当前位置:文档之家› 平稳过程2-平稳过程的相关函数

平稳过程2-平稳过程的相关函数

标准正态分布的密度函数样本

幻灯片1 正态分布 第二章 第七节 一、标准正态分布的密度函数 二、标准正态分布的概率计算 三、一般正态分布的密度函数 四、正态分布的概率计算幻灯片2 正态分布的重要性正态分布是概率论中最重要的分布, 这能够由 以下情形加以说明: ⑴ 正态分布是自然界及工程技术中最常见的分布之一, 大量的随机现象都是服从或近似服从正态分布的.能够证明, 如果一个随机指标受到诸多因素的影响, 但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布. 这些性质是其它 ⑵ 正态分布有许多良好的性质, 许多分布所不具备的. ⑶ 正态分布能够作为许多分布的近似分布.幻灯片3 -标准正态分布下面我们介绍一种最重要的正态分布 一、标准正态分布的密度函数若连续型随机变量X 的密度函数为定义 则称X 服从标准正态分布,

记为标准正态分布是一种特别重要的它的密度函数经常被使用, 分布。 幻灯片4 密度函数的验证 则有 ( 2) 根据反常积分的运算有能够推出 幻灯片5 标准正态分布的密度函数的性质若随机变量 , X 的密度函数为 则密度函数的性质为: 的图像称为标准正态( 高斯) 曲线幻灯片6 随机变量 由于 由图像可知, 阴影面积为概率值。对同一长度的区间 , 若这区间越靠近 其对应的曲边梯形面积越大。标准正态分布的分布规律时”中间多, 两头少” . 幻灯片7 二、标准正态分布的概率计算 1、分布函数分布函数为幻灯片8 2、标准正态分布表书末附有标准正态分布函数数值表, 有了它, 能够解决标准正态分布的概率计算.表中给的是x > 0时,①(x)的值. 幻灯片9 如果由公式得令则幻灯片10

自相关函数和互相关函数的利用MATLAB计算和作图

互相关函数,自相关函数计算和作图 1.自相关和互相关的概念。 ●互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2间的相关程度。 ●自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2间的相关程度。 互相关函数是在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效。 -----------------------------------------------------------------------------------事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。 2.利用matlab中实现这两个相关并用图像显示: 自相关函数: dt=.1; t=[0:dt:100];x=cos(t); [a,b]=xcorr(x,'unbiased'); plot(b*dt,a)

互相关函数:把[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbiased');便可。 3.实现过程: 在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即 R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。下面是检验两者结果相同的代码: dt=.1; t=[0:dt:100]; x=3*sin(t); y=cos(3*t); subplot(3,1,1); plot(t,x); subplot(3,1,2); plot(t,y); [a,b]=xcorr(x,y); subplot(3,1,3); plot(b*dt,a); yy=cos(3*fliplr(t));%or use:yy=fliplr(y); z=conv(x,yy); pause; subplot(3,1,3); plot(b*dt,z,'r'); 即在xcorr中不使用scaling。

随机过程作业

第三章 随机过程 A 简答题: 3-1 写出一维随机变量函数的均值、二维随机变量函数的联合概率密度(雅克比行列式)的定义式。 3-2 写出广义平稳(即宽平稳)随机过程的判断条件,写出各态历经随机过程的判断条件。 3-3 平稳随机过程的自相关函数有哪些性质功率谱密度有哪些性质自相关函数与功率谱密度之间有什么关系 3-4 高斯过程主要有哪些性质 3-5 随机过程通过线性系统时,输出与输入功率谱密度之间的关系如何 3-6 写出窄带随机过程的两种表达式。 3-7 窄带高斯过程的同相分量和正交分量的统计特性如何 3-8 窄带高斯过程的包络、正弦波加窄带高斯噪声的合成包络分别服从什么分布 3-9 写出高斯白噪声的功率谱密度和自相关函数的表达式,并分别解释“高斯”及“白”的含义。 3-10 写出带限高斯白噪声功率的计算式。 B 计算题: 一、补充习题 3-1 设()()cos(2)c y t x t f t πθ=?+,其中()x t 与θ统计独立,()x t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为:(),()x x R P τω。 ①若θ在(0,2π)均匀分布,求y()t 的均值,自相关函数和功率谱密度。 ②若θ为常数,求y()t 的均值,自相关函数和功率谱密度。 3-2 已知()n t 是均值为0的白噪声,其双边功率谱密度为:0 ()2 N P ω= 双,通过下图()a 所示的相干解调器。图中窄带滤波器(中心频率为c ω)和低通滤波器的传递函数1()H ω及2()H ω示于图()b ,图()c 。

试求:①图中()i n t (窄带噪声)、()p n t 及0()n t 的噪声功率谱。 ②给出0()n t 的噪声自相关函数及其噪声功率值。 3-3 设()i n t 为窄带高斯平稳随机过程,其均值为0,方差为2 n σ,信号[cos ()]c i A t n t ω+经过下图所示电路后输出为()y t ,()()()y t u t v t =+,其中()u t 是与cos c A t ω对应的函数,()v t 是与()i n t 对应的输出。假设()c n t 及()s n t 的带宽等于低通滤波器的通频带。 求()u t 和()v t 的平均功率之比。

第11讲 一次函数应用及综合问题(讲练)(解析版)

备战2020年中考数学总复习一轮讲练测 第三单元函数 第11讲一次函数的应用及综合问题

1、了解:一次函数的概念; 2、理解:图象中横纵坐标表示的意义,及结合实际问题中的意义; 3、会:结合函数图象确定图形面积;并根据面积确定点的坐标,进而求出一次函数解析式;会解决一次函数有关的实际问题; 4、能:解决一次函数与几何综合,并根据整数点及公共点的个数确定参数的值或范围。 1.(2019春?石景山区期末)甲、乙两名同学骑自行车从A 地出发沿同一条路前往B 地,他们离A 地的距离()s km 与甲离开A 地的时间()t h 之间的函数关系的图象如图所示,根据图象提供的信息,有下列说法: ①甲、乙同学都骑行了18km ②甲、乙同学同时到达B 地 ③甲停留前、后的骑行速度相同 ④乙的骑行速度是12/km h 其中正确的说法是( ) A .①③ B .①④ C .②④ D .②③ 【解答】解:由图象可得, 甲、乙同学都骑行了18km ,故①正确, 甲比乙先到达B 地,故②错误, 甲停留前的速度为:100.520/km h ÷=,甲停留后的速度为:(1810)(1.51)16/km h -÷-=,故③错误, 乙的骑行速度为:18(20.5)12/km h ÷-=,故④正确, 故选:B . 2.(2018春?平谷区期末)某区中考体育加试女子800米耐力测试中,同时起跑的甲和乙所跑的路程S (米

)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是() A.甲的速度随时间的增大而增大 B.乙的平均速度比甲的平均速度大 C.在起跑后50秒时,甲在乙的前面 D.在起跑后180秒时,两人之间的距离最远 【解答】解:由题意可得, 甲对应的函数图象是线段OA,由图象可知甲在匀速跑步,故选项A错误, 由图象可知,甲先跑完800米,则甲的平均速度比乙的平均速度大,故选项B错误, 在起跑后50秒时,乙在甲的前面,故选项C错误, 由图象可知,在起跑后180秒时,甲在乙的前面,此时两人之间的距离最远为200米,故选项D正确, 故选:D. 3.(2019春?海淀区校级期中)已知等腰三角形的周长为20,腰长为x,底边长为y,则y与x的函数关系式为,自变量x的取值范围是. 【解答】解:220 Q, += x y ∴=-,即10 202 y x x<, Q两边之和大于第三边 ∴>, 5 x 综上可得510 <<. x 故答案为:220 =-+,510 y x <<. x 4.(2019春?海淀区校级月考)若一条直线与函数31 =-的图象平行,且与两坐标轴所围成的三角形的 y x

Matlab自相关函数和互相关函数的计算和作图

自相关函数(Autocorrelation function,缩写ACF)是信号处理、时间序列分析中常用的数学工具,反映了同一序列在不同时刻的取值之间的相关程度。 自相关函数在不同的领域,定义不完全等效。在某些领域,自相关函数等同于自协方差(autocovariance)。 信号处理 在信息分析中,通常将自相关函数称之为自协方差方程。用来描述信息在不同时间τ的,信息函数值的相关性。 ,其中“*”是卷积算符,为取共轭 自相关函数的性质 以下以一维自相关函数为例说明其性质,多维的情况可方便地从一维情况推广得到。 ?对称性:从定义显然可以看出R(i) = R(?i)。连续型自相关函数为偶函数当f为实函数时,有: 当f是复函数时,该自相关函数是厄米函数,满足: 其中星号表示共轭。 ?连续型实自相关函数的峰值在原点取得,即对于任何延时τ,均有 。该结论可直接有柯西-施瓦茨不等式得到。离散型自相关函数亦有此结论。 ?周期函数的自相关函数是具有与原函数相同周期的函数。 ?两个相互无关的函数(即对于所有τ,两函数的互相关均为0)之和的自相关函数等于各自自相关函数之和。 ?由于自相关函数是一种特殊的互相关函数,所以它具有后者的所有性质。

?连续时间白噪声信号的自相关函数是一个δ函数,在除τ = 0 之外的所有点均为0。 ?维纳-辛钦定理(Wiener–Khinchin theorem)表明,自相关函数和功率谱密度函数是一对傅里叶变换对: ?实值、对称的自相关函数具有实对称的变换函数,因此此时维纳-辛钦定理中的复指数项可以写成如下的余弦形式: 白噪声的自相关函数为δ函数: 自相关函数和偏相关函数的问题 在时间序列分析的研究中,首先是判别时间序列的稳定性,如果时间序列是平稳的就可以计算这些数据的自相关函数和偏相关函数。 如果自相关函数是拖尾的,偏相关函数是截尾的,那麽数据符合AR(P)模型。 如果自相关函数是截尾的,偏相关函数是拖尾的,那麽数据复合MA( Q )模型 如果自相关函数和偏相关函数都是拖尾的,那麽数据复合ARMA( P,Q )模型。 自相关函数和互相关函数的matlab计算和作图 1. 首先说说自相关和互相关的概念。 这个是信号分析里的概念,他们分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与

t分布和标准规定正态分布

数理统计实验 t分布与标准正态分布 院(系): 班级: 成员:

成员: 成员: 指导老师: 日期:

目录 t分布与标准正态分布的关系 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容及步骤 (1) 四、实验器材 (6) 五、实验结果分析 (6) 六、实验结论 (6)

t分布与标准正态分布的关系 一、实验目的 正态分布是统计中一种很重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的本质。为了应用和计算方便,常将一般的正态变量X通过μ变换[(X-μ)/σ]转化成标准正态变量μ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布,亦称μ分布。对于标准正态分布来说,μ是数据整体的平均值,σ是整体的标准差。但实际操作过程中,人们往往难以获得μ和σ。因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了t分布。另外从图像的层面说,正态分布的位置和形态只与μ和σ有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。通过实验了解t分布与标准正态分布之间的关系。 二、实验原理 运用EXCEL软件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。 三、实验内容及步骤 1.打开Excel文件,将“t分布与标准正态分布N(0,1)”合并并居中,黑体,20字号,红色;

2.选中文件,选项,自定义功能区,加载开发工具.在开发工具中插入滚动条,调节滚动条大小; 3.设置A2单元格格式,数字自定义区”!n=#,##0;[红 色]¥-#,##0”.然后左对齐,设置为红色;

第三章附录:相关系数r 的计算公式的推导

相 关 系 数 r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符 号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ= 12)1(-i i P P 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2 P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22-+- … …………………………………(3) 式中, 0≤A A ≤1,否则公式(3)无意义。 由于使(2P σ)′=0的A A 值只有一个,所以据公式(3)计算出的A A 使2 P σ为最小值。

以上分析清楚地说明:对于证券A和证券B,只要它们的系数r AB 适当小(r AB 的“上限”的 计算,本文以下将进行分析),由证券A和证券B构成的投资组合中,当投资于风险较大的证券B 的资金比例不超过按公式(3)计算的(1—A A ),会比将全部资金投资于风险较小的证券A的方 差(风险)还要小;只要投资于证券B的资金在(1—A A )的比例范围内,随着投资于证券B的资 金比例逐渐增大,投资组合的方差(风险)会逐渐减少;当投资于证券B的资金比例等于(1—A A )时,投资组合的方差(风险)最小。这种结果有悖于人们的直觉,揭示了风险分散化效应的内在特征。按公式(3)计算出的证券A和证券B的投资比例构成的投资组合称为最小方差组合,它是证券A和证券B的各种投资组合中方差(亦即风险)最小的投资组合。

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

第六章 相关函数的估计

6. 相关函数的估计(循环相关) 6.1. 相关函数与协方差函数 6.1.1. 自相关函数和自协方差函数 1、 自相关和自协方差函数的定义 相关函数是随机信号的二阶统计特征,它表示随机信号不同时刻取值的关联程度。 设随机信号)(t x 在时刻j i t t ,的取值是j i x x ,,则自相关函数的定义为 j i j i j i j i N n n j n i N j i j i x dx dx t t x x f x x x x N x x E t t R ??∑= ===∞ →),;,(1lim ] [),(1 ) ()( 式中,上角标“(n )”是样本的序号。 自协方差函数的定义与自相关函数的定义相似,只是先要减掉样本的均值函数再求乘积的数学期望。亦即: j i j i j i x j x i N n x n j x n i N x j x i j i x dx dx t t x x f m x m x m x m x N m x m x E t t C j i j i j i ??∑--= --=--==∞ →),;,())(() )((1lim )] )([(),(1 ) ()( 当过程平稳时,);,(),;,(τj i j i j i x x f t t x x f =。这时自相关函数和自协方差函数只是i j t t -=τ的函数,与j i t t ,的具体取值无关,因此可以记作)(τx R 和)(τx C 。 对于平稳且各态历经的随机信号,又可以取单一样本从时间意义上来求这些统计特性: 时间自相关函数为:

? + - ∞ →+=22 )()(1lim )(T T T x dt t x t x T R ττ 时间自协方差函数为: ? + - ∞ →-+-=22 ])(][)([1lim )(T T x x T x dt m t x m t x T C ττ 在信号处理过程中,有时会人为地引入复数信号。此时相应的定义变成 ][),(* j i j i x x x E t t R = )]()[(),(* j i x j x i j i x m x m x E t t C --= 式中,上角标*代表取共轭。 2、 自相关和自协方差函数的性质 自相关和自协方差函数的主要性质如下: (1) 对称性 当)(t x 时实函数时,)(τx R 和)(τx C 是实偶函数。即 ) ()(), ()()()(),()(* * ττττττττx x x x x x x x C C R R C C R R =-=-== 当)(t x 时复值函数时,)(τx R 和)(τx C 具有共轭对称性。即 )()(), ()(* * ττττx x x x C C R R =-=- (2) 极限值 )(, )()0(,)0(2=∞=∞==x x x x x x x C m R C D R σ (3) 不等式 当0≠τ时, )()0(), ()0(ττx x x x C C R R ≥≥ 因此, )0()()(x x x R R ττρ=

相关系数计算公式

相关系数计算公式 相关系数计算公式 Statistical correlation coefficient Due to the statistical correlation coefficient used more frequently, so here is the use of a few articles introduce these coefficients. The correlation coefficient: a study of two things (in the data we call the degree of correlation between the variables). If there are two variables: X, Y, correlation coefficient obtained by the meaning can be understood as follows: (1), when the correlation coefficient is 0, X and Y two variable relationship. (2), when the value of X increases (decreases), Y value increases (decreases), the two variables are positive correlation, correlation coefficient between 0 and 1. (3), when the value of X increases (decreases), the value of Y decreases (increases), two variables are negatively correlated, the correlation coefficient between -1.00 and 0. The absolute value of the correlation coefficient is bigger, stronger correlations, the correlation coefficient is close to 1 or -1, the higher degree of correlation, the correlation coefficient is close to 0 and the correlation is weak. The related strength normally through the following range of judgment variables: The correlation coefficient 0.8-1.0 strong correlation 0.6-0.8 strong correlation

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

VB第六章习题答案(上海立信会计学院)

上海立信会计学院 班级:学号: 姓名:指导教师: 专业: 习题六p150 -、简述子过程与函数过程的共同点和不同之处。 答:相同之处:都是功能相对独立的一种子程序结构,它们有各自的过程头、变量声明和过程体,在程序的设计过程中可以提高效率。 不同之处: (1)声明的关键字不同。子过程为Sub,而函数过程为 Funct ion。 (2)了过程无值就无类型说明,函数过程有值因此有类型的说明 (3)函数的过程名称同时是结果变量,因此在函数过程体 内至少要对函数的过程名赋值一次数据,而子过程内不能赋 值。

(4)调用的方式不同,子过程是一条独立的语句,可以用 Cal I子过程名或省略Call直接以子过程名调用;函数的过 程不是一条独立的语句,是一个函数值,必须参与表达式运算。(5)通常,函数过程可以被子过程代替,只需要在调用的 过程中改变一下过程调用的形式,并在子过程的形参表中增加一个地址传递的形参来传递结果。 二、什么是形参,实参?什么是值引用?地址引用?地址应用 对实参有什么限制? 答:形参:在定义过程时的一种假设的参数,只代表该过程的参数的个数、类型,它的名字不重要,没有任何的值, 只表示在过程体内将进行的一种操作。 实参:在调用子过程时提供过程形参的初始值,或通过过程体处理后的结果。 值引用:系统将实际参数的值传到形参之后,实参与形参断开联系,过程中对于形参的修改不会影响到实际参数的变化。 地址引用:实参与形参共同使用一个存储单元,在过程中对形参进行修改,则对应的实际参数也同时变化。

在地址引用时,实参只能是变量,不能是常量或表达式。

三、指出下面过程语句说明中的错误: Sub f1 (n%) as Integer Function f1%(f1%) Sub fl (ByVa I n% 0) Sub fl(X(i) as Integer) 答:(1) Sub子过程名没有返回值,因此就没有数据的类型 (2)函数名与形参名称相同 (3)形参n为数组,不允许声明为By Vai值传递 (4)形参x(i)不允许为数组元素 四、已知有如下求两个平方数和的fsum子过程: Publ ic Sub fsum (sum%, ByVaI a%, ByVaI b%) sum =a*a+b*b End Sub 在事件过程中若有如下变量声明: Pr ivate Sub Commandl Cl ick()

第三章:相关系数r 的计算公式的推导

第三章附录:相关系数r的计算公式的推导 -CAL-FENGHAI.-(YICAI)-Company One1

相关系数r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ=1 1-n 2)(∑-A A i 2 B σ=1 1-n )(B B i -∑2 2 P σ=11-n 2)1(∑∑-i i P n P =2)](1 )[(11i B i A i B i A B A A A n B A A A n +-+-∑∑ =2)]()[(1 1 B A A A B A A A n B A i B i A +-+-∑ =2)]()([1 1 B B A A A A n i B i A -+--∑ =)])((2)()([1122 22B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2 A × 22 1 )(B i A n A A +--∑× 1 )] )([(21 )(2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22222 ---? ++∑n B B A A A A A i i B A B B A A σσ 对照公式(1)得: = 1 )(2 --∑n A A i × 1 )(2 --∑n B B i × r AB ∴ r AB = ∑∑∑-?---2 2 ) ()()])([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2P σ)′=2 A A 2A σ-2 (1-A A )2B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2P σ)′= 0 并简化,得到使2P σ取极小值的A A : A A =AB B A B A AB B A B r r σσσσσσσ22 22 -+- … …………………………………(3) AB B A i i r n B B A A σσ =---∑1 )])([(

互相关函数自相关函数计算和作图

互相关函数-自相关函数计算和作图

————————————————————————————————作者: ————————————————————————————————日期: ?

互相关函数,自相关函数计算和作图 1.自相关和互相关的概念。 ●互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2间的相关程度。 ●自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2间的相关程度。 互相关函数是在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效。 ----------------------------------------------------------------------------------- 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。 2.利用matlab中实现这两个相关并用图像显示: 自相关函数:? dt=.1; t=[0:dt:100];x=cos(t); [a,b]=xcorr(x,'unbiased'); plot(b*dt,a) ?

互相关函数:把[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbia sed');便可。 ?3. 实现过程: 在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。下面是检验两者结果相同的代码:??dt=.1; t=[0:dt:100];?x=3*sin(t);?y=cos(3*t);?subplot(3,1,1); plot(t,x); subplot(3,1,2);?plot(t,y); [a,b]=xcorr(x,y); subplot(3,1,3);?plot(b*dt,a);?yy=cos(3*fliplr(t)); % or use:yy=fliplr(y); z=conv(x,yy); pause; subplot(3,1,3); plot(b*dt,z,'r');??即在xcorr中不使用scaling。 ?4. 其他相关问题:?1) 相关程度与相关函数的取值有什么联系?

河北省2017中考数学复习第三单元函数第11讲一次函数的实际应用试题(新)

第11讲一次函数的实际应用 1.(2015·槐荫二模)目前,我国大约有1.3亿高血压病患者,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位.请你根据表格提供的信息,判断下列各组换算正确的是( C ) 千帕kpa …10 12 14 … 毫米汞柱mmHg …75 90 105 … A.6 kpa=50 mmHg B.16 kpa=110 mmHg C.20 kpa=150 mmHg D.22 kpa=160 mmHg 2.(2015·沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2所示的图像,则至少需要5s能把小水杯注满. 3.(2015·武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图像由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元. 4.(2016·滨州)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20 km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40 km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40 km.设爸爸骑行时间为x(h). (1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围; (2)请在同一个平面直角坐标系中画出(1)中两个函数的图像; (3)请回答谁先到达老家. 解:(1)由题意,得y1=20x(0≤x≤2),y2=40(x-1),即y2=40x-40(1≤x≤2). (2)如图: (3)由图像知他们同时到达老家.

利用Excel的NORMSDIST计算正态分布函数表

利用Excel的NORMSDIST函数建立正态 分布表 董大钧,乔莉 理工大学应用技术学院、信息与控制分院,113122 摘要:利用Excel办公软件特有的NORMSDIST函数可以很准确方便的建立正态分布表、查找某分位数点的正态分布概率值,极大的提高了数理统计的效率。该函数可返回指定平均值和标准偏差的正态分布函数,将其引入到统计及数据分析处理过程中,代替原有的手工查找正态分布表,除具有直观、形象、易用等特点外,更增加了动态功能,极大提高了工作效率及准确性。 关键词:Excel;正态分布;函数;统计 引言 正态分布是应用最广泛的连续概率分布,生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,某种产品的力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布。从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。在科学研究及数理统计计算过程中,人们往往要通过某本概率统计教材附录中的正态分布表去查找,非常麻烦。若手头有计算机,并安装有Excel软件,就可以利用Excel的NORMSDIST( x )函数进行计算某分位数点的正态分布概率值,或建立一个正态分布表,准确又方便。 1 正态分布及其应用 正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为N(μ,σ2 )。则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟

第11讲 一次函数及其应用(原卷版)

第11讲一次函数及其应用 1.一次函数的概念 一般地,形如的函数叫做一次函数,当b=0时,y=kx+b即为y=kx叫做正比例函数,所以说正比例函数是一种特殊的一次函数. 2.一次函数的图象与性质 (1)一次函数y=kx+b(k≠0)的图象是一条直线, 它与x轴的交点坐标为,与y轴的交点坐标为原点,正比例函数y=kx(k≠0)的图象是过(0,b) 的一条直线. (2)一次函数y=kx+b(k≠0)的图象所经过的象限及增减性. k、b的符号 k>0 函数图象图象的位置增减性 b>0 图象过第一、二、三象限y随x的增大而增大 b=0 图象过第一、三象限y随x的增大而增大 b<0 图象过第一、三、四象限y随x的增大而增大 k<0 函数图象图象的位置增减性 b>0 图象过第一、二、四象限y随x的增大而减小 b=0 图象过第二、四象限y随x的增大而减小

b <0 图象过第二、三、四 象限 y 随x 的增大而减小 3.待定系数法求一次函数解析式的一般步骤 (1)设:设出一次函数解析式一般形式y =kx +b(k≠0); (2)代:将已知条件中函数图象上的两点坐标代入y =kx +b 得到方程(组); (3)求:解方程(组)求出k ,b 的值; (4)写:写出一次函数的解析式. 4.一次函数与方程(组)的关系 (1)一次函数的解析式y =kx +b 就是一个二元一次方程; (2)一次函数y =kx +b 的图象与x 轴交点的__ __就是方程kx +b =0的解; (3)一次函数y =k 1x +b 1与y =k 2x +b 2的图象交点的横、纵坐标值就是方程组? ????y =k 1x +b 1 y =k 2x +b 2的解. 5.一次函数与不等式的关系 (1)函数y =kx +b 的函数值y 大于0时,自变量x 的取值范围就是不等式kx +b >0的解集,即函数图象位于x 轴的上方部分对应点的横坐标的取值范围; (2)函数y =kx +b 的函数值y 小于0时,自变量x 的取值范围 就是不等式 的解集,即函数图象位于x 轴的 部分对应点的横坐标的取值范围. 6.一次函数的实际应用 (1)常见类型:①费用问题;②销售问题;③行程问题;④容量问题; ⑤方案问题. (2)解一次函数实际问题的一般步骤: ①设出实际问题中的变量; ②建立一次函数关系式; ③利用待定系数法求出一次函数关系式; ④确定自变量取值范围; ⑤利用一次函数的性质求相应的值,对所得到的解进行检验,是否符合实际意义; ⑥答. 考点1: 一次函数的图象与性质 【例题1】(2018?江苏扬州?3分)如图,在等腰Rt △ABO ,∠A=90°,点B 的坐标为(0,2),若直线l :y=mx+m (m ≠0)把△ABO 分成面积相等的两部分,则m 的值为 .

自相关函数和互相关函数的利用MATLAB计算和作图

《 互相关函数,自相关函数计算和作图 1.自相关和互相关的概念。 互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2间的相关程度。 自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2间的相关程度。 互相关函数是在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效。 -----------------------------------------------------------------------------------事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。 】 2.利用matlab中实现这两个相关并用图像显示: 自相关函数: dt=.1; t=[0:dt:100];x=cos(t); [a,b]=xcorr(x,'unbiased'); plot(b*dt,a)

互相关函数:把[a,b]=xcorr(x,'unbiased');改为[a,b]=xcorr(x,y,'unbiased');便可。 ? 3. 实现过程: 在Matalb中,求解xcorr的过程事实上是利用Fourier变换中的卷积定理进行的,即 R(u)=ifft(fft(f)×fft(g)),其中×表示乘法,注:此公式仅表示形式计算,并非实际计算所用的公式。当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。事实上,两者既然有定理保证,那么结果一定是相同的,只是没有用对公式而已。下面是检验两者结果相同的代码: dt=.1; t=[0:dt:100]; x=3*sin(t); y=cos(3*t); subplot(3,1,1); plot(t,x); subplot(3,1,2); plot(t,y); [a,b]=xcorr(x,y); subplot(3,1,3);

相关主题
文本预览
相关文档 最新文档