当前位置:文档之家› 第二章(四) 计算机控制系统的离散化设计方法(全)

第二章(四) 计算机控制系统的离散化设计方法(全)

自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

精心整理 ----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3 4.(x()∞5.(5解:(G 6.(5试用Z 解:二、( (i X s ) z 图1 1.(5分)试求系统的闭环脉冲传递函数 () () o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。

解:1.101 1 1 1 11 1()(1)(1)11(1)1(1)()1e 11e 1e G G z z Z s s z Z s s z z z z z z z e z -------??=-??+????=--??+?? =-----=---= -1 1 010******* 1e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------== -++--=-+--=-+- 2.(5 三、(8 已知(z)1Φ=1.(3分)简述离散系统与连续系统的主要区别。 解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。 2.(3分)简述线性定常离散系统的脉冲传递函数的定义。 解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。 3.(3分)简述判断线性定常离散系统稳定性的充要条件。 解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(5分)设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。

离散系统稳定性分析

实验一 离散系统稳定性分析 实验学时:2 实验类型:常规 实验要求:必作 一、实验目的: (1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法; (3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。 二、实验原理: 1、离散系统零极点图及零极点分析; 线性时不变离散系统可用线性常系数差分方程描述,即 ()()N M i j i j a y n i b x n j ==-= -∑∑ (8-1) 其中()y k 为系统的输出序列,()x k 为输入序列。 将式(8-1)两边进行Z 变换的 00 ()()()() () M j j j N i i i b z Y z B z H z X z A z a z -=-== = = ∑∑ (8-2) 将式(8-2)因式分解后有: 11 () ()() M j j N i i z q H z C z p ==-=- ∏∏ (8-3) 其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。 系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。 因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性: ● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;

离散系统的频率特性; 1.1、零极点图的绘制 设离散系统的系统函数为 ()()() B z H z A z = 则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为: p=roots(A) 其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。如多项式为231()4 8 B z z z =+ + ,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8]; P=roots(A) 运行结果为: P = -0.5000 -0.2500 需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。这两种方式在构造多项式系数向量时稍有不同。 (1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐;如 3 4 3 2 2()3221 z z H z z z z z += ++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。 (2)()H z 按1z -的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。如 1 1 2 12()11124 z H z z z ---+= + + 其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。 用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。下面是求系统零极点,并绘制其零极点图的MA TLAB 实用函数ljdt(),同时还绘制出了单位圆。 function ljdt(A,B) % The function to draw the pole-zero diagram for discrete system p=roots(A); %求系统极点 q=roots(B); %求系统零点 p=p'; %将极点列向量转置为行向量

燃烧控制系统的设计(DOC)

目录 一绪论...................................................................................................................................... 二燃烧控制系统的设计 2.1燃烧过程控制任务 2.2燃烧过程调节量 2.3燃烧过程控制特点 三燃料控制系统 ........................................................................................................................ 3.1燃料调节系统...................................................................................................................... 3.2燃料调节——测量系统...................................................................................................... 3.3给煤机指令.......................................................................................................................... 四600MW火电机组DCS系统设计 4.1 电源部分 4.2 通信部分 4.3 系统接地 4.4 软件部分 五结论................................................................................................................................... 参考文献...................................................................................................................................

热工控制系统课程设计样本

热工控制系统课程设计 题目燃烧控制系统 专业班级: 能动1307 姓名: 毕腾 学号: 02400402 指导教师: 李建强 时间: .12.30— .01.12

目录 第一部分多容对象动态特性的求取 (1) 1.1、导前区 (1) 1.2、惰性区 (2) 第二部分单回路系统参数整定 (3) 2.1、广义频率特性法参数整定 (3) 2.2、广义频率特性法参数整定 (5) 2.3分析不同主调节器参数对调节过程的影响 (6) 第三部分串级控制系统参数整定....................... (10) 3.1 、蒸汽压力控制和燃料空气比值控制系统 (10) 3.2 、炉膛负压控制系统 (10) 3.3、系统分析 (12) 3.4有扰动仿真 (21) 第四部分四川万盛电厂燃烧控制系统SAMA图分析 (24) 4.1、送风控制系统SAMA图简化 (24) 4.2、燃料控制系统SAMA图简化 (25) 4.3、引风控制系统SAMA图简化 (27) 第五部分设计总结 (28)

第一部分 多容对象动态特性的求取 某主汽温对象不同负荷下导前区和惰性区对象动态如下: 导前区: 136324815.02++-S S 惰性区: 1 110507812459017193431265436538806720276 .123456++++++S S S S S S 对于上述特定负荷下主汽温导前区和惰性区对象传递函数, 能够用两点法求上述主汽温对象的传递函数, 传递函数形式为 w(s)= n TS K )1(+,再利用 Matlab 求取阶跃响应曲线, 然后利用两点法确 定对象传递函数。 1.1 导前区 利用MATLAB 搭建对象传递函数模型如图所示:

锅炉燃烧系统的控制系统设计解析

目录 1锅炉工艺简介 (1) 1.1锅炉的基本结构 (1) 1.2工艺流程 (2) 1.2煤粉制备常用系统 (3) 2 锅炉燃烧控制 (4) 2.1燃烧控制系统简介 (4) 2.2燃料控制 (4) 2.2.1燃料燃烧的调整 (4) 2.2.2燃烧调节的目的 (5) 2.2.3直吹式制粉系统锅炉的燃料量的调节 (6) 2.2.4影响炉内燃烧的因素 (7) 2.3锅炉燃烧的控制要求 (11) 2.3.1 锅炉汽压的调整 (11) 3锅炉燃烧控制系统设计 (14) 3.1锅炉燃烧系统蒸汽压力控制 (14) 3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14) 3.2燃烧过程中烟气氧含量闭环控制 (17) 3.2.1 锅炉的热效率 (18) 3.2.2反作用及控制阀的开闭形式选择 (20) 3.2.3 控制系统参数整定 (20) 3.3炉膛的负压控制与有关安全保护保护系统 (21) 3.3.1炉膛负压控制系统 (22) 3.3.2防止回火的连锁控制系统 (23) 3.3.3防止脱火的选择控制系统 (24) 3.4控制系统单元元件的选择(选型) (24) 3.4.1蒸汽压力变送器选择 (24) 3.4.2 燃料流量变送器的选用 (25) 4 DCS控制系统控制锅炉燃烧 (26) 4.1DCS集散控制系统 (26) 4.2基本构成 (28)

锅炉燃烧系统的控制 4.3锅炉自动燃烧控制系统 (31) 总结 (34) 致谢 (35) 参考文献 (36)

1锅炉工艺简介 1.1锅炉的基本结构 锅炉整体的结构包括锅炉本体和辅助设备两大部分。 1、锅炉本体 锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。锅炉本体中两个最主要的部件是炉膛和锅筒。 炉膛又称燃烧室,是供燃料燃烧的空间。将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。炉膛的横截面一般为正方形或矩形。燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。当炉内的温度超过灰熔点时,灰便呈熔融状态。熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。粘结的灰粒逐渐增多,遂形成渣块,称为结渣。结渣会降低锅炉受热面的传热效果。严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。炉排热负荷过高会使飞灰大大增加。炉膛设计需要充分考虑使用燃料的特性。每台锅炉应尽量燃用原设计的燃料。燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。 锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,

锅炉燃烧控制系统_毕业设计

锅炉燃烧控制系统 摘要 锅炉的燃烧控制对于锅炉的安全、高效运行和节能降耗都具有重要意义,其控制和管理随之要求也越来越高。本设计主要针对锅炉燃烧控制系统的工作原理,根据控制要求,设计了一套基于PLC的锅炉燃烧控制系统。 在控制算法上,综合运用了单回路控制、串级控制、比值控制、前馈控制等控制方式,实现了燃料量控制调节蒸汽压力、送风量控制调节烟气含氧量、引风量控制炉膛负压,并有效地克服了彼此的扰动,使整个系统稳定的运行。 在可编程控制器的选择上,采用了AB公司Logix5000系列PLC,设计了控制系统的硬件配置图、I/O模块接线图,并用其编程软件编写了实现控制算法的梯形图。同时,采用RSView32设计监控界面,使得在上位机上能够实时监控系统的运行状况并可以设置系统的工作参数,使对系统的控制简单易行。 关键词:锅炉燃烧控制系统,控制方式,PLC,监控

ABSTRACT The control of the boiler combustion which is for boilers safe, efficient operation and energy saving are of great significance, and its subsequent control and management is getting higher and higher requirements. According to the control requirements and the working principle, we design a system of a PLC based on the boiler combustion control system. In the control algorithm, we integratedly applied the single-loop control, cascade control, ratio control, feed-forward control and so on which is moded the control to achieve a fuel vapor pressure control regulator, air-conditioning of flue gas oxygen content control, citing the negative air volume control of the furnace pressure.It also effectively overcome the disturbance of each other, so that the operation of the entire system is stable. Choice in the programmable logic controller, we choose AB, Logix5000 series PLC, and applied it to the design of the control system hardware configuration diagram and I / O module wiring diagram. Then we use the preparation of its programming software control algorithm to achieve the ladder. At the same time, the use of RSView32 interface to design monitor makes PC can run real-time monitoring of system status and can set the system parameters, so that the system is easy to control. Keywords: boiler combustion control system, control, PLC ,supervisory control

计算机控制系统习题参考答案--第2章

习题参考答案 2-3 信号调理单元的功能是什么?通常包括哪些电路? 放大、电平变换、电隔离、阻抗变换、线性化和滤波,将传感器输出的电信号尽可能不失真地转变为标准的电流或电压信号(通常为4~20mA 、0~5V 等)。 通常包括标度变换器、滤波电路、线性化处理及电参量间的转换电路等。 2-5 仪表放大器与普通运算放大器有何不同?其特点有哪些? 对于输出阻抗大,共模电压高的输入信号,需要用到高输入阻抗和高共模抑制比的差动放大器,仪器放大器是专为这种应用场合设计的增益可调的放大器。 如果由普通的运放构成增益可设定的差动放大器,因其输入阻抗低,电阻参数对称性调整复杂,共模抑制比低,故而不适合作为传感器输出信号的差动放大器。 2-11 采样保持器的作用是什么?是否所有的模拟量输入通道中都需要采样保持器?为什么? 采样保持器的作用是:在A/D 转换期间保持输入模拟信号不变。 并不是所有的模拟量输入通道中都需要采样保持器,如被采样的模拟信号的变化频率相对于A/D 转换的转换速度较低的话,可以不加采样保持器。 2-13 A/D 转换器有哪些技术指标? (1) 分辨率 通常用转换后的数字量的位数表示,如8位、10位、12位、16位等 (2) 量程 它是指所能转换的电压范围。如5V 、10V 等。 (3) 转换精度 它是指转换后所得结果相对于实际值的准确度。A/D 转换器的转换精度取决于量化误差q 、微分线性度误差DNLE 和积分线性度误差INLE 。通常用绝对精度和相对精度两种表示方法。绝对精度常用数字量的位数表示法,如绝对精度为±1/2LSB 。,相对精度用相对于满量程的百分比表示。如满量程为10V 的8位A /D 转换器,其绝对精度为81/210/219.5mV ?=±,而8位A /D 的相对精度为%59.0%1002/)2/1(8=?FSR 。 精度和分辨率不能混淆。即使分辨率很高,但温度漂移、线性不良等原因可能造成精度不是很高。 (4) 转换时间 它是指启动A/D 到转换结束所需的时间,即孔径时间。 (5) 工作温度范围 较好的A/D 转换器的工作温度为-40~85℃,一般的为0~70℃。 2-14 一个12位的A/D 转换器,孔径时间为20μs ,绝对精度为±1LSB ,若不使用采样保持器,为了确保转换精度,则允许转换的正弦波模拟信号的最大频率是多少? /100 2100A D m U ft U δπ??==? 6/(1/4096)*100 1.9Hz 21002π2010100 A D f t δ π-∴==≈????

控制系统的极点配置设计法

控制系统的极点配置设计法 一、极点配置原理 1.性能指标要求 2.极点选择区域 主导极点: n s t ζω 4 = ;当Δ=0.02时,。 n s t ζω 3 = 当Δ=0.05时,

3.其它极点配置原则 系统传递函数极点在s 平面上的分布如图(a )所示。极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2) ;同时,极点s 1、s 2的附近不存在系统的零点。由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为 135 1 451s n s t t =?≤ ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。 图(b )表示图(a )所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。 n x o (t) (a ) (b ) 系统极点的位置与阶跃响应的关系

二、极点配置实例 磁悬浮轴承控制系统设计 1.1磁悬浮轴承系统工作原理 图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。 (a)(b) 图1 磁悬浮轴承系统的工作原理 Fig.1 The magnetic suspension bearing system principle drawing 假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚

浅探生物质发电锅炉燃烧控制系统设计与应用(新版)

浅探生物质发电锅炉燃烧控制系统设计与应用(新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0245

浅探生物质发电锅炉燃烧控制系统设计与 应用(新版) 摘要:近年来,随着我国社会的不断发展和进步,人们对于能源的需求程度也有了显著提升,能源的过度浪费不仅会造成大量不可再生资源的枯竭,而且对环境问题也会造成一定的影响,能源过度浪费问题已经成为制约能源进一步应用的主要阻碍。在可再生能源中,生物质由于具有诸多优质特性,因此具有较好的发展前景,这是因为化石能源是由生物质发展衍变而来的,通过一系列的化合反应最终变成能源,生物质能源在我国有着极为丰富的储存,现在每年农村中的生物质量约3.25亿吨。近些年以来,生物质发电已经作为我国最大的环保项目在发电过程中加以应用,本文将对生物质发电锅炉燃烧控制系统进行详细论述。 关键词:生物质发电;锅炉;控制系统

绪论:生物质发电作为现阶段我国所主要推行的项目,不仅能够有效解决秸秆等物质燃烧所带来的环境破坏问题,在减少燃烧气体排放的同时能够有效遏制温室效应的产生,而且对发电技术的进一步应用具有强有力的推动作用。目前,国能生物集团在生物质能开发利用方面卓有成效,利用生物质直燃烧方式进行生物质能发电。 1.生物质直燃发电的基本原理 生物质燃烧的原料就是桔梗、树皮。将桔梗、树皮送入锅炉的炉膛中燃烧。桔梗、树皮燃烧后生成的灰道,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态遗,最后由排渣装置排入灰法沟,再由灰遗泵送到灰渣场大量的细小的灰粒则随烟气带走,经除尘器分离后也送到灰渣沟。 空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道部分送入科仓作干燥以及送料粉,另部分直接引至燃烧器进入护膛。燃烧生成的高温烟气,高温烟气加热过热器中的水蒸气,形成过热蒸汽,后续烟气在引风机的作用下经过省煤器和空预热器,同时逐步将烟气的热能传给水和空气,自身变成低温烟气,经除尘

燃气锅炉燃烧控制系统.docx.

燃气锅炉燃烧控制系统 摘要: 本文主要介绍了锅炉燃烧控制系统的设计过程。在设计过程中介绍了锅炉燃烧控制系统的控制任务和控制特点,对于燃烧控制系统的设计方案,根据不同的控制任务分别设计了蒸汽压力控制和燃料空气比值控制以及防脱火回火选择性控制系统,并在设计中给出了不同的设计方案,以对比各自的优缺点,选择最优的控制。然后,把分别设计的控制系统组合起来,构成完整的锅炉燃烧过程控制系统。最后,对设计好的控制系统进行仪表选型。 关键词:燃气锅炉,燃烧系统,比值控制,脱火回火

目录 1.引言 (3) 2.锅炉燃烧控制系统概述 (4) 2.1 燃烧控制的任务 (5) 2.1.1 维持蒸汽出口压力稳定 (5) 2.1.2 保证燃烧过程的经济性 (5) 2.1.3 保证锅炉安全运行 (6) 2.2 燃烧控制的特点 (6) 3.燃烧控制系统设计方案 (6) 3.1 蒸汽压力控制和燃料空气比值控制 (6) 3.1.1 基本控制方案 (7) 3.1.2 改进控制方案 (8) 3.2 防脱火回火选择性控制系统 (9) 3.2.1 防脱火选择性控制系统 (9) 3.2.2防脱火回火混合型选择性控制系统 (11) 3.3 燃烧控制总体方案 (12) 4. 燃烧控制系统的仪表选型 (13) 5. 总结 (14) 参考文献 (15)

1.引言 大型火力发电机组是典型的过程控制对象,它是由锅炉、汽轮发电机组和辅助设备组成的庞大的设备群。锅炉的燃烧控制过程是一个复杂的物理,化学过程,影响因素众多,并且具有强耦合,非线性等特性。 锅炉的自动化控制经历了三、四十年代的单参数仪表控制,四、五十年代的单元组合仪表,综合参数仪表控制,直到六十年代兴起的计算机过程控制几个阶段。尤其是近一、二十年来,随着先进控制理论和计算机技术的发展,加之计算机各项性能的不断增强及价格的不断下降使锅炉应用计算机控制很快得到了普及和应用。 电厂锅炉利用煤或煤气的燃烧发热,通过传热对水进行加热,产生高压蒸汽,推动汽轮机发电机旋转,从而产生强大的电能。在锅炉燃烧系统中,燃料供给系统,送风系统以及引风系统是燃烧控制系统的重要环节。锅炉生产燃烧系统自动控制的基本任务是使燃料所产生的热量适应蒸汽负荷的需要,同时还要保证经济燃烧和锅炉的安全运行。具体控制任务可分为三个方面:一,稳定蒸汽母管压力。二,维持锅炉燃烧的最佳状态和经济性。三,维持炉膛负压在一定范围(-20~-80Pa)。这三者是相互关联的。另外,在安全保护系统上应该考虑燃烧嘴背压过高时,可能使燃料流速过高而脱火;燃烧嘴背压太低又可能回火。 本次课程设计的题目为燃气锅炉燃烧控制系统的设计。主要内容包括燃烧控制系统的概述;燃烧控制系统的基本方案;以及燃烧控制系统的仪表选型。设计方案为以主蒸汽压力控制系统为主回路,燃料量与空气量比值控制系统为内回路,燃烧嘴防脱火回火选择控制系统为辅助安全保护系统。为节省篇幅,炉膛压力控制系统在这里暂不涉及,但在实际控制系统中炉膛压力控制系统是锅炉燃烧控制系统中必不可少的组成部分之一。

《计算机控制技术》教材习题解答1

《计算机控制技术》习题解答 第一章 什么是计算机控制系统计算机控制系统由哪几部分组成 答:计算机控制系统就是利用计算机(通常称为工业控制计算机,简称工业控制机)来实现生产过程自动控制的系统。 计算机控制系统的组成:计算机控制系统由计算机(工业控制机)和生产过程两大部分组成。、微型计算机控制系统的特点是什么 微机控制系统与常规的自动控制系统相比,具有如下特点: a.控制规律灵活多样,改动方便 b.控制精度高,抑制扰动能力强,能实现最优控制 ` c.能够实现数据统计和工况显示,控制效率高 d.控制与管理一体化,进一步提高自动化程度 计算机控制系统结构有哪些分类指出这些分类的结构特点和主要应用场合。 答: (1)操作指导控制系统 优点:结构简单,控制灵活,安全。 缺点:由人工操作,速度受到限制,不能控制多个对象。 (2)直接数字控制系统(DDS) 优点:实时性好,可靠性高,适应性强。 (3)监督控制系统(SCC) % 优点:生产过程始终处于最优工况。 (4)分散控制系统(DCS) 优点:分散控制、集中操作、分级管理、分而自治和综合协调。 (5)现场总线控制系统(FCS) 优点:与DCS相比,降低了成本,提高了可靠性。国际标准统一后,可实现真正的开放式互联系统结构。 .计算机控制系统的控制过程是怎样的 计算机控制系统的控制过程可归纳为以下三个步骤: (1)实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。 (2)实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。 (3)实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。 ; .实时、在线方式和离线方式的含义是什么 答:所谓实时,是指信号的输入、计算和输出都要在一定的时间范围内完成,亦即计算机对输入信息,以足够快的速度进行控制,超出了这个时间,就失去了控制的时机,控制也就失去了意义。 在计算机控制系统中,生产过程和计算机直接连接,并受计算机控制的方式称为在线方式或联机方式;生产过程不和计算机相连,且不受计算机控制,而是靠人进行联系并做相应操作

谈机电传动控制系统的设计方法

龙源期刊网 https://www.doczj.com/doc/b416287719.html, 谈机电传动控制系统的设计方法 作者:李绍璞 来源:《科学与财富》2012年第06期 摘要:机电传动控制系统是由相互制约的五大要素组成的具有一定功能的整体,不但要求每个要素具有高性能和高功能,更强调它们之间的协调与配合,以便更好地实现预期的功能。特别是在机电一体化传动系统设计中,存在着机电有机结合如何实现,机、电、液传动如何匹配,机电一体化系统如何进行整体优化等问题,以达到系统整体最佳的目标。 关键词:机电;传动;控制系统;设计;方法 在机电传动与控制中,将与控制设备的运动、动作等参数有关的部分组成的具有控制功能的整体称为系统。用控制信号(输入量)通过系统诸环节来控制被控变量(输出量),使其按规定的方式和要求变化,这样的系统称为控制系统。 1、控制系统的分类 控制系统的分类方式很多,但机械设备的控制系统常按系统的组成原理分为开环控制系统、半闭环控制系统和闭环控制系统。 输出量只受输入量控制的系统称为开环控制系统。在任何开环控制系统中,系统的输出量都不与参考输人量进行比较。对应于每个参考输人量,都有一个相应的固定工作状态与之相对应,系统中没有反馈回路(反馈是把一个系统的输出量不断直接或间接变换后,全部或部分地返回到输入量,再将输入量输入到系统中去的过程)。用步进电动机作为执行元件的经济简易型数控机床,其控制系统就是一个开环系统。这种机床的控制装置和驱动装置根据机床的坐标进给控制信号推动工作台运动到指定位置,该位置的坐标信号不再反馈;当控制系统出现扰动时,输出量便会出现偏差。因此,开环控制系统缺乏精确性和适应性。但它是最简单、最经济的一类控制系统,一般使用在对精度要求不高的机械设备中。 在有些控制系统中,输出量同时受输人量和输出量的控制,即输出量通过反馈回路再对系统产生控制作用。这种存在反馈回路的系统称为闭纾控制系统。全功能型CNC机器人属闭环控制系统。在CNC机床的坐标驱动系统中,以坐标位置量为直接输出量,并在工作台上安装长光栅等位移测量元件作为反馈元件的系统才称为闭环系统。那些以交、直流伺服电动机的角位移作为输出量,用圆光栅作为反馈元件的系统则称为半闭环系统。目前的CNC机床大多为半闭环控制系统。采用半闭环控制系统的优点在于没有将伺服电动机与工作台之间的传动机构和工作台本身包括在控制系统内,系统易调整、稳定性好且整体造价低。 2、机电传动控制系统的设计方法 2.1模块化设计法

可编程控制器控制系统设计方法

可编程控制器控制系统设计方法 一、问题提出 可编程控制器技术最主要是应用于自动化控制工程中,如何综合地运用前面学过知识点,根据实际工程要求合理组合成控制系统,在此介绍组成可编程控制器控制系统的一般方法。 二、可编程控制器控制系统设计的基本步骤 1 .系统设计的主要内容 ( 1 )拟定控制系统设计的技术条件。技术条件一般以设计任务书的形式来确定,它是整个设计的依据; ( 2 )选择电气传动形式和电动机、电磁阀等执行机构; ( 3 )选定 PLC 的型号;

( 4 )编制 PLC 的输入 / 输出分配表或绘制输入 / 输出端子接线图; ( 5 )根据系统设计的要求编写软件规格说明书,然后再用相应的编程语言(常用梯形图)进行程序设计; ( 6 )了解并遵循用户认知心理学,重视人机界面的设计,增强人与机器之间的友善关系; ( 7 )设计操作台、电气柜及非标准电器元部件; ( 8 )编写设计说明书和使用说明书; 根据具体任务,上述内容可适当调整。 2 .系统设计的基本步骤 可编程控制器应用系统设计与调试的主要步骤,如图 1 所示。图 1 可编程控制器应用系统设计与调试的主要步骤

( 1 )深入了解和分析被控对象的工艺条件和控制要求 a .被控对象就是受控的机械、电气设备、生产线或生产过程。 b .控制要求主要指控制的基本方式、应完成的动作、自动工作循环的组成、必要的保护和联锁等。对较复杂的控制系统,还可将控制任务分成几个独立部分,这种可化繁为简,有利于编程和调试。 ( 2 )确定 I/O 设备 根据被控对象对 PLC 控制系统的功能要求,确定系统所需的用户输入、输出设备。常用的输入设备有按钮、选择开关、行程开关、传感器等,常用的输出设备有继电器、接触器、指示灯、电磁阀等。 ( 3 )选择合适的 PLC 类型 根据已确定的用户 I/O 设备,统计所需的输入信号和输出信号的点数,选择合适的 PLC 类型,包括机型的选择、容量的选择、I/O 模块的选择、电源模块的选择等。

基于PLC的锅炉燃烧控制系统设计-05论文正文

1 绪论 1.1锅炉燃烧控制项目的背景 改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。 作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。 1.2锅炉燃烧控制的发展历史 对于锅炉燃烧的控制,已经经历了四个阶段[3~5] (1)手动控制阶段 因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。 (2)仪器继电器控制阶段 随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。但是,

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案(DOC)

----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2+--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 211x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-= =-s s s s G s G s G Ts h 解:11 1 12 11 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22 ()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+--+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制() D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。 注意,这里的数字控制器D (z )就是上课时的()c G z 。

离散时间系统最优控制

第五章离散时间系统最优控制

引言 ?前面所讨论的都是关于连续时间系统的最优控制问题。?现实世界中,很多实际系统本质上是时间离散的。 机 ?即使是系统是时间连续的,因为计算机是基于时间和数值上都离散的数字技术的,实行计算机控制时必须 将时间离散化后作为离散系统处理。 ?因此,有必要讨论离散时间系统的最优控制问题。 ?离散时间系统仍然属于连续变量动态系统(CVDS)范畴。 注意与离散事件动态系统(DEDS)的区别。 ?CVDS与DEDS是自动化领域的两大研究范畴,考虑不同的自动化问题。

5.1 离散时间系统最优控制问题的提法 (1) 离散系统最优控制举例——多级萃取过程最优控制 ?萃取是指可被溶解的物质在两种互不相溶的溶剂之间的转移,一般用于将是指可被溶解的物质在两种互不相溶的溶剂之间的转移,般用于将要提取的物质从不易分离的溶剂中转移到容易分离的溶剂中。 ?多级萃取是化工生产中提取某种价值高、含量低的物质的常用生产工艺。 萃取V u (0) u (1) u (k -1) u (N -1) V V V V V V 萃取器1萃取器2 萃取器 k 萃取器N x (0) x (1)x (2) x (k -1) x (k ) x (N )x (N -1) 含物质z (0)z (1) z (k-1) z (N -1) 多级萃取过程 A 的混合物以流量V 进入萃取器1,混合物中A 浓度x (0); 萃取剂以流量u (0)通过萃取器1,单位体积萃取剂带走A 的量为z (0); 一般萃取过程的萃取物含量均较低,可认为通过萃取器1后混合物流量仍为V ; 流出萃取器1的混合物中A 物质的浓度为x (1)。以此类推至萃取器N 。

燃烧控制系统

燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和安全燃烧。如图1所示。 图1 燃烧控制系统结构图 2、控制方案 锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉安全经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能可靠工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在最佳燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的安全和环境卫生。 2.1 控制系统总体框架设计 燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要最大限度的实施燃烧优化控制。控制系统的总体框架如图2所示。 图2 单元机组燃烧过程控制原理图 P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。 2.2 燃料量控制系统 当外界对锅炉蒸汽负荷的要求变化时,必须相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中最基本也是最主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。

相关主题
文本预览
相关文档 最新文档