当前位置:文档之家› 酶工程最终版

酶工程最终版

酶工程最终版
酶工程最终版

酶工程:酶的生产、改性和应用的技术过程。

产酶微生物具备特点:酶产量高、产酶稳定性好、易培养和管理、利于酶的分离纯化、安全无毒。

酶的分类:1.蛋白类酶:氧化还原、转移、水解、裂合、异构、合成(连接);2.核酸类酶:分子内催化R、分子间催化R。

调节溶氧方法:调节通气量、氧的分压、气液接触时间、气液接触面积、改变培养液的性质。

动物细胞培养方式:悬浮培养、贴壁培养、微载体培养。

植物细胞培养方式:固体培养、液体浅层培养、液体悬浮培养。

酶分子的修饰方法:(1)金属离子置换修饰(2)大分子结合修饰(共价/非共价)(3)侧链基团修饰(4)肽链有限水解修饰(5)氨基酸置换修饰(6)酶分子的物理修饰。

酶分子的修饰目的、作用:(1)提高酶的活力(2)增强酶的稳定性(3)降低或消除酶的抗原性【(4)研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间构象的影响】

固定化酶的特点:(1)提高酶的催化效率(2)增加稳定性(3)可反复使用或连续使用(4)易于与产物分开。

酶改造的方法;物理方法改造:固定化:增加稳定性、提高活性、重复使用;化学方法改造:酶分子的修饰:增加稳定性、提高活性和降低抗原性;生物方法改造:定点突变和定向进化:增加稳定性、提高活性和增加适应性;人工方法模拟:模拟酶、抗体酶和杂合酶:人工方法实现酶的催化功能。抗体酶的制备:1.诱导法2.拷贝法

酶的催化特性:(1)专一性(2)高效性(3)温和性。

动物细胞培养方式:悬浮培养、贴壁培养、微载体培养。

植物细胞培养方式:固体培养、液体浅层培养、液体悬浮培养。

酶反应器操作方式:分批式反应、连续式反应、流加分批式反应。反应器:反应罐、搅拌器、保温装置。

酶反应器的选择:(1)根据酶的应用形式选择反应器(2)根据酶反应动力学性质选择反应器(3)根据底物或产物的理化性质选择反应器(4)其他影响因素。酶反应器的类型(结构)(1)搅拌罐式反应器(游离酶催化、酶与底物结合、)(2)填充床式反应器(3)流化床反应器(酶与底物结合、)(4)鼓泡式反应器(气体参加)(5)膜反应器(高价酶、反馈抑制、小分子辅酶和分质量较大的底物和产物不采用)(6)喷射式反应器(高温淀

粉酶)。

蛋白酶可作为消炎剂,治疗各种炎症有很好的疗效。蛋白酶之所以有消炎作用,是由于它能分解一些蛋白质和多肽,使炎症部位的坏死组织溶解,增加组织的通透性,抑制浮肿,促进病灶附近组织积液的排出井抑制肉芽的形成。蛋白酶可治疗高血压:由于蛋白酶催化运动迟缓素原及胰血管舒张素原水解部分肽段而生成运动迟缓素和胰血管舒张素,使血压下降。

柚苷酶-除苦味;橙皮苷酶-防白色浑浊;花青素酶-脱色;果胶酶-果汁生产、果酒生产。酶是生物学有力的研究工具:基因工程工具酶,基因组学,蛋白组学。酶和工农业生产与医学实践有着密切的关系:1.工业用酶:淀粉糖业;2.农业用酶:饲料;3.医疗用酶:蛋白酶、检测试剂、抗病毒等新药物开发。酶在医药方面的应用:用酶进行疾病的诊断,用酶进行疾病的治疗,用酶制造各种药物。

酶在轻工、化工方面的应用:用酶进行原料处理、用酶生产各种轻工、化工产品,用酶增强产品使用效果;酶在环境保护中的应用:环境监测,废水处理,过氧化物酶,多酚氧化酶,可降解材料开发;酶在生物技术方面的应用:除去细胞壁,大分子切割,大分子连接。酶参与了生物体内所有的生命活动和生命过程:执行具体的生理功能-唾液、胃液中的消化酶,凝血酶等;清除有害物质,起保卫作用-过氧化物酶,朝氧化物岐化酶等;协同激素等生理活性物质在体内发挥信号转换,传递与放大作用,调节生理功能-蛋白激酶;催化代谢反应,建立各种各样代谢体系与代谢途径-葡萄糖、氨基酸、核酸代谢。

固定化植物细胞特点:(1)提高植物细胞的存活率和稳定性(2)细胞经固定化后,被束缚在一定的空间范围内进行生命活动,不容易聚集成团(3)利于生产各种所需次级代谢物(4)固定化植物细胞可反复使用或连续使用较长的一段时间,大大缩短生产周期,提高生产率(5)固定化植物细胞易于与培养液分离,利于产品的分离纯化,提高产品质量。固定化动物细胞的特点:(1)提高细胞存活率(2)提高产率(3)固定化动物细胞可反复使用或连续使用较长的时间(4)固定化细胞易于与产物分开,利于产品纯化,提高产品质量。

酶催化的转换数(每个酶分子每分钟催化底物转化的分子数)一般为1000/min左右。

条件温和原因:一是酶催化作用所需的活化能降低,二是由于酶是具有生物催化功能的生物大分子。在高温,高压,过高或过低PH等极端条件下,大多数酶会变性而失去其催化功能。

1.发酵中提高酶产量的措施:菌种选育:1.诱变育种:解除反馈阻遏—选育结构类似物

抗性突变株;解除分解代谢物阻遏—选育抗分解代谢阻遏突变株;2.基因工程育种:1)改变细胞调节基因,使菌种由诱导性变为组成型2)增加结构基因的拷贝数,增加细胞专一性酶的生产。条件控制:1.添加诱导物:包括酶的作用底物、反应产物和底物类似物,其中酶的底物类似物最有效,不能被酶作用或很少作用。2.降低阻遏物浓度:避免使用葡萄糖,采用较难利用的淀粉,避免培养基过于丰富,采用补料分批培养方式,分次流加碳源。3.添加表面活性剂:细胞内酶含量提高到一定程度,会被细胞内蛋白酶分解,加入表面活性剂可使胞内酶未被分解即被释放到胞外,因为表面活性剂有助于改善细胞通透性。4.添加产酶促进剂:酶促进剂对不同细胞、不通酶的作用效果各不相同,需通过试验选用适当的产酶促进剂并确定最适浓度。如添加植酸钙镁可使桔青霉素生产磷酸二酯酶的量提高10-20倍。

2.酶定向进化的基本过程:随机突变、构建突变基因文库、定向选择。

酶定向进化的方法:首先通过从细胞内提取或者PCR等方法获得目标分子的基因,在体外采用易错PCR、DNA重排、基因家族重排等技术进行人工突变,然后进行定向选择而获得所需突变体。定向进化的方法:1.无性进化方法:易错PCR法、盒式诱变;2.有性进化方法:DNA改组法、体外随机重组法、交错延伸法;3.其他:基因家族的同源重组、外显子的改组、杂合进化。

酶定向进化:是模拟自然进化过程(随机突变和自然选择),在体外进行酶基因的人工随机突变,建立突变基因文库,在人工控制条件的特殊环境下,定向选择得到具有优良催化特征的酶的突变体的技术过程。

易错PCR方法:向单一酶分子基因内随机引入突变(在PCR扩增过程中调整反应条件),制造突变酶库以便筛选;特点:遗传变化仅发生在单一分子内部,属于无性进化。改变4种底物的浓度比,或降低一种dNTP的量(降至5%-10%),加入dITP来代替被减少的dNTP.缓冲液中另加0.5mmol/L Mn2+;提高镁离子浓度(常规PCR时浓度为0.5-2.5mmol/L);添加一定浓度的锰离子。

DNA改组方法:从正突变基因库中分离得到的DNA序列用酶随机切割,得到的随机片断经不加引物的多次PCR循环,获得全长基因,实现优势突变的组合;特点:遗传变化仅发生在来自不同基因片断之间的重组,所以称为有性进化。实例:对内酰胺酶进行DNA改组,3次循环得到的进化酶对抗生物素头孢噻呜抗性增加32000倍;优点:将已有的正突变基因结合,正突变效率高;缺点:无引物PCR之前必须把DNase I去除干净,以防突变基因的被切割。

基因家族的同源重组方法:单一酶分子基因进化过程中集中有利突变速度较慢,从自然存在的基因家族出发,由于基因之间存在显著差异,所得突变库体现了基因多样性和增加了有利突变的概率;实例:Stemmer等从4种微生物中选择编码头孢菌素的4个同源基因,分别进行单独进化和同源重组,结果单独进化抗性提高8倍、而同源重组比其中2种微生物分别提高270和540倍;国内海藻糖的酶法制备即采用该方法;特点:由于定向进化的高效性,被认为是DNA改组的发展方向。

3.水对酶促反应的影响:(1)水对酶分子空间结构的影响(2)水对酶催化反应速度的影响(3)水活度,结合水是影响酶催化活性的关键因素。必需水:维持酶分子完整的空间构象所必需的最低水量。水活度:体系中水的逸度与纯水逸度的比值。通常可以用体系中水的蒸汽压与相同条件下纯水蒸汽压之比。

有机介质反应体系:微水介质、与水溶性有机溶剂组成的均一体系、与不水溶性有机溶剂组成的两相或多相体系、正胶束体系、反胶束。

酶非水相催化的应用:手性药物的拆分、手性高分子聚合物的制备、酚树脂的合成、导电有机聚合物的合成、发光有机聚合物的合成、食品添加剂的生产、生物柴油的生产、多肽的合成、甾体转化。

有机溶剂对酶促反应的影响:对酶结构与功能的影响;对酶活性的影响;对底物和产物分配的影响。

酶在有机溶剂中的催化特性:底物专一性;对映体选择性;区域选择性;键选择性;热稳定性;pH特性。

有机介质中酶催化反应的类型:合成反应;转移反应;醇解反应;氨解反应;异构反应;氧化还原反应;裂合反应。

论述题:

1.固定化方法:(1)吸附法(硅胶、氧化铝、多孔陶瓷)(2)包埋法(琼脂、海藻硅酸钠、角叉菜胶)(3)结合法(离子结合:DEAE;共价键结合:纤维素、葡聚糖凝胶、共聚物、壳聚糖)(4)交联法(戊二醛、己二胺、顺丁希二酸酐、双偶氮本)(5)热处理法。

2.中期合成型(受分解代谢产物阻遏或产物反馈阻遏)→延续合成型。

1.菌种选育:1)诱变育种:解除反馈阻遏—选育结构类似物抗性突变株;解除分解代谢物阻遏—选育抗分解代谢阻遏突变株;2)基因工程育种:(1)改变细胞调节基因,使菌种由诱导性变为组成型(2)增加结构基因的拷贝数,增加细胞专一性酶的生产。

2.培养

基优化:设计实验选择合适的碳源(对酶的合成具有诱导作用以及对分解代谢产物的阻遏作用);通过单因子试验确定最佳无机盐及其浓度;在培养过程中测出pH随菌体生长、产物浓度的变化关系,确定最佳pH值可加入缓冲体系;可适当加入生物素。3.发酵工艺:通过试验确定菌体生长最适温度和产物合成最适温度,来确定发酵最佳温度以及确定加热装置;控制通气量确保溶解氧的浓度;罐压;摇床转速。。。

同步合成型(生长偶联型)是酶的生物合成与细胞生长同步进行的一种酶生物合成模式。该类型酶对应的mRNA很不稳定,其寿命只有几十分钟。在细胞进入平衡期后,新的mRNA 不在生成,原有mRNA被降解后,酶的生物合成随即停止。特点:酶的合成可以诱导,但不受分解代谢物阻遏和反应产物阻遏。当去除诱导物、细胞进入平衡期后,酶的合成立即停止,表明这类酶所对应的mRNA很不稳定。如利用米根霉生产脂肪酶。

部分生长偶联型(又称延续合成型最理想的合成模式):即酶的合成在细胞的生长阶段开始,在细胞生长进入平衡期后,酶还可以延续合成较长一段时间。特点:可受诱导,一般不受分解代谢物和产物阻遏,所对应的mRNA相当稳定。例如:黑曲霉生产聚丰乳糖醛酸酶,加诱导物乳糖醛酸,培养40h左右,细胞进入对数生长期;当培养80h左右,细胞进入平衡期,酶继续合成至120h左右。中期合成型酶在细胞生长一段时间以后才开始,而细胞生长进入平衡期以后,酶的生物合成也随之停止。特点:酶的合成受产物的反馈阻遏或分解代谢物阻遏;所对应的mRNA是不稳定的。例如:枯草杆菌合成碱性磷酸酶,由于受其反应产物无机磷算的阻遏,而磷酸又是细胞生长必不可缺的营养物质,培养基中必然有磷酸存在。当细胞生长一段时间后,培养基中的无机磷酸几乎被用完,无机磷酸的阻遏解除,酶才开始大量合成。由于碱性磷酸酶对应的mRNA不稳定,寿命只有30min左右,细胞生长进入平衡期后,酶合成停止。滞后合成型酶(非生长偶联型)是在细胞生长一段时间或者进入平衡期以后才开始其生物合成并进行大量累计,又称为非生长偶联型。许多水解酶的生物合成都属于这一类型。如抗生素、许多水解酶等。特点:受分解代谢物的阻遏作用。所对应的mRNA稳定性高。例如:黑曲霉产生的酸性蛋白酶,细胞进入生长平衡期以后,酶才开始合成并大量积累。

影响酶生物合成模式的主要因素:1)mRNA的稳定性;2)培养基中阻遏物的存在。同步合成型:提高对应的mRNA的稳定性,如降低发酵温度。滞后合成型:尽量减少甚至解除分解代谢物阻遏,使酶的合成提早开始。中期合成型:要在提高mRNA稳定性以及解除阻遏两方面努力。

动力学解释:同步合成型的酶,其产酶与细胞的生长偶联,动力学方程为:RE=αυX,

添加诱导剂后,α变大,故产酶速率变大。(2)中期合成型的酶,是一种特殊的生长偶联型,在培养液中有阻遏物的存在时,α=0时,无酶产生,而控制阻遏物浓度,解除阻遏物的阻遏作用。在细胞生长一段时间后,阻遏物很快被利用完,酶开始合成,α变大,故产酶速率变大。(3)滞后合成型的酶,其合成模式为非生长偶联行,α=0,其产酶动力学方程为:RE=βX,添加表面活性剂和产酶促进剂,增加了胞外酶的产率,从而产酶速率变大。(4)延续合成型的酶,产酶动力学方程为:RE=(αυ+β)X,添加诱导剂和控制阻遏物浓度,,添加表面活性剂和产酶促进剂,有利于α,υ,β增大,故产酶速率变大酶的原核生物合成的调节机理:原核生物中的酶生物合成的调节主要是转录水平的调节,即基因的调节。根据基因调节理论,在DNA分子中,与酶密切相关的基因有调节基因,启动基因,操纵基因和结构基因4种,结构基因与操纵基因,启动基因一起组成操纵子。原核生物中操纵子有两种类型,即诱导型和阻遏型。诱导型操纵子在无诱导物的情况下,其基因的表达水平很低或不表达,只有在诱导物存在的条件下,才能转录生成mRNA,进而合成酶。(1)分解代谢物阻遏作用是指某些物质经过分解代谢产生的物质阻遏某些酶生物合成的现象。例如,葡萄糖阻遏β-半乳糖苷酶的生物合成,果糖阻遏α-淀粉酶的生物合成等。(2)诱导作用,加入某些物质使酶的合成开始或加速进行的现象。诱导物一般是酶催化作用的底物或其底物类似物。(3)反馈阻遏作用又称代谢产物阻遏作用,是指酶催化反应的产物或代谢途径的末端产物使酶的生物合成受到阻遏的现象。阻遏物一般是酶催化反应的产物或是代谢途径的末端产物。例如,无机磷酸是碱性磷催化磷酸单脂水解的产物,它的过量存在,会阻遏碱性磷酸酶的生物合成。

固定化细胞发酵产酶的特点:(1)提高产酶率(2)可以反复使用或连续使用较长时间(3)基因工程菌的质粒稳定,不易丢失(4)发酵稳定性好(5)缩短发酵周期,提高设备利用率(6)产品容易分离纯化(7)适用于胞外酶等胞外产物的生产。

固定化原生质体发酵产酶的特点:(1)变胞内产物为胞外产物(2)提高酶产率(3)稳定性较好(4)易于分离纯化。

细胞固定化方法:(1)吸附法(2)包埋法。应用特点:(1)保持了细胞的完整结构和天然状态,可以进行正常的生长繁殖。(2)保持了细胞内原有的酶系,辅酶体系和代谢调控体系,可以按照原来的代谢途径进行新陈代谢,并进行有效的代谢调节控制。(3)发酵稳定性好,可以反复使用或者连续使用较长的一段时间,(4)固定化细胞密度的提高,可以提高产率。(5)由于有载体的保护作用,可以提高基因工程菌的质粒稳定性。

固定化优势:(1)酶的稳定性增加,减少温度,PH,有机溶剂和其他外界因素对酶的活

性影响,可以较长期地保持较高的酶活性(2)固定化酶可反复使用或连续使用较长时间,提高酶的利用价值,降低生产成本。(3)固定化酶易于和反应产物分开,有利于产物的分离纯化,从而提高产品质量。固定化性质变化:(1)固定化酶的稳定性一般比游离酶的稳定性好(2)固定化酶与游离酶的最适作用温度基本上差不多,活化能也变化不大,但有一些会发生明显改变。使用时应加以注意。(3)酶经过固定化后,最适PH往往会发生一些变化(4)固定化酶的底物特异性与游离酶比较可能有些不同,其变化与底物分子质量的大小有一定的关系。

酶在医药,食品,轻工,化工,环保,能源和生物工程等领域应用广泛。实例1:葡萄糖异构酶(果糖的制备)将培养好的含葡萄糖异构酶的放线菌细胞用60-65℃热处理15min,该酶就固定在菌体上,制成固定化没,催化葡萄糖异构化生成果糖,用于连续生产果葡糖浆。实例2:青霉素酰化酶(青霉素的制备)用同一种固定化青霉素酰化酶,只是改变PH等条件,既可以催化青霉素或头孢菌素水解生成6-氨基青霉烷酸(6-APA)或7-氨基头孢酶烷酸(7-ACA),也可以催化6-APA或7-ACA与其他的羧酸衍生物进行反应,以合成新的具有不同侧链基团的青霉素或头孢菌素。另外,还有天冬氨酸酶,延胡索酸酶,脂肪酶,植酸酶等固定化酶。

动植物及微生物细胞之间的特点:(1)植物细胞比微生物细胞大的多,体积比微生物和动物的细胞大(2)植物细胞的生长速率和代谢速率比微生物低,生长倍增时间比微生物长,生长周期也比微生物长(3)植物和微生物细胞营养要求简单,而动物要求较复杂(4)植物大多数需要光照,而动物和微生物则不要求(5)动植物细胞对剪切力敏感(6)动植物细胞用于生产的主要目的不相同。

植物细胞培养的一般过程:外植体——细胞的获取——细胞培养——分离纯化——产物动物细胞培养的一般过程:将种质细胞用的胰蛋白酶消化处理,分散成悬浮细胞,再将悬浮细胞接入适宜的培养液,在人工控制条件你的反应器中进行细胞悬浮培养或者贴壁培养;培养完成后,收集培养液,分离纯化得到所需产物。

动物细胞的特殊性:(1)动物细胞培养主要用于各种功能蛋白质和多肽的生产(2)动物细胞生长较慢,细胞倍增时间15-100h(3)为了防止微生物污染,在培养过程中,需要添加抗生素。(4)动物细胞体积大,无细胞壁保护,对剪切力敏感(5)大多数动物细胞具有锚地依赖性,适宜采用贴壁培养,部分细胞可以采用悬浮培养。(6)动物细胞培养基较复杂,一般要添加血清或其代用品,产物的分离纯化过程较繁杂,成本较高,适用于高价值药物的生产。(7)原代细胞继代培养50代后,即会退化死亡,需要重新分离细胞。

酶分子修饰各方法原理:大分子结合修饰的原理:采用水溶性大分子与酶的侧链基团共价结合,使酶分子的空间构象发生改变,从而改变酶的特性。其一般过程:(1)修饰剂的选择(2)修饰剂的活化(3)修饰(4)分离。侧链基团修饰的原理:采用一定的方法使酶的侧链基团发生改变。从而改变酶的催化特性。氨基酸置换修饰的原理:将酶分子肽链上的某一个氨基酸置换成另一个氨基酸,从而改变酶的催化特性。其主要过程如下:(1)新的酶分子结构的设计(2)突变基团碱基序列的确定(3)突变基团的获得(4)新酶的获得。

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

酶工程的研究进展及前景展望

酶工程的研究进展及前景展望 摘要:概述了21 世纪国际上酶工程研究的新进展和新趋势。本文意在阐述近年来酶工程在分子水平的研究进展,并对其未来前景进行了展望。简单介绍了酶工程研究的进展, 对酶工程的发展前景进行了探讨。介绍了酶工程的应用现状,并对酶工程的作用和发展做出了展望。 关键词: 酶工程; 抗体酶;酶的固定化;开发研究; 进展; Abstract:An overview of the enzyme engineering in the 21st century international research progress and new trends. This paper aims to elaborate in recent years, progress in enzyme engineering research at the molecular level, and its future prospects. Briefly introduced the progress of the study of enzyme engineering, discussed the prospects for the development of enzyme engineering. Introduced the application status of the enzyme works , and the role and development of enzyme engineering to make the outlook. Keywords:Enzyme Engineering; Antibody enzyme; Immobilization; Research and development;Progress 1 前言 跨入21 世纪,人们在20 世纪认识生命本质高度一致性的基础上,迎来了后基因组时代,将有可能从整个基因组及其全套蛋白质产物的结构- 功能机理的角度,进一步阐明生命现象的核心和本质, 并系统整合生物学的全部知识,建立起真

《酶工程》期末复习题整理#(精选.)

第一章 1.酶工程:是生物工程的重要组成部分,是随着酶学研究迅速发展,特别是酶的推广应用,使酶学和工程学相互渗透、结合、发展而成的一门新的技术科学,是酶学、微生物学的基本原理与化学工程有机结合而产生的边缘科学技术。 2.化学酶工程:指自然酶、化学修饰酶、固定化酶及化学人工酶的研究和应用 3.生物酶工程:是酶学和以基因重组技术为主的现代分子生物学技术结合的产物,亦称高级酶工程。 4.酶工程的组成部分? 答:酶工程主要指自然酶和工程酶(经化学修饰、基因工程、蛋白质工程改造的酶)在国民经济各个领域中的应用。内容包括:酶的产生;酶的分离纯化;酶的改造;生物反应器。5.酶的结构特点? 答:虽然少数有催化活性的RNA分子已经鉴定,但几乎所有的酶都是蛋白质,因而酶必然具有蛋白质四级结构形式。其中一级结构是指具有一定氨基酸顺序的多肽链的共价骨架;二级结构为在一级结构中相近的氨基酸残基间由氢键的相互作用而形成的带有螺旋、折叠、转角、卷曲等细微结构;三级结构系在二级结构基础上进一步进行分子盘区以形成包括主侧链的专一性三维排列;四级结构是指低聚蛋白中各折叠多肽链在空间的专一性三维排列。具有低聚蛋白结构的酶(寡聚酶)必须具有正确的四级结构才有活性。具有活性的酶都是球蛋白,即被广泛折叠、结构紧密的多肽链,其氨基酸亲水基团在外表,而疏水基团向内。 6.酶活性中心:是酶结合底物和将底物转化为产物的区域,通常是整个酶分子中相当小的一部分,它是由在线性多肽链中可能相隔很远的氨基酸残基形成的三维实体。 7.酶作用机制有哪几种学说? 答:锁和钥匙模型、诱导契合模型 8.酶催化活力的影响因素? 答:底物浓度、酶浓度、温度、pH等。 9.酶的分离纯化的初步分离纯化的步骤? 答:(一)材料的选择和细胞抽提液的制备 1.材料的选择:目的蛋白含量要高,而且容易获得 2.细胞破碎方法及细胞抽提液的制备。为了确保可溶性细胞成分全部抽提出来,应当使用类似于生理条件下的缓冲液。动物组织和器官要尽可能除去结缔组织和脂肪、切碎后放人捣碎机中。完全破碎酵母和细菌细胞。 3.膜蛋白的释放:膜蛋白存在于细胞膜或有关细胞器的膜上。按其所在位置大体可分为外周 蛋白和固有蛋白两种类型 4.胞外酶的分离:胞外酶是在微生物发酵时分泌到发酵液中的。发酵后可通过离心或过滤将菌体从发酵液中分离弃去,所得发酵清液通常要适当浓缩,然后再作进一步纯化。目前常用的浓缩方法是超滤法。 (二)蛋白质的浓缩和脱盐 浓缩方法主要有:沉淀法、吸附法、干胶吸附法、渗透浓缩法、超滤浓缩法

酶工程的应用及发展前景.

酶工程的应用及发展前景 生物技术一班 41208220 杨青青

酶工程的应用及发展前景 杨青青 (陕西师范大学生命科学学院生物技术专业1201班) 摘要:酶工程是现代生物技术的重要组成部分,它作为一项高新技术将为各工业的发展起重要推动作用。本文概要介绍了酶工程的概念,酶工程在农产品加工、医药工业、食品工业、污染治理工业、蛋白质高值化加工等方面的应用以及探讨了在各个工业中的发展前景。 关键词:酶工程、应用、发展前景 一、酶工程的概念 酶是由生物体产生的具有催化活性的蛋白质,它能特定的促成某个化学反应而本身却不参加反应,且具有反应率高、反应条件温和、反应产物污染小、能耗低、反应容易控制等特点。这些特点比传统的化学反应具有较大的优越性。酶的应用不仅可以增强产量,提高质量,降低原材料和能源消耗,改善劳动条件,降低成本,而且可以生产出用其他方法难得到的产品,促进新产品、新技术和新工艺迅速发展。随着现代生物技术的兴起,酶工程技术应运而生,并在制药、食品工业和农产品加工显示出强大的生命力。酶工程就是利用酶催化作用,

通过适当的反应器工业化的生产人类所需的产品或是达到某一目的,它是酶学理论与化工技术相结合而形成的一种新技术。酶工程包括自然酶的开发和利用、固定化酶、固定化细胞、多酶反应器(生物反应器)、酶传感器等。 二、酶工程的应用以及发展前景 1、酶工程在农产品加工上的应用与前景 以前,人们认为氨基酸是人体吸收蛋白质的主要途径。随着研究的发现,蛋白质经消化道中的酶水解后,主要以小肽的形式被吸收,比完全游离的氨基酸更易吸收利用。这一发现启发了科研工作者采用酶工程技术用蛋白质生产生物活性肽的新思路。生物活性肽是蛋白质中20种天然氨基酸以不同排列组合方式构成的从二肽到复杂的线性或环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能。主要是通过酶法降解蛋白质而制得。 目前已经从大豆蛋白、玉米蛋白、牛奶蛋白、水产蛋白的酶解物中制得一系列功能各异的生物活性肽。因为各类蛋白质存在的差异性,所以在生产活性肽方面有略微的不同。不论哪种方法,都会用到一定的酶类水解蛋白质。比如:文献报道采用中性蛋白酶、木瓜蛋白酶水解大豆蛋白,配合活性炭的吸附处理、超滤、真空浓缩和喷雾干

酶工程 (2)

第二章 1.六大类酶基本概念和特点 (1)氧化还原酶:催化氧化还原反应,需要电子供体或受体 (2)转移酶:催化基团转移反应,即将一个底物分子的基团或原子转移到另一个底物的分子上 (3)水解酶:催化底物的加水分解反应 (4)裂合酶:脱去底物上某一基团留下双键,或可相反地在双键外加入某一基团。 (5)异构酶:催化生成异构体反应的酶,分别进行外消旋,差向异构,顺反异构,醛酮异构,分子内转移,分子内裂解等 (6)连接酶:需要三磷酸腺苷等高能磷酸酯作为结合能源,有的还需要金属离子辅助因子。 应用最多的是氧化还原酶,利用率最高的是水解酶 2.必需基团及其作用特点 必需基团包括:(1)活性部位,包括结合基团和催化基团 (2)维持酶空间结构的基团 必需基团是酶分子氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。必需基团在空间结构上相互靠近,组成具有特定空间结构的区域,能与底物特异性结合并将其转化为产物 3.两种酶与底物的结合模型 (1)锁钥模型:底物结合部位由酶分子表面的凹槽或空穴组成,这是酶的活性中心,它的形状与底物分子形状互补。底物分子或其一部分像钥匙一样,可专一地插入酶活性中心,通过多个结合位点的结合,形成酶—底物复合物,同时酶活性中心的催化基团正好对准底物的有关敏感键,进行催化反应。 三点结合学说指出,底物分子与酶活性中心的基团必须三点都互补匹配,酶才作用于这个底物。 (2)诱导锲合模型:酶分子与底物分子接近时,酶蛋白质受底物分子诱导,构象发生有利于与底物结合的变化,酶与底物在此基础上互补楔合,进行反应。 4.影响酶催化作用的五种模型 (1)广义的酸碱催化 能供给质子的物质即为酸,能接受质子的物质即为碱。广义的酸碱催化就是指组成酶活性中心的极性基团,在底物的变化中起质子的供体或受体的作用,这就是广义的酸碱催化。发生在细胞内的许多类型的有机反应都是广义的酸碱催化。 组氨酸的咪唑基值得特别注意,因为它既是一个很强的亲核基团,又是一个有效的广义酸碱功能基团。 影响酸碱催化速率的因素:一是酸碱的强度,在这些功能基团中,组氨酸的咪唑基的解离情况pK值为6.0,在生理pH条件下,既可以作质子的供体又可作质子的受体。因此,咪唑基是催化中最有效最活泼的一个催化功能基团;二是这些功能基团供出质子或接受质子的速度,其中的咪唑基的情况特别突出,它供出或接受质子的速度十分迅速,其半衰期小于10-10秒。而且,供出或接受质子的速度几乎相等。由于咪唑基有如此的优点,所以虽然组氨酸在大多数蛋白质中含量很少,却很重要,在许多酶的活性中心处都含有组氨酸 (2)共价催化 酶活性中心处的极性基团,在催化底物发生反应的过程中,首先以共价键与底物结合,生成一个活性很高的共价型的中间产物,此中间产物很容易向着最终产物的方向变化,故反应所需的活化能大大降低,反应速度明显加快。 常见形式是酶的催化基团中亲核原子对底物的亲电原子攻击。 (3)邻近效应和定向效应 邻近效应:在酶促反应中,由酶和底物分子之间的亲和性,底物分子有向酶的活性中心靠近的趋势,最终结合到酶的活性中心,使底物在酶活性中心的有效浓度增加。

酶工程的发展状况及其应用前景

酶工程的发展状况及其应用前景 摘要:酶在现代生物生产中扮演着重要角色,酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,以及酶工程不断的技术性突破,使得酶在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛。 关键词:酶工程生物催化剂酶的固定 正文: 随着酶生产的不断发展,酶的应用越来越广泛。现在,酶工程已在医药、食品工业、农业、饲料、环保、能源、科研等领域广泛应用。成为基因工程、细胞工程、蛋白质工程等新技术领域的科学研究和技术开发中不可取代的工具。 一、酶工程的发展及应用现状 (一)国内外酶制剂的发展现状 BCC最新研究报告显示,未来4年全球工业酶制剂市场价值将以%的复合年增长率继续增长,由2011年的39亿美元增加至2016年的约61亿美元。该报告将工业酶市场细分成3个部分:生物酶、食品和饮料酶以及其他酶制剂。2011年生物酶的市场价值达12亿美元,预计还将以%的复合年增长率继续增长,2016年达17亿美元。2011年食品和饮料活性酶的市场价值接近13亿美元,未来4年还将以%的年均复合增长率增长,预计2016年达21亿美元。2011年其他酶制剂的市场价值为15亿美元,预计还将以%的复合年增长率增长,到2016年市场价值将达到22亿美元①。 我国酶制剂工业面经过近几十年的发展,初步具有一定的规模,取得了很大的进步。但是,国外酶制剂公司仍然处于绝对的领先地位,特别是一些比较出色的公司,例如,诺和诺德公司(Novo Nordisk)、丹尼斯克公司(Danisco)等②。 (二)酶工程的应用现状 一、酶工程技术在医药工业中的应用 1、酶的固定化技术 酶的固定化(enzyme immobilization)是指采用有机或无机固体材料作为载体(carrierorsupport),将酶包埋起来或束缚、限制于载体的表面和微孔中,使其仍具有催化活性,并可回收及重复使用的酶化学方法与技术。不使用固体材料作为载体,通过酶分子之间的相互交联形成聚集体,也可将酶固定化,称为无载体酶固定化。由于酶的蛋白质属性,进人人体后产生免疫反应,因稀释效应,而无法集中于靶器官组织,常不能保持最适合的治疗浓度,而固定化酶则很好的克服了游离酶的这些缺点,应用于治疗镁缺乏症、代谢异常症及制造人工内脏方面,如固定化L-天冬酰胺酶用于治疗白血病。葡萄糖氧化酶被固定化在纳米微带金电极上可用于活体检测的微生物传感器③。 固定化酶技术可用于治疗一些代谢障碍疾病。已知人类关于新陈代谢的疾病已过120余种,很多病因归结为人体缺乏某种酶的活性,一种可能的治疗方法就是通过某种方式给病人提供他所缺乏的酶。其提供的方式主要有:①将固定化酶用于体内作为治疗药物;②将固定化酶组装成体外生物反应器,通过体外循环作为临床治疗剂。将固定化酶用于临床诊断的例子很多,如各种酶测试盒层出不穷,采用固定化酶柱反应器的FIA(流动注射法)可用于临床诊断检测尿酸、葡萄糖、氨、尿素、胆甾醇、谷氨酸、乳酸、无机磷等。 2、酶催化技术 主要介绍非水相介质中的酶催化,传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等。用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酰胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手性药物拆分的生物技术开发中得到了很多应用。目前非水相中的酶催化技术已衍生出以下几类体系:①水与有机溶剂的互溶均相体系;②水与有机溶剂形

酶工程在现实方面的应用

酶工程在现实生活的应用 学院:生命科学与食品工程学院 姓名:沈峰学号:5602209078 班级:生工092 摘要:酶是催化特定化学反应的蛋白质、RNA或其复合体。是生物催化剂,能通 过降低反应的活化能加快反应速度,但不改变反应的平衡点。绝大多数酶的化学本质是蛋白质。具有催化效率高、专一性强、作用条件温和等特点。酶工程技术与我们生活息息相关,比如酿酒,制药工业等等。 Abstract:The enzyme is a specific protein, RNA or its complex which is used to catalytic specific chemical reaction.it's biological catalyst .It can accelerate reaction velocity by reduce the activation energy of reaction ,without changing the point of balance. The vast majority of enzyme's chemical nature is protein.so it have lots of Characteristics as high catalytic efficiency, high specificity, mild conditions and so on.The enzyme engineering is closely linked with our life ,for example,making wine pharmaceutical industry and so on. 关键字:酶工程酶啤酒制药 酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 如果要了解酶工程在现实生活方面的应用的话,首先先要知道什么是酶,什么是酶工程,和哪些酶可以在起作用及酶的特性有哪些。 首先酶是催化特定化学反应的蛋白质、RNA或其复合体。目前已发现有2000 多种。分子量在数万至数十万之间。生物体内的含量一般极少,它能参与生物体的各种生理生化活动,起催化剂的作用。酶的种类众多,而在酿酒等工业方面方面应用的酶也不少。比如,曲霉,根霉,红曲霉,拟内孢霉,木霉,青霉,等等。所以没对于现实生活有着广而深的影响,对于酶的特性的了解也就十分必要。 酶工程:酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。 酶的特性主要四点:1、酶具有高效率的催化能力;其效率是一般无机催化剂的10的7次幂~~10的13次幂。2、酶具有专一性;(每一种酶只能催化一种或一类化学反应。)3、酶在生物体内参与每一次反应后,它本身的性质和数量都不会发生改变(与催化剂相似);4、酶的作用条件较温和。 一酶工程在酿酒制造业的作用 总所周知,现实生活中的许多家庭每天都或多或少会在酒的方面消费,还有社交

酶工程的概念其主要研究内容和任务有哪些

酶工程电子教案 第三章酶的提取与分离纯化 ◆酶的提取与分离纯化是指将酶从细胞或其它含酶原料中提取出来,再与杂质分开,而获得所要求的酶制品的过程。 ◆主要内容包括细胞破碎,酶的提取,离心分离,过滤与膜分离,沉淀分离,层析分离,电泳分离,萃取分离,浓缩,干燥、结晶等。 1.细胞破碎 ◆细胞破碎方法可以分为机械破碎法,物理破碎法,化学破碎法和酶促破碎法等,如表3-1所示。 表3-1 细胞破碎方法及其原理

1.1 机械破碎法 ◆通过机械运动所产生的剪切力的作用,使细胞破碎的方法称为机械破碎法。 ◆常用的破碎机械有组织捣碎机,细胞研磨器,匀浆器等。 ◆机械破碎法分为3种:捣碎法,研磨法和匀浆法。 1.2物理破碎法 ◆通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法,称为物理破碎法。物理破碎法多用于微生物细胞的破碎。 ◆常用的物理破碎法方法有温度差破碎法、压力差破碎法、超声波破碎法等,现简介如下: (1)温度差破碎法:利用温度的突然变化,由于热胀冷缩的作用而使细胞破碎的方法称为温度差破碎法。 (2)压力差破碎法:通过压力的突然变化,使细胞破碎的方法称为压力差破碎法。常用的有高压冲击法、突然降压法、及渗透压变化法等。 (3)超声波破碎法:利用超声波发生器所发出的声波或超声波的作用,使细胞膜产生空穴作用(cavitation)而使细胞破碎的方法称为超声波破碎法。 1.3化学破碎法 ◆通过各种化学试剂对细胞膜的作用,而使细胞破碎的方法称为化学破碎法。 ◆常用的化学试剂有甲苯、丙酮、丁醇、氯仿等有机溶剂,和特里顿(Triton)、吐温(Tween)等表面活性剂。 ◆有机溶剂可以使细胞膜的磷脂结构破坏,从而改变细胞膜的透过性,使胞内酶等细胞内物质释放到细胞外。

酶工程在医药上的应用

酶工程在医药上的应用 朱祺琪社科1003班3100104077 【摘要】本文为读书报告,从酶工程制药的工艺和工程化技术方面,以及酶工程在医药上的应用及对未来的展望对酶工程的一个方面进行概述。 【关键词】酶工程酶的固定化酶法手性合成技术非水相酶催化 【引言】酶,它作为一种生物催化剂,已广泛地应用于轻工业的各个生产领域。近几十年来,随着酶工程不断的技术性突破,在工业、农业、医药卫生、能源开发及环境工程等方面的应用越来越广泛重组DNA技术促进了各种有医疗价值的酶的大规模生产。用于临床的各类酶品种逐渐增加。酶除了用作常规治疗外,还可作为医学工程的某些组成部分而发挥医疗作用。如在体外循环装置中,利用酶清除血液废物,防止血栓形成和体内酶控药物释放系统等。另外,酶作为临床体外检测试剂,可以快速、灵敏、准确地测定体内某些代谢产物,也将是酶在医疗上一个重要的应用。 【正文】 一、酶工程制药的工艺和工程化技术 1)酶的固定化技术 在40多年以前,几乎所有的工业化生产中采用的生物催化剂都是用全细胞或组织来进行的。作为生物催化剂的微生物细胞种类繁多,并带动了目前发酵工业的迅速发展。但由于正常发酵过程中的微生物生长和繁殖都需要消耗培养基中的营养物质并产生不必要的副产物,因而导致目的产物必须经过分离步骤才能从最终产物的混合物中分离出来,因此使用微生物细胞进行催化并不是十分有效的方法。

酶的固定化最早在1916年由Nelson和Griffin在研究酵母蔗糖酶时提出,他们发现蔗糖酶被吸附在活性炭上后仍然有活性。在20世纪60年代,羧肽酶、胃蛋白酶、核糖核酸酶相继被固定化成功,从而使得固定化酶在制药工业中的应用受到越来越大的重视。1969年千烟一郎固定化氨基酰化酶工业化生产L 氨基酸;随后青霉素酰化酶固定化生产。氨基青霉烷酸获得成功。近十几年来,随着工业分离纯化技术的发展和应用,使得工业规模获得酶成为可能,离体酶在制药工业中应用在逐渐增加。其最明显的优势在于具有更有效的底物转化率、更高的投料量和产量以及更好的产物均一性。但这些优点极有可能被酶纯化所增加的成本和纯化过程中酶的失活所抵消掉,造成对酶应用的限制。许多科学家已经开始研究如何去克服这些困难,其中大批量进行酶纯化能够在一定程度上减低成本,但更有效的方法当属固定化酶的方法,这种方法使得酶在使用过程中稳定性提高,可重复使用,降低了生产成本。 2)酶法手性合成技术 近来,小分子与生物大分子间的相互作用引起了人们很大的关注。对于选择性酶抑制剂和受体激动剂或拮抗剂的研究是药用工业中靶目标定位研究的关键之一。在分子水平上对药物作用机制的深入了解引起了人们的广泛注意,意识到手性作为许多药物功效之关键的重要性。现在人们已经知道在许多情况下,药物中仅有一种对映体对功效是必需的,其他对映体或者无活性,或者活性下降,甚至产生毒害。现在制药企业已经意识到,新药的开发必须是单手性的,以此来避免由不需要的对映体引起的不必要的副作用。许多情况下,一旦由消旋体药物向对映体纯化合物的转化成为可能时,就是发展工业化过程的良机。与消旋化合物相比较,单一对映体的优势体现在制备过程和配方上。 手性药物中间体可通过不同途径制备。一个方法是从天然的手性化合物开始,这种手性化合物主要是由发酵过程产生。手性库主要用到廉价的,使用方便的,有旋光性的天然产物。第二种方法是通过拆分消旋化合物实现的,该方法是主要是通过对映体或非对映体结晶性质上的差异以及通过化学或生物催化的方法有效拆分消旋化合物来完成的。最后,也可以用微生物细胞或其代谢产物酶,

酶工程习题96567

第一章 习题: 1、根据分子中起催化作用的主要组分的不同,酶可以分为_______和_______两大类别。 2、核酸类酶分子中起催化作用的主要组分是________,蛋白类酶分子中起催化作用的主要组分是___________。 3、进行分子内催化的核酸类酶可以分为_______,_______。 4、酶活力是_____的量度指标;酶的比活力是__________的量度指标;酶转换数是________的量度指标。 5、某酶的分类编号是EC2.2.1.10,其中EC是指_______。此酶属于_______类型。 6、醇脱氢酶参与的反应表明无氧气参与() 7、酶工程是_____________的技术过程。 8、酶的转换数是指() A、酶催化底物转化为产物的数量 B、每个酶分子催化底物转化为产物的分子数 C、每个酶分子每分钟催化底物转化为产物的分子数 D、每摩尔酶催化底物转化为产物的分子数 9、酶的改性是指____________________________. 第二章 1、名词解释 转录、组成型酶、酶的反馈阻遏、分解代谢物阻遏、生长偶联型

2、微生物产酶模式可以分为同步合成型________、中期合成型、________。 3、可以通过添加()使分解代谢物阻遏作用解除。 A、诱导物 B 激活剂 C、cAMP D、ATP 4、在酶发酵过程中添加表面活性剂可以 A、诱导酶的生物合成 B、阻遏酶的生物合成 C、提高酶活力 D、提高细胞通透性 5、为什么滞后合成型的酶要在细胞生长一段时间甚至进入平衡期以后才开始合成? 6、操纵子是由_________、_______和启动基因组成的。 7______________和______是影响酶生物合成模式的主要因素。 8、RNA前体的加工是指____________ 6、从如下实验方法和结果分析酶生物合成的调节作用。 实验方法:将大肠杆菌细胞接种于营养肉汤培养基中,于37°C振荡培养,当OD550为0.3时,经培养液分装到4个小三角瓶中,每瓶17ml培养液。于4个三角瓶分别添加 (A)3ml无菌水 (B)1ml乳糖溶液(0.1mol/L)和2ml无菌水 (C)1ml乳糖溶液(0.1mol/L)、1ml葡萄糖溶液(0.1mol/L)和1ml无菌水 (D) 1ml乳糖溶液(0.1mol/L)、1ml葡萄糖溶液(0.1mol/L)和1mlcAMP 钠盐溶液 然后在相同的条件下于37°C振荡培养2h,分别取样测定β-

酶工程技术极其在医药领域的应用

酶工程技术极其在医药领域的应用 摘要:随着生物技术的迅速发展,酶工程在生物工程中的核心地位得到了更好的体现。酶工程作为一种高新技术,已在医药、食品、轻工业、纺织等行业中得到越来越广泛的应用。本文将从酶的固定化技术、酶催化技术、酶的化学修饰、脱氧核酶、抗体酶和酶学诊断等几个方面来对酶工程在医药行业中的应用进行综述。 关键词:酶工程;医药;应用 Enzyme engineering technology and it’s application in the medical field Abstract: With the rapid development of biotechnology, enzyme engineering as a hard core of biological engineering has been better reflected. Enzyme engineering, as a new high-tech, has been widely used in medicine, food, light industry, textile and other industries. This article told the application of enzyme engineering in the medical industry from these aspects ,Enzymes Immobilization, Enzyme Catalysis, Enzymes Modification, Deoxyribozyme, Catalytic Antibody and Enzymatic diagnosis. Key words: Enzyme Engineering; Medicine; Application 1 引言:回顾20世纪,生物科学与生物工程在全球崛起并迅速发展,已经从整体水平发展到细胞水平和分子水平,在基础与应用研究领域取得了举世瞩目的成果。酶工程作为生物工程的重要组成部分,

酶工程复习要点

1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。 2、酶研究的两个方向:理论研究方向和应用研究方向。理论研究方向:酶的理化性质、催化性质、催化机制等。应用研究:促进了酶工程的形成。 3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。 4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。 5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。 6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。 8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。 9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。 10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。即S变为P。这些具有较高能量,处于活化态的分子称为活化分子,反应物中这种活化分子愈多,反应速率就越快。活化能的定义是在一定温度下一摩尔底物全部进入活化态所需要的自由能,单位是焦耳/摩尔。 11、酶的专一性:酶的专一性是指一种酶只能催化一种或一类结构相似的底物进行某种类型的反应。如果没有酶的专一性,在细胞中有秩序的物质代谢将不复存在,而且酶的应用将如同其他非酶催化剂那样受到局限。酶的专一性可以分为两类:①绝对专一性:一种酶只能催化一种物质进行一种反应,这种高度的专一性称为绝对专一性。②相对专一性:一种酶能够催化一类结构相似的物质进行某种相同类型的反应,这种专一性称为相对专一性。 12、酶的专一性确定过程:首先要选择一种该酶可催化的物质作为该酶的作用底物,通过实验确定其最适PH、温度等反应条件,其次是实验底物浓度对反应速度的影响,确定其米氏常数K m,然后用其他有可能是该酶作用底物的物质,在相同条件下逐个进行实验,有时要在不同条件下逐个试验,观察是否有催化反应发生,从而确定该酶是属于绝对专一性还是相对专一性,可作用于一类物质,可以选择几种有代表性的底物,求出各自的值,在某些情况下,不同底物有不同的最适PH值,而PH对K m有一定的影响,此时必须作出不同底物各自的PH曲线。然后再在各自的最适PH值条件下进行试验,以确定各底物相对应的K m值,在进行酶的专一性试验时,所使用的酶和各种底物都要尽可能地纯。对于有对称碳原子的物质,应分别对不同的光学异构进行试验。 13、酶活力是酶的数量的量度指标,酶的比活力是酶纯度的量度指标,酶转换数是酶催化效率的量度指标,而酶结合效率是酶被固定比例的量度指标。

现代生物化工中酶工程技术研究与应用

现代生物化工中酶工程技术研究与应用 张智梁 摘要:酶是生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化功能的生物催化剂。在现代生物化工发展的过程中,酶工程技术发挥着至关重要的作用。相对而言,这种技术的内容比较丰富,像酶反应器与酶的应用、酶制剂生产等,都属于酶工程技术的主要内容。生物化工对于人们日常的生产生活有着重要的影响,关系着人们的身心健康。经过100多年的发展,酶工程已经成为生物工程的主要内容之一,在世界科技和经济大发展中起着重要的作用。今后随着工业生物技术的发展,酶工程将继续向纵深发展,显示出更广阔的前进。做好现代生物化工中酶工程的技术研究工作,扩大这种技术的应用范围,具有重要的现实参考意义。 关键词:现代生物化工;酶工程技术;酶反应器;应用范围 在生物体细胞中,每时每刻都在进行新陈代谢的作用。通过新陈代谢,排除衰老死亡的细胞、以新生的细胞为主维持机体的正常运作,对于生命周期的循环起着重要的保障作用,因此新陈代谢不可忽视。新陈代谢包含了一些重要的有机化学,作为常见的生物催化剂,酶的存在有利于加快新陈代谢速度,从根本上保证了相关化学反应的持续进行。最初的淀粉酶主要是从麦芽提取液中得到的。此后随着现代生物工程技术的不断发展,研究工作者对于各种生物酶的结构和特性有了更加深入的了解,为这些酶应用范围的扩大奠定了坚实的基础。 1酶工程技术的研究的相关内容 1.1生物酶的主要特点 生物酶其本质是一种蛋白质,主要存在于活细胞中,为细胞的生存、代谢、繁殖等一系列生物反应提供了良好的促进和调节作用,在实际生产应用中也常常具有良好的催化效果,。一般的工程酶主要是指的是有生物酶参加的反应,在一定程度上确保了一些物质进行代谢的速度。生物酶的主要特点包括:(1)高效的催化效率。相对而言,酶的催化效率远远高于一般的催化剂,最大为1013倍;(2)稳定性差。作为机体活细胞的蛋白质,生物酶很容易受到各种存在因素的影响,导致蛋白质现象的出现,从而使酶失去了活性。这些内容客观地反映了生物酶稳

《酶工程》课后习题答案

第一章酶工程基础 1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学 ①酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。 ②比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。 ③酶活力:也称为酶活性,是指酶催化某一化学反应的能力。其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。 ④酶活国际单位: 1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。 ⑤酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。 2.说说酶的研究简史 酶的研究简史如下: (1)不清楚的应用:酿酒、造酱、制饴、治病等。 (2)酶学的产生:1777年,意大利物理学家 Spallanzani 的山鹰实验;1822年,美国外科医生 Beaumont 研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃蛋白酶。1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国科学家K?hne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。 (3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。 3.说说酶工程的发展概况 I.酶工程发展如下: ①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化: ②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤; ③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清; ④1949年,用微生物液体深层培养法进行 -淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960年,法国科学家Jacob和Monod提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量; ⑥1971年各国科学家开始使用“酶工程”这一名词。 II.在酶的应用过程中,人们注意到酶的一些不足之处,如:稳定性差,对强酸碱敏感,只能使用一次,分离纯化困难等,解决的方法之一是固定化。 固定化技术的发展经历如下历程: ①1916年,Nelson和Griffin发现蔗糖酶吸附到骨炭上仍具催化活性; ②1969年,日本千佃一郎首次在工业规模上用固定化氨基酰化酶从DL-氨基酸生产L-氨基酸; ③1971年,第一届国际酶工程会议在美国召开,会议的主题是固定化酶。 4. 酶的催化特点 酶催化作用特性有:

酶工程在医药工业中的应用

酶工程在医药工业中的应用 1161001413168 郑峰 摘要:酶工程是现代工业生物技术的重要组成部分,它作为一项高新技术,为各工业的发展起到了极大的推动作用,本文简要介绍了酶固定化、基因工程菌(细胞)的固定化、植物细胞培养产酶、酶的化学修饰、核酸酶、杭体酶、酶标药物的理论和技术研究的最新进展以及酶工程在医药工业中的应用,对酶工程的发展前景进行了探讨。 关键词:酶工程;酶的固定化;核酸酶;抗体酶;医药应用

目录 一、酶工程技术 (3) (一)酶和细胞的固定化 (3) (二)酶的化学修饰 (3) (三)核酸酶和抗体酶 (4) (四)酶标药物 (4) (五)职务细胞培养产酶 (5) 二、酶工程技术在医药工业中的应用 (5) (一)应用酶工程制备生物代谢产物 (5) (二)应用酶工程技术转化凿体 (6) (三)应用酶工程生产抗生素 (6) (四)应用酶工程生产氨基酸和有机酸 (6) (五)应用酶工程生产维生素 (7) (六)应用酶工程生产核苷酸类药物 (7) 三、酶工程在医疗中的应用 (7) 四、展望 (8) 参考文献: (9)

一、酶工程技术 (一)酶和细胞的固定化 将酶或细胞通过物理或化学方法固定在水溶性或非水溶性的膜状、颗粒状、管状的载体土,称为固定化酶或固定化细胞。我国研制过的固定化酶(细胞)已有50种左右,分为二种类型:固定化单酶或含特定酶的细胞、固定化双酶、固定化各类激酶构成ATP再生系统。一般能明显地提高酶对热与酸碱度的稳定性。固定化的方法主要有吸附、共价结合、包埋和选择性热变性等。目前又发展了利用光、辐射等物理技术和定点固定化技术固定酶[1]。在制药工业中包埋法应用较多,其次是吸附法。 固定化细胞包括微生物细胞(含基因工程菌)、动物细胞和植物细胞,目前更多地注重活细胞和增殖细胞的固定化。植物细胞固定化大多采用包埋法,至今已报道了固定化南洋金花、烟草、胡萝卜等十多种细胞的研究,植物细胞固定化技术在中药有效成分的生产应用研究上有更好的前景。动物细胞只有吸附和包埋法得以成功。目前动物细胞微囊化法用得最多的是聚赖氨酸/海藻酸(PIJL/Al,G)法,细胞生长密度可达106一109个·mL。微囊化细胞主要有两方面的应用:培养微囊化动物细胞生产一些药物;作为药物直接用于治疗或作为药物筛选之用,如用来生产单克隆抗体、干扰素、组织纤溶酶原激活剂(TPA)、自细胞介素、胰岛素生长因子和乙肝病毒表面抗原等。未来将有一大批具有生物活性的蛋白质可依靠固定化细胞在生物体外大规模的合成。应用基因重组技术将生物细胞中存在极少的催化某一生化反应的酶通过基因扩增和增强表达,建立高效表达特定酶制剂的基因工程菌或基因工程细胞,从而进一步构建成固定化一工程菌或固定化工程细胞的新一代催化剂。如德国BM公司应用蛋白质工程技术对表达青霉素酞化的基因进行点突变改造,重建了青霉素酞化酶工程菌,从而大大延长了固定化青霉素酞化酶的使用半衰期,其酶柱可连续使用700d以上[2]。 (二)酶的化学修饰 酶的化学修饰是指利用化学手段将某些化学物质或基团结合到酶分子上,或

酶工程习题(答案全)

第一章绪论 一、名词解释 1、酶:是具有生物催化功能的生物大分子 2、酶工程:酶的生产与应用的技术过程称为酶工程。它是利用酶的催化作用进行物质转化的技术,是将酶学理论与化工技术、微生物技术结合而形成的新技术,是借助工程学手段利用酶或细胞、细胞器的特定功能提供产品的一门科学 3、核酸类酶:为一类具有生物催化功能的核糖核酸分子。它可以催化本身RNA 剪切或剪接作用,还可以催化其他RNA,DNA多糖,酯类等分子进行反应 4、蛋白类酶:为一类具有生物催化功能的蛋白质分子,它只能催化其他分子进行反应。 5、酶的生产:是指通过人工操作获得所需酶的技术过程。主要包括微生物发酵产酶,动植物培养产酶,酶提取和分离纯化等 6、酶的改性是通过各种方法改进酶的催化特性的技术过程,主要包括酶分子的修饰,酶固定化,酶非水相催化等 7、酶的应用:是通过酶的催化作用获得人们所需要的物质或者不良物质的技术过程,主要包括酶反应器的选择和设计以及酶在各领域的应用等。 8、酶的专一性:又称为特异性,是指酶在催化生化反应时对底物的选择性,即在一定条件下,一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。亦即酶只能催化某一类或某一种化学反应。 9、酶的转换数:酶的转换数Kp。又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数 二、填空题 1、根据分子中起催化作用的主要组分的不同,酶可以分为_________和____________两大类。 2、核酸类酶分子中起催化作用的主要组分是__________,蛋白类酶分子中起催化作用的主要组分是________________。 3、进行分子内催化作用的核酸类酶可以分为________________,_________________。 4、酶活力是_______________的量度指标,酶的比活力是_______________的量度指标,酶的转换数的主要组分是________________的度量指标。 5、非竞争性抑制的特点是最大反应速度Vm__________________,米氏常数Km______________。 三、选择题 1、酶工程是()的技术过程。 A、利用酶的催化作用将底物转化为产物 B、通过发酵生产和分离纯化获得所需酶 C、酶的生产与应用 D、酶在工业上大规模应用 2、核酸类酶是()。 A、催化RNA进行水解反应的一类酶 B、催化RNA进行剪接反应的一类酶

相关主题
文本预览
相关文档 最新文档