热处理后的钢材! 一、样品要求 1.粉末样品基本要求 (1)单颗粉末尺寸最好小于1μm; (2)无磁性; (3)以无机成分为主,否则会造成电镜严重的污染,高压跳掉,甚至击坏高压枪; 2.块状样品基本要求 (1)需要电解减薄或离子减薄,获得几十纳米的薄区才能观察; (2)如晶粒尺寸小于1μm,也可用破碎等机械方法制成粉末来观察; (3)无磁性; (4)块状样品制备复杂、耗时长、工序多、需要由经验的老师指导或制备;样品的制备好坏直接影响到后面电镜的观察和分析。所以块状样品制备之前,最好与TEM的老师进行沟通和请教,或交由老师制备。 二、送样品前的准备工作 1.目的要明确:(1)做什么内容(如确定纳米棒的生长方向,特定观察分析某个晶面的缺陷,相结构分析,主相与第二相的取向关系,界面晶格匹配等等);(2)希望能解决什么问题; 2.样品通过X-Ray粉末衍射(XRD)测试、并确定结构后,再决定是否做HRTEM;这样即可节省时间,又能在XRD的基础上获得更多的微观结构信息。 3.做HRTEM前,请带上XRD数据及其他实验结果,与HRTEM老师进行必要的沟通,以判断能否达到目的;同时HRTEM老师还会根据您的其他实验数据,向您提供好的建议,这样不但能满足您的要求,甚至使测试内容做得更深,提高论文的档次。 三、粉末样品的制备 1.选择高质量的微栅网(直径3mm),这是关系到能否拍摄出高质量高分辨电镜照片的第一步;(注:高质量的微栅网目前本实验室还不能制备,是外购的,价格20元/只;普通碳膜铜网免费提供使用。) 2.用镊子小心取出微栅网,将膜面朝上(在灯光下观察显示有光泽的面,即膜面),轻轻平放在白色滤纸上; 3.取适量的粉末和乙醇分别加入小烧杯,进行超声振荡10~30min,过3~5 min 后,用玻璃毛细管吸取粉末和乙醇的均匀混合液,然后滴2~3滴该混合液体到微栅网上(如粉末是黑色,则当微栅网周围的白色滤纸表面变得微黑,此时便适中。滴得太多,则粉末分散不开,不利于观察,同时粉末掉入电镜的几率大增,严重影响电镜的使用寿命;滴得太少,则对电镜观察不利,难以找到实验所要求粉末颗粒。建议由老师制备或在老师指导下制备。)

第二十五章 透射电子显微镜分析

—1— 第25章 透射电子显微镜 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段。电子显微学是一门探索电子与固态物质结构相互作用的科学,电子显微镜把人眼睛的分辨能力从大约0.2 mm 拓展至亚原子量级(<0.1nm),大大增强了人们观察世界的能力。尤其是近20多年来,随着科学技术发展进入纳米科技时代,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究;没有电子显微镜,开展现代科学技术研究是不可想象的。目前,它的发展已与其他学科的发展息息相关,密切联系在一起。 25.1 基本原理 透射电子显微镜在成像原理上与光学显微镜是类似的(图25-1),所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 理论上,光学显微镜所能达到的最大分辨率d ,受到照射在样品上的光子波长λ以及光学系统的数值孔径N A 的限制: 2sin 2A d n N λ λ α=≈ (25-1) 在20世纪初,科学家就已发现理论上使用电子可以突破可见光的光波波长限制(波长范围400~700nm )。由于电子具有波粒二象性,而电子的波动特性则意味着一束电子具有与一束电磁辐射相似的性质。电子波长可以通过徳布罗意公式使用电子的动能推导出。由于在TEM 中,电子的速度接近光速,需要对其进行相对论修正: e λ≈ (25-2) 式中,h 表示普朗克常数;m 0表示电子的静质量;E 是加速电子的能量;c 为光速。电子显微镜中的电子通常通过电子热发射过程或者采用场电子发射方式得到。随后电子通过电势差进行加速,并通过静电场与电磁透镜聚焦在样品上。透射出的电子束包含有电子强度、相位、以及周期性的信息,这些信息将被用于成像。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚衬度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,衬度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格(Bragg )方程,产生衍射现象,在衍射衬度模式中,像平面上图像的衬度来源于两个方面,一是质量、厚度因素,二是衍射因素;在晶体样品超薄的情况下(如10nm 左右),可使透射电子显微镜具有高分辨成像的功能,可用于材料结构的精细分析,

透射电子显微镜样品制备技术

透射电子显微镜样品制备技术 样品制备的方法随生物材料的类型以及研究目的而各有不同。对生物组织和细胞等,一般多用超薄切片技术,将大尺寸材料制成适当大小的超薄切片,并且利用电子染色、细胞化学、免疫标记及放射自显影等方法显示各种超微结构、各种化学物质的部位及其变化。对生物大分子(蛋白质、核酸)、细菌、病毒和分离的细胞器等颗粒材料,常用投影、负染色等技术以提高反差,显示颗粒的形态和微细结构。此外还有以冷冻固定为基础的冷冻断裂──冰冻蚀刻、冷冻置换、冷冻干燥等技术。 超薄切片术将小块生物材料,用液态树脂单体浸透和包埋,并固化成塑料块,后用超薄切片机切成厚度为500埃左右,甚至只有50埃的超薄切片。超薄切片的制备程序与光学显微镜的切片程序类似,但各步骤的要求以及所使用的试剂和操作方法有很大差别。 固定选用适宜的物理或化学的方法迅速杀死组织和细胞,力求保持组织和细胞的正常结构,并使其中各种物质的变化尽可能减小。固定能提高细胞承受包埋、切片、染色以及电子束轰击的能力。主要固定方法有: ①快速冷冻,用致冷剂(如液氮、液体氟利昂、液体丙烷等)或其他方法使生物材料急剧冷冻,使组织和细胞中的水只能冻结成体积极小的冰晶甚至无定形的冰──玻璃态。这样,细胞结构不致被冰晶破坏,生物大分子可保持天然构型,酶及抗原等能保存其生物活性,可溶性化学成分(如小分子有机物和无机离子)也不致流失或移位。用冷冻的组织块,可进行切片、冷冻断裂、冷冻干燥和冷冻置换等处理。用此法固定的样品既可提供组织、细胞结构的形态学信息,又可提供相关的细胞化学信息。②化学固定,固定剂有凝聚型和非凝聚型两种,前

者如光学显微术中常用的乙醇、二氯化汞等,此法常使大多数蛋白质凝聚成固体,结构发生重大变化,常导致细胞的细微结构出现畸变。非凝聚型固定剂包括戊二醛、丙烯醛和甲醛等醛类固定剂和四氧化锇,四氧化钼等,适用于电子显微。它们对蛋白质有较强的交联作用,可以稳定大部分蛋白质而不使之凝聚,避免了过分的结构畸变。它们与细胞蛋白质有较强的化学亲和力,固定处理后,固定剂成为被固定的蛋白质的一部分。如用含有重金属元素的固定剂四氧化锇(也是良好的电子染色剂)进行固定,因为锇与蛋白质结合,增强了散射电子的能力,提高了细胞结构的反差。采用一种以上固定剂的多重固定方法,如采用戊二醛和四氧化锇的双固定法,能较有效地减少细胞成分的损失。此外,固定剂溶液的浓度、pH 及所用的缓冲剂类型、渗透压、固定时间和温度等对固定效果都有不同程度的影响。 固定操作方法通常是先将材料切成1立方毫米左右小块,浸在固定液中,保持一定温度(通常为4℃),进行一定时间的固定反应。取材操作要以尽可能快的速度进行,以减少组织自溶作用造成的结构破坏。对某些难以固定的特殊组织,如脑、脊髓等,最好使用血管灌注方法固定,即通过血管向组织内灌注固定液,使固定液在组织发生缺氧症或解剖造成损伤之前,快速而均匀地渗透到组织的所有部分。灌注固定的效果比浸没固定好得多。 脱水化学固定后,将材料浸于乙醇、丙酮等有机溶剂中以除去组织的游离水。为避免组织收缩,所用溶剂需从低浓度逐步提高到纯有机溶剂,逐级脱水。 浸透脱水之后,用适当的树脂单体与硬化剂的混合物即包埋剂,逐步替换组织块中的脱水剂,直至树脂均匀地浸透到细胞结构的一切空隙中。 包埋浸透之后,将组织块放于模具中,注入树脂单体与硬化剂等混合物,通

透射电子显微镜实验讲义

一、实验名称 透射电子显微镜用于无机纳米材料的检测。 二、实验目的 1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构; 2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成 像、高分辨成像、电子衍射和能谱分析等; 3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括: 材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。 三、实验原理 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。 透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格

透射电镜样品制备方法

?透射电子显微镜成像时,电子束是透过样品成像。 ?由于电子束的穿透能力比较低,用于透射电子显微镜分析的样品必须很薄。 ?根据样品的原子序数大小不同,一般在50~500nm之间。 透射电镜样品的要求: ?1. 样品必须对电子束透明。 ?2. 所制得样品必须具有代表性,以真实反映所分析材料的特征。 主要方法: 粉末样品、复型、离子减薄、电解双喷。

?透射电镜观察用的样品很薄,需放在专用的样品铜网上。 ?透射电子显微镜使用的铜网一般直径为3毫米,上面铳有许多微米大小的孔,在铜网上覆盖了一层很薄的火棉胶膜并在上面蒸镀了碳层以增加其膜的强度,被分析样品就承载在这种支撑膜上。

样品铜网的作用: ?承载样品,并使之在物镜极靴孔内平移、倾斜、旋转,寻找观察区。 ?样品通常放在外径3mm ,200目方孔或圆孔的铜网上,铜网牢固夹持在样品座中保持好的热、点接触,减少因电子照射引起的热或电荷积累而产生样品漂移或损伤。 样品台

透射电子显微镜样品制备 电镜观察时样品受到的影响: (1)真空的影响。含有挥发溶剂或易升华的试样必须冷冻后观 察。 (2)电子损伤的影响。试样在电镜中受到l0-3~1A/cm2的电子 束照射,电子束的能量部分转化为热,使试样内部结构或外形发生变化或污染。观察有机物或聚合物试样时,为防止电子束对试样的损伤和污染,应提高电压。 (3)电子束透射能力的影响。由于电子束透射能力较弱,一般 100kv加速电压时,试样厚度必须在20~200nm之间。

粉末样品制备 ?随着材料科学的发展,超细粉体及纳米材料发展很快,而粉末的颗粒尺寸大小、尺寸分布及形态对最终制成材料的性能有显著影响,因此,如何用透射电镜来观察超细粉末的尺寸和形态便成了电子显微分析的一的一项重要内容。 ?其关键工作是是粉末样品的制备,样品制备的关键是如何将超细粉的颗粒分散开来,使其均匀分散到支持膜上,各自独立而不团聚。

扫描透射电子显微镜模式分析

A general introduction to STEM detector 1. BF detector It is placed at the same site as the aperture in BF-TEM and detects the intensity in the direct beam from a point on the specimen. 2. ADF detector The annular dark field (ADF) detector is a disk with a hole in its center where the BF detector is installed. The ADF detector uses scattered electrons for image formation, similar to the DF mode in TEM.The measured contrast mainly results from electrons diffracted in crystalline areas but is superimposed by incoherent Rutherford scattering. 3. HAADF detector The high-angle annular dark field detector is also a disk with a hole, but the disk diameter and the hole are much larger than in the ADF detector. Thus, it detects electrons that are scattered to higher angles and almost only incoherent Rutherford scattering contributes to the image. Thereby, Z contrast is achieved.

相关主题
文本预览
相关文档 最新文档