当前位置:文档之家› 酶工程 (2)

酶工程 (2)

酶工程 (2)
酶工程 (2)

第二章

1.六大类酶基本概念和特点

(1)氧化还原酶:催化氧化还原反应,需要电子供体或受体

(2)转移酶:催化基团转移反应,即将一个底物分子的基团或原子转移到另一个底物的分子上

(3)水解酶:催化底物的加水分解反应

(4)裂合酶:脱去底物上某一基团留下双键,或可相反地在双键外加入某一基团。

(5)异构酶:催化生成异构体反应的酶,分别进行外消旋,差向异构,顺反异构,醛酮异构,分子内转移,分子内裂解等

(6)连接酶:需要三磷酸腺苷等高能磷酸酯作为结合能源,有的还需要金属离子辅助因子。

应用最多的是氧化还原酶,利用率最高的是水解酶

2.必需基团及其作用特点

必需基团包括:(1)活性部位,包括结合基团和催化基团

(2)维持酶空间结构的基团

必需基团是酶分子氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。必需基团在空间结构上相互靠近,组成具有特定空间结构的区域,能与底物特异性结合并将其转化为产物

3.两种酶与底物的结合模型

(1)锁钥模型:底物结合部位由酶分子表面的凹槽或空穴组成,这是酶的活性中心,它的形状与底物分子形状互补。底物分子或其一部分像钥匙一样,可专一地插入酶活性中心,通过多个结合位点的结合,形成酶—底物复合物,同时酶活性中心的催化基团正好对准底物的有关敏感键,进行催化反应。

三点结合学说指出,底物分子与酶活性中心的基团必须三点都互补匹配,酶才作用于这个底物。

(2)诱导锲合模型:酶分子与底物分子接近时,酶蛋白质受底物分子诱导,构象发生有利于与底物结合的变化,酶与底物在此基础上互补楔合,进行反应。

4.影响酶催化作用的五种模型

(1)广义的酸碱催化

能供给质子的物质即为酸,能接受质子的物质即为碱。广义的酸碱催化就是指组成酶活性中心的极性基团,在底物的变化中起质子的供体或受体的作用,这就是广义的酸碱催化。发生在细胞内的许多类型的有机反应都是广义的酸碱催化。

组氨酸的咪唑基值得特别注意,因为它既是一个很强的亲核基团,又是一个有效的广义酸碱功能基团。

影响酸碱催化速率的因素:一是酸碱的强度,在这些功能基团中,组氨酸的咪唑基的解离情况pK值为6.0,在生理pH条件下,既可以作质子的供体又可作质子的受体。因此,咪唑基是催化中最有效最活泼的一个催化功能基团;二是这些功能基团供出质子或接受质子的速度,其中的咪唑基的情况特别突出,它供出或接受质子的速度十分迅速,其半衰期小于10-10秒。而且,供出或接受质子的速度几乎相等。由于咪唑基有如此的优点,所以虽然组氨酸在大多数蛋白质中含量很少,却很重要,在许多酶的活性中心处都含有组氨酸

(2)共价催化

酶活性中心处的极性基团,在催化底物发生反应的过程中,首先以共价键与底物结合,生成一个活性很高的共价型的中间产物,此中间产物很容易向着最终产物的方向变化,故反应所需的活化能大大降低,反应速度明显加快。

常见形式是酶的催化基团中亲核原子对底物的亲电原子攻击。

(3)邻近效应和定向效应

邻近效应:在酶促反应中,由酶和底物分子之间的亲和性,底物分子有向酶的活性中心靠近的趋势,最终结合到酶的活性中心,使底物在酶活性中心的有效浓度增加。

定向效应:当专一性底物向酶活性中心靠近时会诱导酶分子的构象发生改变,使酶活性中心的相关基团和底物的反应基团正确定向排列,同时使反应基团之间的分子轨道以正确方向严格定位,使酶促反应易于进行。

(4)变形或张力

变化的酶分子使底物分子的敏感键产生张力,甚至变形,从而促进底物-酶络合物进入过渡态,降低了反应活化能,加速酶促反应,实际上即为诱导锲合的动态过程。

(5)酶的活性中心为疏水区域

酶的活性中心凹穴内相对地说是非极性的,而在疏水的非极性区介电常数低,因此,酶的催化基团被低介电环境所包围,在某些情况下排除高极性的水分子。这样,底物分子敏感键和酶的催化基团之间就会有很大的反应力,有助于加速酶的反应。

水的极性过高,形成离子层,干扰离子键和氢键形成。

5.专一性的分类

绝对专一:只催化一种底物进行快速专一反应,甚至是立体专一性

相对专一:基团专一和键专一,即可以催化一类化合物或一种化学键

6.酶作为催化剂的调节性

(1)酶浓度的调节

两种方式:一为诱导抑制酶的合成,二为调节酶的降解

(2)激素调节

由催化亚基和调节亚基组成,调节亚基无催化功能,由激素控制,在于改变催化亚基的专一性

(3)共价修饰调节

在一种酶分子上共价引入一个基团从而改变它的活性,引入的基团又可以被第三种酶催化

特征:至少需要三种酶,共价键的变化,级联放大作用,反应需要能量

(4)限制性蛋白水解作用与酶活力调控

高特异性的共价修饰调节系统,细胞内合成的新生肽大多以无活性前体形式存在,一旦需要才通过限制水解作用使前体转变

(5)抑制剂的调节

(6)反馈调节

催化第一步的酶被终端产物抑制

(7)金属离子和其他小分子化合物的调节

7.能降低酶催化反应速度的因素及其机理

(1)失活作用

物理或化学因素部分或全部破坏酶的三维结构,引起酶的变性,导致部分或全部丧失活性

(2)抑制作用

在酶不变性的情况下,由于必需基团或活性中心化学性质的改变而引起的酶活性丧失或降低

(3)去激活作用

某些酶只有在金属离子存在下才有活性,去除金属离子会引起这些酶活性的降低或丧失。当金属离子去除后,底物与酶的结合减少,实际上是降低了底物的有效浓度。

(4)阻遏作用

某些因素使细胞内酶蛋白的合成减少,反应速度的降低是由于酶分子数量的减少,每分子酶的催化效力并没有变化,而抑制作用指的是一定量酶分子催化效力的减少,不涉及酶分子合成的问题。

8.抑制作用的分类

(1)不可逆抑制:抑制剂与酶的必需基团以共价键结合,酶活性丧失,不能用透析,超滤或凝胶过滤等物理方法去除抑制剂而使酶复活

(2)可逆抑制:抑制剂与酶的必需基团以非共价键结合,酶活性丧失或降低,能用物理方法除去使酶复活两种方式与酶结合:同位抑制:与酶活性中心结合,阻止底物形成产物。

别构抑制:与酶活性中心以外的部位结合,酶分子空间构象改变

9.竞争性抑制剂

定义:与被抑制的酶的底物通常有结构上的相似性,能与底物竞争酶分子上的结合位点,从而产生酶活性的可逆的抑制作用。与酶的活性中心相结合,与酶的结合是可逆的。

机理:(1)抑制剂与底物在结构上有类似之处

(2)可能结合在底物所结合的位点上从而阻断底物与酶的结合

(3)降低酶和底物的亲和力,即Ks增大

过渡态类似物:底物与酶结合成中间复合体后被活化的过渡形式,由于其能障小,与酶结合紧密。如苯甲酰苯丙氨醛是胰凝乳蛋白酶的过渡态抑制剂。

10.不可逆抑制作用

(1)非专一性:抑制剂可以和酶上的一类或几类基团反应

(2)专一性:

a. Ks型结合型不可逆抑制剂

抑制剂与酶中的必需功能团起反应,每种抑制剂对酶的特定基团,包括活性部位的必需基团作用是专一的,也可以修饰酶分子其他部位的同类基团。

b. Kcat型催化型不可逆抑制剂(自杀底物)

抑制剂是根据酶的催化过程来设计或天然存在的,它们与底物类似,既能与酶结合,也能被酶催化发生反应,在其分子中存在潜伏基团,该基团会被酶催化而激活,并立即与酶活性中心某基团不可逆结合,酶受抑制。

例子:

11.酶抑制剂的应用

医学:青霉素

工业生产:多酚氧化酶

第三章

1.固定化酶

是用物理的或化学的方法使酶与水不溶性大分子载体结合或把酶包埋在水不溶性凝胶或半透膜的微囊体中制成的。酶固定化后一般稳定性增加,易从反应系统中分离,易于控制,能反复多次使用。便于运输和贮存,有利于自动化生产。

固定化酶应用于工业的开端:千烟一郎,氨基酰化酶

固定化细胞用于工业的开端:千烟一郎,大肠杆菌细胞

2.影响固定化酶性质的因素

(1)酶本身的变化

主要由于活性中心的氨基酸残基,高级结构和电荷状态发生了变化,即与底物结合位点改变

(2)载体的影响

a.底物在载体和溶液中存在分配效应

固定化酶处于主体溶液中,形成非均相反应系统,在固定化酶附近的环境为微环境,主体溶液为大环境。由于载体和底

物的疏水性,亲水性以及静电作用,使微环境与大环境有不同的性质,从而形成底物和各种效应物的不均匀分布,即为分配效应。

b.空间障碍效应:

活性基团与底物接触受到影响,影响定向作用

c.扩散限制效应

底物必须从主体溶液传递到固定化酶内部的催化部位,反应后产物又沿着相反路线从酶的催化部位传递到主体溶液,在传递过程中存在扩散速率限制问题。限速步骤可能是外扩散(底物从反应液向载体表面,产物移到反应液),内扩散(底物从载体表面移向酶活性中心,产物移向载体表面)或酶反应,会使其动力学行为偏离液态下的动力学行为。

(3)固定化方法的影响

3.固定化后性质的变化

(1)酶活性

酶活性下降,反应速度下降

(2)稳定性

a.操作稳定性提高,连续催化反应工作时间加长

b.贮存稳定性比游离酶大多数提高。

c.对热稳定性,大多数升高,有些反而降低。

d.对分解酶的稳定性提高,空间障碍效应

e.对变性剂的耐受力升高

稳定性提高的原因:

a. 固定化后酶分子与载体多点连接。

b. 酶活力的释放是缓慢的。

c. 抑制自降解,提高了酶稳定性。

(3)pH的变化

载体带负电荷,pH向碱性方向移动,载体带正电荷,pH向酸性方向移动。

催化反应的产物为酸性时,固定化酶的pH值比游离酶的pH值高;反之则低

(4)最适温度变化

(5)底物特异性变化

作用于低分子底物的酶特异性没有明显变化,既可作用于低分子底物又可作用于大分子低物的酶特异性往往会变化。(6)米氏常数变化

4.固定化酶评价指标

5.固定化方法

6.固定化细胞的特点以及方法

优点:(1)可以增殖,细胞密度大,可获得高密度而体积小的生产菌聚集体

(2)发酵稳定性好,可以长时间反复使用或连续使用

(3)发酵液中菌体含量少,利于产品的分离纯化

(4)有利于需要辅酶和多酶系统才能进行的反应

方法:吸附法

包埋法

细胞包埋法应注意问题:

7.原生质体固定化

(1)包埋法固定化原生质体

将原生质体悬浮在含有渗透压稳定剂的缓冲液中配成原生质体悬浮液

(2)原生质体制备

要点是如何保护细胞内部的结构完整性,防止制备得到的原生质体破裂

a.酶解前预处理:主要是为了使酶渗透到细胞器中去。

采取的策略:先加入物质抑制或阻止某种细胞壁的成分合成,可以使酶插入。

一般加入:巯基乙醇(酵母),Triton-100(霉菌),甘氨酸(放线菌)、青霉素(细菌)

b.稳定剂的要求

1 加入的化合物对细胞和原生质体无毒性

2 不会影响水解酶的活性

3 对代谢产物无不良影响

(3)原生质体细胞活性的检测

荧光染色:红色:完全原生质体

绿色:仍然含有细胞壁成分

8.为什么要做辅酶固定化

(1)有机辅因子中具有某些特殊的化学基团,参与酶的催化反应(递氢、递电子或递某些化学基团的作用);

(2)有机辅因子在使用过程中要流失,并且不能自行再生;

(3)有机辅因子价格昂贵

工业上应用全酶的关键是有机辅因子的保留和再生

9.反应器大概框架

10.生物反应器与化学反应器的区别

(1)化学反应器从原料进入到产物生成,常常需要加压和加热,是一个高能耗过程。而生物么应器则不同,在酶和微生物的参与下,在常温和常压下就可以进行化学合成。

11.关注三点应用

(1)工农业生产

葡萄糖异构酶——世界上生产规模最大的一种固定化酶。

用吸附法、结合法、凝胶包埋法等进行固定化。

聚丙烯酰胺凝胶包埋含有延胡索酸酶的产氨短杆菌菌体,制得固定化延胡索酸酶。工业化生产L-苹果酸

利用固定化乳糖酶可以连续生产低乳糖奶,固定化酵母细胞等微生物可用于生产各种酒类

(2)分析化学中的应用

酶柱和酶管,可与分光光度计、荧光计或电量计结合,形成酶电极,进行某些物质的自动分析。

酶电极:生物传感器的一种。在基础电极的敏感面上装有固定化酶膜,当电极插入待测溶液时,酶膜中的酶发生催化反应产生电极活性物质,引起基础电极电位变化,由此测出该酶所催化的反应中反应物或反应产物的浓度。

(3)基础理论研究

阐明酶反应机理

揭示酶原激活机理

第四章

1.有机相酶反应的优点

(1)有利于疏水性底物的反应,能催化在水中不能进行的反应

(2)可提高酶的热稳定性.

(3)可改变反应平衡移动方向

(4)可控制底物专一性

(5)酶和产物易于回收。

(6)可避免微生物污染。

2.一些概念

仿水溶剂体系:可用二甲基甲酰胺(DMF),乙二醇,丙三醇等极性添加剂部分或全部替代系统中的辅助溶剂水,从而影响酶的活性和立体选择性。称为仿水溶剂体系。

分子印迹:酶在含有其配体的缓冲液中,肽链与配体之间的氢键等相互作用使酶的构象改变,这种新构象除去配体后在无水有机溶剂中仍可保持,并且酶通过氢键能特异地结合该配体,这种方法叫生物印迹。利用酶与配体的相互作用,诱导、改变酶的构象,制备具有结合该配体及其类似物能力的新酶称为生物印迹酶

为什么在有机相中会产生印迹现象?

3.有机相中关于水的一些解释

(1)水在酶催化反应中的作用

水直接或间接参与了酶天然构象中所有的非共价相互作用,水充当了酶结构的“润滑剂”,使酶分子的柔性增强

有机相中刚性增强的原因:

(2)必需水:紧紧吸附在酶分子表面,维持酶催化活性所必需的最少量水称为必需水

(3)水活度

指特定的温度和压力条件下,反应体系中水的摩尔分数Xw与水活度系数гw的乘积:аw =гw* Xw

水活度系数гw是溶剂疏水性的函数,溶剂疏水性越大,гw越大。

аw 是一个强质性质的物理量,在平衡状态时,反应体系中各组分(酶、溶剂、底物和产物)的аw 是相同的。(4)酶活与水的关系

酶活最大时蛋白质结构的动力学刚性和热力学稳定性(柔性)之间达到最佳平衡点。

4.酶形式的选择

(1)酶粉

酶蛋白分子骨架的构象与水中无明显变化

(2)化学修饰酶

(3)固定化酶

把酶吸附在不溶性载体上(如硅胶、硅藻土、玻璃珠等)制成固定化酶,其对抗有机介质变性的能力、反应速度、热稳定性等都可提高。

5.反胶束,表面活性剂及如何变化

(1)反胶束:

表面活性剂分散于连续有机相中自发形成的纳米尺度的一种聚集体。反胶束溶液是透明的热力学稳定的系统。大量与水不溶的有机溶剂中,含有少量的水溶液,加入表面活性剂后形成的油包水的微小液滴

制备:将表面活性剂溶于非极性的有机溶剂中,并使其浓度超过临界胶束浓度(CMC),便会在有机溶剂内形成聚集体,这种聚集体则为反胶束。

(2)表面活性剂:

表面活性剂是由亲水憎油的极性基团和亲油憎水的非极性基团两部分组成的两性分子。在有机相酶反应中用得最多的是阴离子表面活性剂

(3)临胶束浓度:

是胶束形成时所需表面活性剂的最低浓度,用CMC来表示。CMC的数值可通过测定各种物理性质的突变(如表面张力、渗透压等)来确定。

(4)反胶束的影响因素

反胶束的尺寸和形状随表面活性剂-溶剂系统的变化而变化,同时也受温度、压力、离子强度的影响。反胶束的大小取决于反胶束的含水量Wo。Wo的定义为反胶束中水分子数与表面活性剂分子数之比,也即有机溶剂中水的摩尔浓度与表面活性剂的摩尔浓度之比。

6.有机溶剂如何影响酶的催化

(1)有机溶剂能通过直接与酶相互作用引起抑制或失活

A 增大酶反应的活化能来降低酶反应速度

B 降低中心内部极性并加强底物与酶之间形成的氢键,使酶活性下降。

C 酶三级结构变化,间接改变酶活性中心结构影响失活。

(2)有机溶剂与扩散的底物或产物相互作用而影响酶活

酶宏观上在有机相中反应,微观上在水相中反应

(3)有机溶剂直接与酶附近的必需水相互作用

产物要进去,底物要出来

7.有机介质对酶稳定性与活性的影响

(1)稳定性

热稳定性提高

储存稳定性提高

在低水有机溶剂体系中,酶的稳定性与含水量密切相关;一般在低于临界含水量范围内,酶很稳定;含水量超出临界含水量后酶稳定性随含水量的增加而急剧下降。

(2)活性

a.结构变化:脱水阶段折叠大大减少,加入保护剂防止脱水

b.与底物接触程度降低。聚集成团形成悬浮液,做成颗粒状,逆交束体系

c.底物的去溶剂化,底物从溶剂中到水处反应

d.可塑性变弱,因为缺水

(一)单相共溶剂体系中,有机溶剂对酶活性影响

a.有机溶剂直接作用于酶,破坏维持酶活性构象的氢键和疏水作用力,或破坏酶周围水化层,使酶失活或变性。

b.有些酶的活性会随着某些有机溶剂浓度升高而增大,在某一浓度(最适浓度)达到最大值;若浓度再升高,则活性下降。(二)低水有机溶剂体系中,大部分酶活性得以保存,但也有某些酶活性亦变化

(三)在反向微团体系中,微团效应使某些酶活性增加

酶活力依赖微团的水化程度,即取决于水与表面活性剂的摩尔比(R)

超活性:凡是高于水溶液中所得酶活性值的活性称为超活性(Super-activity)。

认为:超活性是由围绕在酶分子外面的表面活性剂这一外壳之较大刚性所引起。

8.利用什么酶,做了什么,得到什么

第五章

1.为什么要做化学修饰

(1)稳定性不够,不能适应大量生产的需要

热稳定,pH稳定

(2)作用的最适条件与工业生产不一定相符

(3)酶的主要动力学性质的不适应

解决抑制剂的问题

(4)临床应用的特殊要求,用的最多,解决异源蛋白产生抗原性的问题

2.怎么做化学修饰

(1)修饰剂的要求

a.修饰剂的分子量、修饰剂链的长度对蛋白质的吸附性。

b.修饰剂上反应基团的数目及位置。

c.修饰剂上反应基团的活化方法与条件

(2)酶性质的了解

a.酶活性部位情况

b.酶的稳定条件、酶反应最适条件

c.酶分子侧链基团的化学性质及反应活泼性等

(3)反应条件的选择

a.反应体系中酶与修饰剂的分子比例。

b.反应体系的溶剂性质,盐浓度和pH条件。

c.反应温度及时间。

(4)酶修饰方法

a.酶分子侧链基团的化学修饰

b.有机大分子对酶的化学修饰

c.蛋白质类及其他

3.化学修饰后得到了什么

(1)热稳定性

a.修饰剂与酶多点交联,固定了酶的分子构象,增强了酶的结构刚性。

b.减少了酶分子内部基团的热振动

(2)抗原性

部分可消除,PEG、人血清白蛋白在消除酶抗原性上效果明显。

原因:

a.组成抗原决定簇的基团与修饰剂形成了共价键,破坏了抗原决定簇的结构

b.大分子修饰剂遮盖抗原决定决定簇和阻碍抗原、抗体产生结合反应

(3)体内半衰期

延长,由于酶分子经修饰后,增强对热、蛋白酶、抑制剂等的稳定性,从而延长了在体内的半衰期(4)最适pH

大部分经过修饰后发生变化,修饰的最适pH更接近于生理环境,在临床应用上有较大意义。

(5)酶学性质的改变

(6)对组织的分布能力变化

对组织的分布能力有所改变,能在血液中被靶器官选择性地吸收。

4.酶修饰在空间结构的应用

(1)研究酶分子的解离-缔合现象。

(2)推算出酶分子大小、形态及构象变化。

(3)测定氨基酸残基在酶分子中存在的状态。

(4)利用双功能试剂交联修饰可以测定酶分子中特定基团的距离

5.化学局限性有那些

(1)化学修饰专一性相对

(2)酶的构象有些变化

(3)只能在具有极性的氨基酸残基侧链上进行

(4)研究酶结构与功能缺乏准确性和系统性

酶工程技术在食品中的应用

酶工程技术在食品中的应用 生物工程是现代科技的一项高新技术,酶工程是生物工程中最重要的组成部分。自从1906年人类发现了用于液化淀粉生产乙醇的细菌淀粉酶以来,经过几十年的发展,酶制剂已经广泛地应用于食品加工、纺织、洗涤剂、饲料、医药等行业,给这些行业带来了新的生机和活力。酶是具有生物催化能力的蛋白质,其催化反应具有高效性和专一性。国际生物化学联合会把酶分成六大类---氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类、合成酶类。本文将简要介绍几种常用于食品加工中的酶的特性及其作用机理。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 一、酶工程技术简介 1.酶制剂的生产来源 酶制剂的生产酶的来源主要有植物、动物和微生物。最早人们多从植物、动物组织中提取,例如从动物胰脏和麦芽中提取淀粉酶、从动物胃膜,胰脏、木瓜、菠萝中提取蛋白酶。它们大多数由微生物生产,这是因为微生物种类多,几乎所有酶都能从微生物中找到,而且它的生产不受季节、气候限制;由于微生物容易培养,繁殖快,产量高,故可在短时间内廉价地大量生产。近年来,随着基因工程技术的迅速发展,又为酶产量的提高和新酶种的开发开辟了新的途径。基因工程技术的最大贡献在于,它能按照人们的意愿构建新的物种,或者赋予新的功能。虽然目前基因工程

还未形成大规模的产业,但是它作为一种改良菌种,提高产酶能力,改变酶性能的手段,已受到了人们的极大关注。例如利用改良的过氧化物酶能够在高温和酸性条件下脱甲基和烷基,生产一些食品特有的香气因子。基因工程菌生产a一淀粉酶是目前人们研究最多的课题,美国CPC国际公司的Moffet研究中心,已成功地采用基因工程菌生产了a一淀粉酶,并已获得美国食品药品管理局(FDA)的批准。此外,运用基因工程技术,提高葡萄搞异构酶,纤维素酶,糖化酶等酶活力的研究也取得了一定的成绩。 2.酶的纯化 酶的纯化属于一种后处理工艺,包括粗制工艺与精制工艺,对超酶液进行浓缩精制是生产高质量酶制剂的重要环节,目前采用的技术主要有沉淀法,吸附法和色谱法,分子筛分法,陈结法,减压浓缩法和电泳法等。 3.酶的固定化技术 酶的固定化是指用物理或化学手段,把酶束缚在一定的区域内,使其在一定的范围内起催化作用。固定化技术是酶工程的关键技术之一,自从1969年世界上第一次使用固相酶技术以来,至今已有30多年的历史。应用固定化葡萄糖异构酶生产高果糖浆是现代酶工程在工业生产中最成功、规模最大的应用。固定化酶可用于处理液态食品,价格昂贵的酶经固定化后,可以提高稳定性,降低成本,延长使用寿命,实现连续化和自动控制,减少精制过程中沉淀,过滤等操作费用。

《酶工程》期末复习题整理#(精选.)

第一章 1.酶工程:是生物工程的重要组成部分,是随着酶学研究迅速发展,特别是酶的推广应用,使酶学和工程学相互渗透、结合、发展而成的一门新的技术科学,是酶学、微生物学的基本原理与化学工程有机结合而产生的边缘科学技术。 2.化学酶工程:指自然酶、化学修饰酶、固定化酶及化学人工酶的研究和应用 3.生物酶工程:是酶学和以基因重组技术为主的现代分子生物学技术结合的产物,亦称高级酶工程。 4.酶工程的组成部分? 答:酶工程主要指自然酶和工程酶(经化学修饰、基因工程、蛋白质工程改造的酶)在国民经济各个领域中的应用。内容包括:酶的产生;酶的分离纯化;酶的改造;生物反应器。5.酶的结构特点? 答:虽然少数有催化活性的RNA分子已经鉴定,但几乎所有的酶都是蛋白质,因而酶必然具有蛋白质四级结构形式。其中一级结构是指具有一定氨基酸顺序的多肽链的共价骨架;二级结构为在一级结构中相近的氨基酸残基间由氢键的相互作用而形成的带有螺旋、折叠、转角、卷曲等细微结构;三级结构系在二级结构基础上进一步进行分子盘区以形成包括主侧链的专一性三维排列;四级结构是指低聚蛋白中各折叠多肽链在空间的专一性三维排列。具有低聚蛋白结构的酶(寡聚酶)必须具有正确的四级结构才有活性。具有活性的酶都是球蛋白,即被广泛折叠、结构紧密的多肽链,其氨基酸亲水基团在外表,而疏水基团向内。 6.酶活性中心:是酶结合底物和将底物转化为产物的区域,通常是整个酶分子中相当小的一部分,它是由在线性多肽链中可能相隔很远的氨基酸残基形成的三维实体。 7.酶作用机制有哪几种学说? 答:锁和钥匙模型、诱导契合模型 8.酶催化活力的影响因素? 答:底物浓度、酶浓度、温度、pH等。 9.酶的分离纯化的初步分离纯化的步骤? 答:(一)材料的选择和细胞抽提液的制备 1.材料的选择:目的蛋白含量要高,而且容易获得 2.细胞破碎方法及细胞抽提液的制备。为了确保可溶性细胞成分全部抽提出来,应当使用类似于生理条件下的缓冲液。动物组织和器官要尽可能除去结缔组织和脂肪、切碎后放人捣碎机中。完全破碎酵母和细菌细胞。 3.膜蛋白的释放:膜蛋白存在于细胞膜或有关细胞器的膜上。按其所在位置大体可分为外周 蛋白和固有蛋白两种类型 4.胞外酶的分离:胞外酶是在微生物发酵时分泌到发酵液中的。发酵后可通过离心或过滤将菌体从发酵液中分离弃去,所得发酵清液通常要适当浓缩,然后再作进一步纯化。目前常用的浓缩方法是超滤法。 (二)蛋白质的浓缩和脱盐 浓缩方法主要有:沉淀法、吸附法、干胶吸附法、渗透浓缩法、超滤浓缩法

中国生物医药产业区域分布特征

中国生物医药产业区域分布格局 在全球各主要发达国家加速推进生物技术发展的背景下,我国于2010年明确将包含生物医药在内的生物产业列入国家战略性新兴产业。未来中国生物医药产业将迎来加速发展和布局调整的重要机遇。 上图是2010年中国各省生物医药产值分布图。从图中可以看出,目前,中国生物医药产业集群化分布进一步显现,已初步形成以长三角、环渤海为核心,珠三角、东北等中东部地区快速发展的产业空间格局。此外,中部地区的河南、湖南、湖北,西部地区的四川、重庆也已经具备较好的产业基础。 为统一评价各重点区域生物医药产业发展水平,根据生物医药发展的关键要素,选取产业规模、创新能力、人力资源、国际交流等四项指标进行评价。如下图:

环渤海地区生物医药人力资源储备最强,拥有丰富的临床资源和教育资源。各省市在医药产业链方面具有较强的互补性,围绕北京形成了创新能力较强的产业集群。 长三角地区生物医药产业创新能力和国际交流水平评分最高。长三角地区拥有最多的跨国生物医药企业,在研发与产业化、外包服务、国际交流等方面具有较大优势,已逐步形成以上海为中心的生物医药产业集群。 珠三角地区市场经济体系成熟,市场潜力巨大。珠三角地区医药流通体系发达,毗邻港澳,对外辐射能力强,民营资本比较活跃。围绕广州、深圳等重点城市形成了商业网络发达的生物医药产业集群。 中西部生物医药产业集群逐步形成各自发展特色。成渝经济圈在生物医学工程领域创新活跃,是西部地区重要的生物医药成果转化基地;以长春市为核心的长吉图地区是亚洲规模较大的疫苗生产基地;长株潭地区拥有长沙高新区、浏阳生物医药园等多个生物医药产业基地,产业基础雄厚;武汉城市群聚集了各类研发机构及知名企业300余家,已形成支撑创新、产业化发展,较为完善的平台和环境。 武汉中帜生物科技有限公司是一家由留美华裔生物科技精英创建的,致力于分子生物检测及临床医学诊断新技术、新产品的研发、生产和销售一体化的高新技术企业。公司注册资本3000万,广泛涉猎生命科学研究和医学临床检验领域。2008年在硅谷投资兴建了新技术研发中心——美国Signosis.Inc,成功构建了多生物素信号放大技术、斑点免疫测试技术、基因芯片检测技术等多项技术平台,其中“模板线性扩增和多生物素信号的双重放大方法”等三项发明已申请中国专利及国际专利。先后开发完成200多种最新的生物标志物分析试剂产品,产品销售遍布北美、欧洲及亚洲等主要国家和地区。2011年11月,中帜生物正式落户武汉东湖高新区国家生物产业基地九龙产业园,拟斥资4000万元打造公司管理总部、营销管理中心及分子诊断试剂生产基地。并与国家疾控中心、中科院、军科院、医科院等研究院所结为战略合作伙伴,与多家大型三甲医院建立临床合作。 作为较早一批入驻武汉光谷生物城的高新技术企业,武汉中帜生物科技有

酶工程发展概况及应用前景

酶工程发展概况及应用前景 【摘要】酶的生产和应用的技术过程称为酶工程。其主要任务是通过预先设计,经人工操作而获得大量所需的酶,并利用各种方法使酶发挥其最大的催化功能。本文意在阐述近年来酶工程在分子水平的研究进展,展示酶工程在医药、农业、食品、环境保护等领域的应用进展,并对其未来前景进行了展望。 【关键词】酶工程;概况;应用;前景 酶工程,从定义上来说,是酶制剂在工业上的大规模应用,主要由酶的生产、酶的分离纯化、酶的固定化和生物反应器四个部分组成。简而言之,酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶的反应器等方面内容。 酶工程的前景 酶因其反应的专一性,高效性和温和性的特点,已和生物工程,信息科学和材料科学构成了当今的三大前沿科学。而作为生物工程的重要组成部分,将在未来的发展中,在世界科技和经济发展中起着主导和支柱作用。而工业用酶日益广泛地应用于化学,医药,纺织,农业,日化,食品,能源,化妆品以及环保等行业。据报道,到2003年,欧洲工业用酶的市场增加至9亿美元,年增长率达百分之十;而2000年的中国,酶制剂总产量达272吨,同比增长8.8%,可谓发展迅速,前景十分广阔。 酶工程的发展 酶工程的发展,是一部科学的成长史。在二次世界大战后,酶工程发展成为新的工业领域—酶工程工业。酶工程的发展历史从那时算起, 至今已经三十多个年头了。六十年代以后, 由于固定化酶、固定化细胞及固定化活细胞的崛起, 使酶制剂的应用技术面貌一新。七十年代以后,伴随着第二代酶——固定化酶及其相关技术的产生,酶工程才算真正登上了历史舞台。固定化酶正日益成为工业生产的主力军,在化工医药、轻工食品、环境保护等领域发挥着巨大的作用。几十年来酶制剂的品种和应用不断扩大。不仅如此,还产生了威力更大的第三代酶,它是包括辅助因子再生系统在内的固定化多酶系统,它正在成为酶工程应用的主角。近年来, 国际上酶工程技术发展迅速, 硕果累累,主要有基因工程、蛋白质工程、人工合成酶、模拟酶、核酸酶、抗体酶、酶的定向固定化技术、酶化学技术、非水酶学、糖生物学、糖基转移酶、极端环境微生物和不可培养微生物的新品种等。 酶工程的应用 酶工程的发展日新月异,现举几个例子更加形象地说明酶工程地应用: 酶工程在污染处理中的作用:可利用过氧化物酶和聚酚氧化酶处理含酚废水和造纸废水,如辣根过氧化物酶,木质素过氧化物酶,植物来源的过氧化物酶;酪氨酸酶,漆酶等;可利用氰化物酶和氰化物水合酶处理含氰废水;利用蛋白酶,淀粉酶处理食品加工废水;并且,可以通过设计复合代谢途径,拓宽氧化酶的专一性等基因工程的运用,提高微生物的降解速率;拓宽底物的专一性;维持低浓度下的代谢活性;改善有机污染物降解过程中的生物催化稳定性等。酶在废物处理及资源化过程中正在发挥重要作用, 利用基因工程和蛋白质工程扩展酶的代谢途经, 是治理难降解有毒污染物的重要方法。

酶工程 (2)

第二章 1.六大类酶基本概念和特点 (1)氧化还原酶:催化氧化还原反应,需要电子供体或受体 (2)转移酶:催化基团转移反应,即将一个底物分子的基团或原子转移到另一个底物的分子上 (3)水解酶:催化底物的加水分解反应 (4)裂合酶:脱去底物上某一基团留下双键,或可相反地在双键外加入某一基团。 (5)异构酶:催化生成异构体反应的酶,分别进行外消旋,差向异构,顺反异构,醛酮异构,分子内转移,分子内裂解等 (6)连接酶:需要三磷酸腺苷等高能磷酸酯作为结合能源,有的还需要金属离子辅助因子。 应用最多的是氧化还原酶,利用率最高的是水解酶 2.必需基团及其作用特点 必需基团包括:(1)活性部位,包括结合基团和催化基团 (2)维持酶空间结构的基团 必需基团是酶分子氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。必需基团在空间结构上相互靠近,组成具有特定空间结构的区域,能与底物特异性结合并将其转化为产物 3.两种酶与底物的结合模型 (1)锁钥模型:底物结合部位由酶分子表面的凹槽或空穴组成,这是酶的活性中心,它的形状与底物分子形状互补。底物分子或其一部分像钥匙一样,可专一地插入酶活性中心,通过多个结合位点的结合,形成酶—底物复合物,同时酶活性中心的催化基团正好对准底物的有关敏感键,进行催化反应。 三点结合学说指出,底物分子与酶活性中心的基团必须三点都互补匹配,酶才作用于这个底物。 (2)诱导锲合模型:酶分子与底物分子接近时,酶蛋白质受底物分子诱导,构象发生有利于与底物结合的变化,酶与底物在此基础上互补楔合,进行反应。 4.影响酶催化作用的五种模型 (1)广义的酸碱催化 能供给质子的物质即为酸,能接受质子的物质即为碱。广义的酸碱催化就是指组成酶活性中心的极性基团,在底物的变化中起质子的供体或受体的作用,这就是广义的酸碱催化。发生在细胞内的许多类型的有机反应都是广义的酸碱催化。 组氨酸的咪唑基值得特别注意,因为它既是一个很强的亲核基团,又是一个有效的广义酸碱功能基团。 影响酸碱催化速率的因素:一是酸碱的强度,在这些功能基团中,组氨酸的咪唑基的解离情况pK值为6.0,在生理pH条件下,既可以作质子的供体又可作质子的受体。因此,咪唑基是催化中最有效最活泼的一个催化功能基团;二是这些功能基团供出质子或接受质子的速度,其中的咪唑基的情况特别突出,它供出或接受质子的速度十分迅速,其半衰期小于10-10秒。而且,供出或接受质子的速度几乎相等。由于咪唑基有如此的优点,所以虽然组氨酸在大多数蛋白质中含量很少,却很重要,在许多酶的活性中心处都含有组氨酸 (2)共价催化 酶活性中心处的极性基团,在催化底物发生反应的过程中,首先以共价键与底物结合,生成一个活性很高的共价型的中间产物,此中间产物很容易向着最终产物的方向变化,故反应所需的活化能大大降低,反应速度明显加快。 常见形式是酶的催化基团中亲核原子对底物的亲电原子攻击。 (3)邻近效应和定向效应 邻近效应:在酶促反应中,由酶和底物分子之间的亲和性,底物分子有向酶的活性中心靠近的趋势,最终结合到酶的活性中心,使底物在酶活性中心的有效浓度增加。

酶工程.pdf分析

酶工程

第一节 第一节概概述述 酶工程是在发酵工程(微生物工程)基 础上发展起来,它与发酵工程的联系极为 密切。酶工程是生物工程的重要组成部分,与基因工程、细胞工程、发酵工程相互依 存、相互促进。

一、酶的定义与性质 酶(enzyme):是由生物体内活细胞产生的一 种生物催化剂(biocatalyst) 。 按化学组成分成蛋白质类酶和核酸类酶。

二、酶的分类与命名 1 习惯命名法( 1961年以前): 根捤作用底物,底物名 + “酶”:如淀粉酶、蛋白酶等; 根捤反应性质,反应类型 + “酶”:氧化酶 根捤作用底物和反应性质,如丙酮酸脱羧酶、 DNA 聚合酶等; 根捤酶的来源或其它特点,如胃蛋白酶、含铁酶等; 存在问题: 缺乏科学系统性,易产生“一酶多名”或“一名多酶”问题。 如分解淀粉的酶,若按这种命名法则有三种名称,如淀粉酶、 淀粉水解酶和细菌淀粉酶。

2系统命名法与分类 1.系统命名法 根捤国际生化协会酶命名委员会的觃定,每一个酶都用四个 打点隔开的数字编号,编号前冠以EC(酶学委员会缩 写),四个数字依次表示: 第一个数为大类,按酶促反应性质分的六大类。第二 个数为亚类,按底物中被作用基团或键的性质分。第 三个数为亚亚类,迚一步精确底物的性质。第四个数 为亚亚类中的顺序号

乙醇脱氢酶的编码是:EC1.1.1.1 第一个“1”——第1大类,即氧化还原酶类;第二个“1”——第1亚类,供氢体为CHOH;第三个“1”——第1亚亚类,受氢体为NAD+;第四个“1”——在亚亚类中的顺序号。

酶学与酶工程

Lecture1 酶学与酶工程 1、酶的概念,命名、酶的活性中心 1)酶是由活细胞产生的,具有催化活性和高度转移性的特殊蛋白质,是一类生物催化剂。 酶工程:将酶学理论与化工技术相结合,研究酶的产生和应用的一门新的技术性学科,包括了酶制剂的制备、酶的固定化、酶的修饰与改造及酶反应器等方面。 主要:酶的生产、酶的分离纯化、酶的固定化和酶生物反应器。 化学酶工程:用化学手段修饰、改造、模拟天然酶,使其更适合人们的需要,主要包括天然酶、化学修饰酶、固定化酶以及化学人工合成酶的研究与应用。 生物酶工程:用生物学的方法,特别是基因工程、蛋白质工程和组合库筛选法改造天然酶,创造性能优异的新酶,主要是抗体酶、杂合酶、进化酶和核酸酶的研究与应用。 2)命名:系统命名法!! 催化下列反应酶的命名:ATP+D—葡萄糖→ADP+D—葡萄糖-6-磷酸 该酶的正式系统命名是:ATP:葡萄糖磷酸转移酶,表示该酶催化从ATP中转移一个磷酸到葡萄糖分子上的反应。 它的分类数字是:E.C.2.7.1.1 E.C代表按国际酶学委员会规定的命名 第1个数字(2)代表酶的分类名称(转移酶类) 第2个数字(7)代表亚类(磷酸转移酶类) 第3个数字(1)代表亚亚类(以羟基作为受体的磷酸转移酶类) 第4个数字(1)代表该酶在亚-亚类中的排号(D葡萄糖作为磷酸基的受体) 3)活性中心 必需基团:酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基因 酶的活性中心:必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。 2、酶的分类、组成、结构特点和作用机制 分类:按酶促反应的性质分类(六大类):氧化还原酶、转移酶、水解酶、裂解酶类、异构酶类、合成酶类 全酶=酶蛋白+辅因子 辅因子包括:有机辅因子(辅酶非共价结合/辅基非共价结合或共价结合)和金属辅因子(金属酶/金属激活酶) 3、酶作为催化剂的显著特点 强大的催化能力:可以加快至1017倍; 没有副反应,酶在较温和的条件下催化反应的进行; 高度的专一性,各种酶都有专一性但是专一程度的严格性上有所差别; 可调节性,包括了抑制剂和激活剂的调节、反馈抑制调节、共价修饰调节和变构调节等;

中国生物工程学会工作总结

中国生物工程学会工作总结 一、主要成绩 (一)召开首届中国生物产业大会; (二)参加科协年会组织的分会场; (三)组织生物科学生物技术前沿研讨会; (四)组织编写2007年《中国生物产业发展报告》。 二、综合情况 (一)学术活动 1.学术会议 (1)当今社会,人类面临的是能源危机、环境污染加剧,为此中国生物工程学会在中国科协2007年会上牵头组织了"生物能源及其开发利用"分会场。会议的主要内容分为二部分:生物燃料和生物制造。旨在对如何开发、利用新生物能源,并对由氢化合物为主要原料逐步向碳水化合物转变的应用开发前景进行广泛深入研讨。 (2)中国生物工程学会农业生物技术专业委员会和青岛农大联合召开了全国性微生物农药应用和基础研讨会。出席会议的有关部委领导、专家充分肯定了

微生物农药应用基础研究取得的重要进展,对产、学、研相结合方面的成效给予高度评价,并鼓励与会代表在今后研究中"强化攻关、加强集成、重点突破"。 (3)中国生物工程学会糖生物工程专业委员会联合中国化学会甲壳素专业委员会等共同主办了"2007年中国甲壳素及其衍生物学术研讨会"。会议的召开对我国甲壳素产业的健康发展起到了推动作用。 (4)中国生物工程学会联合化工出版社共同主办了"工业生物技术及分离纯化技术的研讨"。本次会议的特点是由《生物产业技术》杂志承办,充分体现了杂志社不仅是发表学术论文的阵地,同时也是联系官、产、学的纽带和桥梁,可以架构交流,合作的平台、促进、推动生物产业的快速发展。 (5)中国生物工程学会海洋生物技术专业委员会主办了"《中华海洋本草》编纂学研讨会",保证了该辞书的科学性、权威性、创新性。 (6)安徽省科协联合中国生物工程学会举办了"中国(合肥)生物技术与产业发展论坛".论坛介绍我国生物技术研究开发最新进展和取得的科研成果并对我国生物产业进程的经验和发展思路进行了广泛交流和探讨。 2.学术期刊 (1)中国生物工程学会主办的《中国生物工程杂志》在2007年的特点是:结合中国科协年会,中国生物工程学会主办的分会场《生物能源及其开发利用》进行了广泛的宣传和报道;对发稿质量严格把关,期刊的学术水平不断提升;编辑部加强了MagTech远程编辑办公系统对工作流程不断优化,提高了工作效

酶工程

酶的定义:酶是具有生物催化功能的生物大分子,按分子中起催化作用的主要任务不同,自然界中天然存在的酶可以分为蛋白类酶和核酸类酶。 模拟酶:又称人工酶,酶模型,是在分子水平上模拟酶活性部分的形状、大小及微环境等特征以及酶的作用机理和立体化学等特征的一门科学。 生物印迹:一种通过酶与配体间的相互作用、诱导,从而改变酶的构象的方法。 酶:活细胞产生的、能在细胞内外起作用(催化)的生理活性物质。 酶工程:酶的生产性与与应用的技术过程。 酶工程的主要任务:经过预先设计,通过人工操作获得人们所需要的酶,并通过各种方法使酶的催化特性得以改进充分发挥其催化的功能。 酶的活性中心:酶分子中能同底物结合并催化反应的空间部位。 提起分离法:采用微生物细胞、植物细胞或动物细胞的生命活动而获得人们所需酶的技术过程同步合成型:酶的生物合成在细胞的生长阶段开始,而在细胞生长进入平衡期后,酶的生物合成也随之停止。 滞后合成型:酶在细胞生长一段时间或者进入平衡期以后才开始其生物合成并大量积累,又称为非生长偶联型。 固定化酶:固定在一定水不溶性载体上并在一定的空间范围内进行催化反应的酶。 固定化细胞:固定在载体上并在一定的空间范围内进行生命活动(生长、繁殖、新陈代谢)的细胞、也称为固定化活细胞或固定化增殖细胞。 定向进化:是模拟自然进化的过程、进行人工随机突变,并子啊特定的环境条件下进行选择,使进化朝着人们所以需方向发展的技术过程。 酶反应器:用于酶进行催化反应的容器机器附属设备。 共价调节酶:由于其他酶对其结构进行了共价修饰,使其能在非活性与活性形式之间相互转变的酶,也是调节酶的一种类型。 分子印迹:合成对其某种特异选择性结合的高分子聚合物技术。 酶原的激活:酶原在一定条件下经过适当的切割肽键,可以转变为有活性的酶。 酶活力:又称为酶活性,是指酶催化某一化学反应的能力,可在一定条件下,酶催化某一化学反应的反应速率表示。 酶反应动力学;是研究反应速度及各种因素对酶反应速度影响的学科。 诱导型操纵子:在无诱导物的情况下,其基因的表达水平很低或不表达,只有在诱导物存在的条件下,才能转录生成mRNA,进而合成酶。 阻遏型操纵子:在无阻遏的情况下,其基因正常表达,当有阻遏物存在时,转录受到阻遏二次生长现象(葡萄糖效应):细菌在含有葡萄糖和乳糖的培养基上生长,优先利用葡萄糖,待葡萄糖耗尽后才开始利用乳糖,产生了两个对数生长期中间隔开一个生长延滞期。酶原:有些酶在细胞内合成时是无活性的,这种无活性的酶是有活性的前体,叫做酶原 别构酶:又称变构酶,是调节物酶的一种类型,这种酶分子上除有与底物结合的活性中心以外还有一个与调节物结合的别构中心。 同工酶:催化同一种化学反应而酶蛋白本身的分子结构和组成都有所不同的一组酶。 诱导酶:细胞中一般情况下不存在或含量很小,而在加入特定诱导物产生的酶。 抗体酶:它是抗体的高度选择性和酶的高效催化能力巧妙结合的产物,本质上是一类具有催化活性的免疫球蛋白,在其可变区赋予了没的属性。 酶生物合成的反馈阻遏作用:指在酶催化反应的产物或代谢途径的末端产物使酶的生物合成受 到阻遏的现象。 酶生物合成的诱导作用:加入某些物质使酶的生物合成开始或加速进行的现象,检测诱导作用。酶活力单位:在特定条件下,每1min催化1umol的底物转化为产物的酶量国际单位是IU 另一个酶活力单位:卡特(kat)。

高中生物各种酶的作用(精选.)

DNA连接酶连接DNA上黏性末端磷酸二酯键(扶手)基因工程拼接目的基因和运载体 DNA聚合酶把单个的脱氧核苷酸聚合成单链DNA 磷酸二酯键DNA复制 DNA解旋酶将双链DNA解旋为两单链氢键DNA复制、转录 RNA聚合酶把单个的核糖核苷酸聚合成RNA 磷酸二酯键转录 限制性内切酶识别特定的碱基序列并切割出黏性末端磷酸二酯键基因工程 DNA酶水解DNA(类似于蛋白酶) 蛋白质酶是指酶的成分是蛋白质的酶,和核酸酶相对应。 蛋白酶就是水解蛋白质肽键的一类酶的总称,就是可以水解蛋白质的酶。 (酶的两大类:蛋白质酶,核酸酶) Taq聚合酶一般适用于DNA片段的PCR扩增 DNA解旋酶 在DNA不连续复制过程中,结合于复制叉前面,催化DNA双链结构解链,并具有ATP酶活性的酶,两种活性相互偶联,通过水解ATP提供解链的能量。不同来源的DNA解旋酶的共同特性是通过水解ATP提供解链的能量,而复制叉结构的存在与否对活性的影响因酶而异。 在DNA不连续复制过程中,结合于复制叉前面,催化DNA双链结构解链,并具有ATP酶活性的酶。两种活性相互偶联,通过水解ATP提供解链的能量。不同来源的DNA解旋酶的共同特性是通过水解ATP提供解链的能量,而复制叉结构的存在与否对活性的影响因酶而异。 胰蛋白酶来自人的胰腺,胰腺在胃的中后部位,分泌的胰蛋白酶用来消化食物中的蛋白质,分解蛋白质成为肽,氨基酸等,再被人体肠道吸收到人体各组织中去,所以,胰蛋白酶在食物消化中起到至关重要的作用,是不可或缺的 胶原蛋白酶可以促进分解胶原蛋白 肠淀粉酶肠腺分泌的肠淀粉酶可以将什么水解成氨基酸 唾液淀粉酶可以促进淀粉的水解。 过氧化氢酶人体肝脏中的过氧化氢酶主要作用就是催化H2O2分解为H2O与O2,使得H2O2不致于与O2在铁螯合物作用下反应生成非常有害的-OH 木瓜蛋白酶它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点18.75;最适合温度55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。 顶体酶顶体酶存在于精子顶体内膜及赤道部膜上,通常以无活性形式存在,当精子头部进入卵透明带时,顶体酶原才被激活为顶体酶。此酶是受精过程中不可缺少的一种中性蛋白水解酶,其作用类似于胰蛋白酶,它能水解卵透明带糖蛋白,使精子穿过卵丘再穿过透明带,使精子与卵子融合;它还能促使生殖道中激肽释放,从而增强精子的活力和促进精子的运动。 最新文件仅供参考已改成word文本。方便更改 word.

中国生物技术的发展现状

中国生物技术的发展现状 我国第一个生物制品研究所始建于1919年,在北平天坛成立了中央防疫处--即今天的北京生物制品研究所,迄今已有80多年的历史。 我国自七十年代未开始了现代生物技术的研究。国家高度重视生物技术的发展,不仅被列为863计划之首,而且纳入七五、八五、九五国家重点攻关计划。这一系列的举措,大大促进了我国医药生物技术的发展,并形成了一定的产业规模。 我国基因工程多肽药物、单抗和新型诊断试剂在仿制的基础上向创新发展,已能生产目前国际上市的大多基因工程多肽药物,基因工程干扰素α-1b-系国际首创,重组人肿瘤坏死因子、bFGF已申请专利,首创的免疫PCR胃癌诊断试剂已获得新药证书,有望开发出一系列的高灵敏度癌症诊断试剂。 基因工程疫苗的研制取得明显进展,基因工程乙肝疫苗投放市场,对乙肝的预防起到了非常重要的作用。双价痢疾疫苗、霍乱疫苗获准试生产,血吸虫疫苗。出血热疫苗等正在进行临床试验。 基因治疗取得突破,研制成功具有高效导入功能的靶向性非病毒型载体系统,动物试验表明,该系统能在体内将基因高效导入肿瘤细胞,明显抑制肿瘤生长;血管表皮生长因子基因缝线等3种基因治疗方案已基本完成临床前试验。

获得了一批转基因动物,已获得生长激素转基因猪的第2、3、4代。获得手乳腺表达外源基因的转基因羊等。 通过研究出现一批创新性成果,克隆了大量人、动物、植物的新基因,创造了具有多种用途的新型表达载体等。 据统计,我国现有456个单位从事生物技术的研究、开发和生产,其中医药领域的有165个,占36%,专业人员约6800人,已有近二十种基因工程药物、疫苗获准进入市场,数十种医药生物技术产品正在进行临床或临床前研究。 当今世界生物技术迅猛发展,呈现出巨大活力。特别是九十年代以来,随着人类基因组计划等各类生物基因组研究工作的展开,新基因不断被发现,新技术、新手段不断涌现,生物技术进入了大发展的新时期。与此同时,生物技术产业迅速崛起,并已成为国际市场竞争的第二个热点领域。可以预言,二十一世纪生物技术将会对世界技术经济格局产生重要影响,生物技术产业将成为全球经济的支柱产业之一。 一、我国生物技术产业发展现状 近年来,我国的生物技术取得了很大的发展。初步形成了医药生物技术、农业生物技术、轻化工生物技术、海洋生物技术等门类齐全的生物技术研究、开发、生产的体系;取得了一批具有较高水平的生物技术研究开发成果,开发出一批生物技术产品并投放市场。 1、现代生物技术产品的销售额是10年前的50倍

酶工程实验大纲

湖北大学 酶工程实验 (0818800193)实验教学大纲 (第2版) 生命科学学院 生化教研室 2014年7月

前言 课程名称:酶工程实验实验学时:16学时 适用专业:生物工程课程性质:必修 一、实验课程简介 酶工程是生物工程的主要内容之一,是现代酶学和生物工程学相互结合而发展起来的一门新的技术学科。它将酶学、微生物学的基本原理与化工、发酵等工程技术有机结合起来,并随着酶学研究的迅速发展,特别是酶的广泛应用而在国民生产生活中日益发挥着越来越重要的作用。酶工程实验课是生物工程等本科实验教学的一个重要组成部分,通过实验教学可以加强学生对酶工程基本知识和基本理论的理解,掌握现代酶学与相关技术的有关的基本的实验原理与技能。在实验过程中要求学生自己动手,分析思考并完成实验报告。酶工程实验性质有基础性、综合性、设计(创新)性三层次。 二、课程目的 本实验课程主要根据酶工程的三大块内容即酶的生产、酶的改性与酶的应用来设计安排实验,通过这些实验内容,使学生深入理解酶工程课程的基本知识;巩固和加深所学的基本理论;掌握酶工程中基本的操作技能。同时,通过实验培养学生独立观察、思考和分析问题、解决问题和提出问题的能力,养成实事求是、严肃认真的科学态度,以及敢于创新的开拓精神;并在实验中进一步提高学生的科学素养。 三、考核方式及成绩评定标准 考核内容包括实验过程中的操作情况,实验记录及结果的准确性,实验报告的书写及结果分析,思考题的回答情况,仪器设备的使用情况及遵守实验室规章制度的情况等,根据这些方面进行成绩评判和记录,综合给出实验总成绩。 四、实验指导书及主要参考书 1.魏群:生物工程技术实验指导,高等教育出版社,2002年8月。 2.禹邦超:酶工程(附实验),华中师范大学出版社,2007年8月 五、实验项目

(完整版)酶学与酶工程总结

?Lecture 1 酶学与酶工程 ?酶的概念:酶(enzyme)是一类由活细胞产生的,具有催化活性和高度专一性的特殊蛋白质,是一类生物催化剂。 ? ?酶的分类(6类)、组成、结构特点?和作用机制? 组成:单体酶、寡聚酶、多酶复合体 Note:一个酶蛋白可有多种催化活性,相当于多个酶(关注原核和真核生物的差别) 除水解酶和连接酶外,其他酶在反应时都需要特定的辅酶。 金属在酶催化中的作用:稳定酶构象、参与酶的催化作用(如激活底物)、电子传递体 ?酶作为催化剂的显著特点: 强大的催化能力:加快反应速度可高达1017倍; 没有副反应; 高度的专一性:各种酶都有专一性,但专一程度的严格性上有所差别; 可调节性; ?同工酶的概念:同一种属中由不同基因或(复)等位基因编码的多肽链所组成的单体、纯聚体或杂交体,其理化及生物学性质不同而能催化相同反应的酶称同工酶。 同一基因生成的不同mRNA所翻译出来的酶蛋白也列入同工酶的范畴。 酶蛋白合成后经不同类型的共价修饰(如糖基化等)而造成的多种酶分子形式,严格来说不属于同工酶而称为synzyme,但也有人称其为次生性同工酶(secondary isozyme)。 不同种属中催化相同反应的酶称为xenozyme,也不属于同工酶。

?酶的活性中心 指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物 必需基团(essential group):酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。 活性中心内的必需基团:结合基团(与底物相结合)和催化基团(催化底物转变成产物) 活性中心外的必需基团:维持酶活性中心应有的空间构象所必需; 构成酶活性中心的常见基团:His的咪唑基、Ser的-OH、Cys的-SH、Glu的γ-COOH。 ?酶的作用机制 ?酶活力的调节 ?酶的应用 食品加工方面:生物技术在食品工业中应用的代表就是酶的应用,目前已经有几十种酶成功用于食品工业。如葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品品质与风味等。 常用的酶制剂主要有:淀粉酶、糖化酶、蛋白酶、葡萄糖异构酶、果胶酶、脂肪酶、纤维素酶葡萄糖氧化酶等。 酶在轻工业方面的应用:用酶进行原料处理(发酵原料、淀粉原料、纤维素原料、含戊聚糖的植物原料的处理、纺织原料、造纸原料的制浆、生丝的脱胶处理、羊毛的除垢),用酶生产各种产品(L-氨基酸、核苷酸、酱油或豆酱、制革),用酶增强产品的使用效果(加酶洗涤剂;加酶牙膏、牙粉和嗽口水) 酶在医学中的应用:主要的医药用酶、用酶进行疾病的诊断、用酶治疗各种疾病、用酶制造各种药物 ?酶与食品质量安全 酶制剂作为食品添加剂进入食品的潜在危害 酶催化有毒物质的产生 酶作用导致食品中营养组分的损失 潜在的产毒素性 潜在的致病性 对策:安全菌株,体外基因毒理学测试,酶制剂的安全评价,酶制剂来源安全性的评估标准 ?Lecture 2 基因工程的酶学基础 ?核酶(Ribozyme):概念:具有生物催化功能的RNA。 看课件 ?基因工程的酶学基础 ?基因克隆表达的过程 基因克隆常用的酶,有什么应用,注意事项(补充后两者)

生物工程中酶的作用,基因工程的应用

生物工程中酶的作用 生物工程中酶的作用: 1、DNA连接酶:主要是连接DNA片段之间的磷酸二酯键,起连接作用,在基因工程中起作用。 2、DNA聚合酶:主要是连接DNA片段与单个脱氧核苷酸之间的磷酸二酯键,在DNA复制中起做用。 3、限制性核酸内切酶:从DNA链的内部进行切割,分为限制性内切酶和非限制性内切酶。 4、DNA修饰酶(DNAmodification enzyme)是指对DNA分子进行修饰的酶,目前基因工程中常用的酶有:碱性磷酸酶、末端转移酶、甲基化酶。 5、反转录酶:依赖于RNA的DNA聚合酶,既可以用DNA为模板,也可以用RNA为模板进行互补链的合成。基因工程中主要功能是利用真核mRNA为模板反转录cDNA,用来建立cDNA 文库,进而分离为特定蛋白质编码的基因。 蛋白质工程的崛起 蛋白质工程的崛起: 1、蛋白质工程的概念 蛋白质工程:指以蛋白质分子的结构规律及其生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。(基因工程在原则上只能生产自然界已存在的蛋白质)。 2、蛋白质工程崛起的缘由:基因工程只能生产自然界已存在的蛋白质。 3、蛋白质工程的基本原理:它可以根据人的需求来设计蛋白质的结构,又称为第二代的基因工程。 4、基本途径:从预期的蛋白质功能出发,设计预期的蛋白质结构,推测应有的氨基酸序列,找到相对应的脱氧核苷酸序列(基因)以上是蛋白质工程特有的途径;以下按照基因工程的一般步骤进行。(注意:目的基因只能用人工合成的方法)。 5、蛋白质工程的步骤:

知识拓展: 1、设计中的困难:如何推测非编码区以及内含子的脱氧核苷酸序列。 2、蛋白质工程和基因工程的区别:将目的基因导入受体细胞;基因工程合成的是天然存在的蛋白质,蛋白质工程合成的可以是天然不存在的蛋白质;蛋白质工程是在基因工程的基础上延伸出来的第二代基因工程。蛋白质工程从分子水平对蛋白质进行改造设计,通过对相应的基因进行修饰加工甚至人工进行基因合成,从而对现有蛋白质进行改造,或制造一种新的蛋白质以满足人类生产和生活需求。而基因工程只是将外源基因导入另一生物体内,并使之表达,体现人类所需的性状,或者获取所需的产品。因此,基因工程在原则上只能生产自然界已存在的蛋白质。 基因工程的应用 基因诊断与基因治疗 (1)基因诊断:DNA分子杂交法(即DNA探针法),该方法是根据碱基互补配对原则,把互补的双链 DNA解开,把单链的DNA小片段用同位素、荧光分子或化学发光催化剂等进行标记,之后同被检测的DNA 中的同源互补序列杂交,从而检出所要查明的DNA或基因。 (2)基因治疗的方法:基因置换、基因修复、基因增补、基因失活等。 (3)基因治疗的途径 ①体外基因治疗:先从病人体内获得某种细胞进行培养,然后在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。如腺苷酸脱氨酶基因的转移。 ②体内基因治疗:用基因工程的方法,直接向人体 知识拓展: 1、Bt毒蛋白基因产生的Bt毒蛋白并无毒性,进入昆虫消化道被分解成多肽后产生毒性。 2、青霉素是谤变后的高产青霉菌产生的,不是通过基因工程改造的工程菌产生的。

中国生物工程技术新进展

中国生物工程技术新进展 生物技术在世纪之交已经以众多的生物技术为我们展示了一幅生物宏图,随着生物研究水平的不断提高和研究技术的不断进步,生物工程技术历经了从医药革命到绿色革命,从开辟新能源到环境保护治理的重大转变。我国的生物工程技术在近几十年里取得了突飞猛进的成就,新的成果和进展不断涌现出来,相信这些生物技术的发展对于我国面临的资源与环境人口和健康农业和实物等方面都会有重大的影响。 一、目前我国生物工程技术进展情况简介 目前我国的生物工程技术的研究正处在高速发展的阶段,虽然总体水平较国际的水平还有一定的差距,但在个别领域已经达到和领先于世界同类研究水平。就具体情况而言,我国已经和世界其他生物工程技术水平较高的国家一样,进入了以生物工程为发展基础的农业科技革命时代,早在数年之前就已经将中国水稻基因组和工程框架图的绘制工作完成;中国北方的梗型超级水稻试验田已经突破亩产水稻960kg,开创了超级水稻亩产之最;我国首次发现了对光敏感的水稻不育系,并在此基础上研制出两系和三系水稻杂交技术,我国首次研究豇豆胰蛋白酶抗虫基因,并对基因进行修饰和改造,成功培育出抗虫品种;[1]在仿生学应用方面,利用果蝇的眼结膜结构的原理制成新一代摄像机,利用蝙蝠的回声定位技术制成新型雷达等等,总之在生物医学农业和仿生学及细胞工程方面,生物技术的发展都取得了非常显著的成就,给人们的生活提供了很多便利。 二、中国生物工程技术目前的发展与应用 (一)中国生物工程技术在生物医学方面的应用 我国的生物工程技术在生物医学方面的应用重要是在抗体类药物,人体器官替代和从基因水平研究人体遗传疾病三个方向上的研究,在抗体类药物方面,模仿人体自身免疫反应,利用生物工程技术在体外对抗各类疾病的蛋白分子,使其与病原分子之间存在高精度的识别关系,准确定位消灭病原。目前应用此原理已经上市了17种抗体类药物。在人体器官移植替代方面,特别是肾脏替代和移植方面,我国已经取得了非常大的进展。 (二)生物工程技术在转基因抗虫作物方面的研究 在转基因抗虫方面,科学家在苏云金芽胞杆菌的菌体内提取一段特殊的基因。这种基因对于棉花的抗虫有着重要的作用,首先相关的酶将这种抗虫基因从相关菌体的线粒体质粒上进行剪切和提取,并使其保持活性,然后再利用相关酶将其整合到棉花的原有基因上,利用这些性状对棉花虫进行防治。经过大量的实际结果证明,转基因抗虫面的效果十分好,有效的遏制住了棉蛉虫对棉花的损害。[2] (三)生物工程技术在生物制柴油方面的应用 传统的制油方法和制油技术制造的柴油纯度较低,含有的饱和烃的量较小,而且产量较小,不能满足实际储量和使用的需要,制作使得成本费极高,因此我国的许多型号的柴油需要不断依赖国外进口。将生物工程技术应用于生物制柴油方面,可有效提高产量,生产出低成本,而且饱和烃纯度较高的柴油,这样必然会大大减少了我国特种型号柴油依赖对外进口的程度。 三、中国生物工程技术的发展和未来趋势 (一)环境与绿色能源方面的进展和未来应用 目前国内外均致力于研究利用生物工程技术进行对于环境的发展和保护的问题,我国科学家也致力于研究生物新能源以减少传统能源对于环境的污染和一些不可再生能源的消耗力度。例如利用藻类植物的燃料获取量产绿灯方面或者利用新型的植物能源代替目前车辆所燃烧的汽油。除此之外,我国科学家还致力于研究可进行生物降解且对环境无公害的便携式塑料袋等等。另外在鸡蛋壳上提取氢和骨胶原并将其做一些在环境相关方面的应用。 (二)生物技术在农业方面的应用和探究

蛋白质与酶工程教学大纲

《蛋白质与酶工程》教学大纲 课程名称:蛋白质与酶工程 学分:2 学时:32 先修课程:生物化学 适用专业:生物工程 开课系部:生命科学学院 一、课程性质、目的和培养目标 课程性质:专业选修课 课程目的:本课程是生物工程本科专业选修课,目的是让学生在学习了普通生化的基础上,进一步对蛋白质和酶工程进行深入系统的学习。并对于酶在生产实践中的应用,也能有一些感性和理性的认识。 课程培养目标:采用多媒体课件和国内外最新的教学参考书、教案,灵活运用多种教学方法,因材施教,使学生在牢固掌握基础知识和基本概念的同时,得到科学研究、科学思维和科学方法的良好训练,为其他专业基础课和专业课的学习及日后的研究工作打下基础。 二、课程内容和建议学时分配 第一章绪 论 2课时 (一)教学基本要求 掌握蛋白质工程和酶工程的定义,了解其发展史,以及应用前景。 (二)教学内容 第一节蛋白质工程概论 第二节蛋白质工程的应用 第三节蛋白质工程展望 第四节酶工程简介 一酶工程 二组成:酶的产生;酶的分离纯化;酶的固定化;生物反应器。 三分类:化学酶工程;生物酶工程。 第五节酶与酶工程的发展简史 一酶学研究简史 二酶工程研究简史

(三)教学重点和难点 重点:蛋白质与酶工程定义; 难点:酶工程的组成分类 第二章蛋白质的结构与功能 2课时(一)教学基本要求 掌握蛋白质的基本结构组成及功能 (二)教学内容 第一节蛋白质的基本结构与功能 一蛋白质的组成 二蛋白质的一级结构 三蛋白质一级结构与功能的关系 第二节蛋白质的空间结构与功能 一蛋白质的二级结构 二超二级结构和结构域 三蛋白质的三级结构 四蛋白质空间结构与功能的关系 五蛋白质-蛋白质相互作用 (三)教学重点和难点 重点:蛋白质的空间结构;难点:蛋白质间的相互作用; 第三章蛋白质的修饰和表达4课时(一)教学基本要求 掌握蛋白质的化学修饰途经,了解蛋白质改造的一些途经等。 (二)教学内容 第一节蛋白质修饰的化学途径 一功能基团的特异性修饰 1多位点取代 2 3 二基于蛋白质片段的嵌合修饰 第二节蛋白质改造的分子生物学途径 一编码基因的专一性位点和区域性定向突变 1 2 二基因融合和基因剪接 三tRNA介导定点搀入非天然氨基酸 第三节重组蛋白质的表达

相关主题
文本预览
相关文档 最新文档