当前位置:文档之家› 复旦大学大学物理 1-10 第10章 流体力学

复旦大学大学物理 1-10 第10章 流体力学

大学物理D-03流体力学

练习三 流体力学 一、填空题 1.水平放置的流管通内有理想流体水,在某两截面上,已知其中一截面A 面积是另一截面B 的两倍,在截面A 水的速度为 2.0m/s ,压强为10kPa,则另截面的水的速度为 4.0m/s ,压强为 4kPa 。 2.雷诺数是判断生物体系内液体是做层流还是湍流流动状态的重要依据,许多藤本植物内水分流动雷诺数约为 3.33,说明一般植物组织中水分的流动是 层流 。 3.如果其它条件不变,为使从甲地到乙地圆形管道流过的水量变为原来的16倍,则水管直径需变为原来的 2 倍。 4.圆形水管的某一点A ,水的流速为1.0m/s ,压强为3.0×105 Pa 。沿水管的另一点B ,比A 点低20米,A 点截面积是B 点截面积的三倍,忽略水的粘滞力,则B 点的压强为 4.92×105 Pa 。(重力加速度 2 9.8/g m s ) 5.某小朋友在吹肥皂泡的娱乐中,恰好吹成一个直径为2.00cm 的肥皂泡,若在此环境下,肥皂液的表面张力系数为0.025N/m ,则此时肥皂泡内外压强差为 10.0 Pa 。 二、选择题 1.水管的某一点A ,水的流速为1.0米/秒,计示压强为3.0×105Pa 。沿水管的另一点B ,比A 点低20米,A 点面积是B 点面积的三倍.则B 点的流速和计示压强分别为( A )。 (A)3.0m/s,4.92×105Pa (B)0.33m/s, 4.92×105Pa (C)3.0m/s,5.93×105Pa (D )1.0m/s,5.93×105Pa 2.在如图所示的大容器中装有高度为H 的水,当在离最低点高度h 是水的高度H 多少时,水的水平距离最远。( C ) (A) 1/4 (B)1/3 (C)1/2 (D)2/3 3.如图所示:在一连通管两端吹两半径不同的肥皂泡A 、B ,已知R A >R.B ,(B ) 开通活塞,将出现的现象为? (A)A 和B 均无变化; (B)A 变大,B 变小; (C)A 变小,B 变大; (D) )A 和B 均变小 4.下列事件中与毛细现象有关的是?( D ) (1)植物水分吸收;

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

大学物理 CH4.1 流体力学

大学物理 CH4.1 流体力学 第四章流体力学 流动性 静止流体在任何微小的切向力作用下都要发生连续不断的变形,不断的变形,即流体的一部分相对另一部分运动,即流体的一部分相对另一部分运动,这种变形称为流动。这种变形称为流动。连续介质模型 设想流体是由连续分布的流体质点组成的的连续介质,流体质点具有宏观充分小,流体质点具有宏观充分小,微观充分大的特点。微观充分大的特点。描述流体的物理量可以表示成空间和时间的连续函描述流体的物理量可以表示成空间和时间的连续函数。 内容提要 流体的主要物理性质 连续性方程、连续性方程、伯努利方程及其应用 粘性流体的两种流动状态、粘性流体的两种流动状态、哈根-哈根-泊肃叶定律斯托克斯定律 一、惯性 惯性是物体保持原有运动状态的性质,惯性是物体保持原有运动状态的性质,表征某一流体的惯性大小可用该流体的密度。 m 均质流体:均质流体:ρ= V ?m d m ρ(x , y , z )=lim = ?v →0?V d V 液体的密度随压强和温度的变化很小,液体的密度随压强和温度的变化很小,气体的密 度随压强和温度而变化较大。度随压强和温度而变化较大。 二、压缩性

流体受到压力作用后体积或密度发生变化的特性称为压缩性。为压缩性。通常采用体积压缩率表示流体的压缩性。 d V κ=?单位:单位:m 2/N d p 体积弹性模量: d p E V ==? κd V 1 单位:单位:N / m2或Pa 不可压缩流体即在压力作用下不改变其体积的流体。即在压力作用下不改变其体积的流体。 三、粘性 粘性是运动流体内部所具有的抵抗剪切变形的特性。粘性是运动流体内部所具有的抵抗剪切变形的特性。它表现为运动着的流体中速度不同的流层之间存在着沿切向的粘性阻力(着沿切向的粘性阻力(即内摩擦力)。即内摩擦力)。 x d u 速度梯度d y d u F =μA 牛顿粘性公式 d y μ为动力黏度,为动力黏度,单位Pa ?s d u 黏滞切应力τ=μ d y d u x d u d t

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理讲稿(第4章流体力学)第一节

第4章流体力学 前面讨论过刚体的运动,刚体是指形状大小不变的物体.只有固体才可以近似地认为是刚体.气体和液体都是没有一定形状的,容器的形状就是它们的形状.固体的分子虽然可以在它们的平衡位置上来回振动或旋转,但活动范围是很小的.然而气体或液体的分子却可以以整体的形式从一个位置流动到另一个位置,这是它们与固体不同的一个特点,即具有流动性.由于这种流动性,把气体和液体统称为流体.流体是一种特殊的质点组,它的特殊性主要表现为连续性和流动性.因而仍可用质点组的规律处理流体的运动情况.研究静止流体规律的学科称为流体静力学,大家熟悉的阿基米德原理、帕斯卡原理等都是它的内容.研究流体运动的学科叫流体动力学,它的一些基本概念和规律即为本章中要介绍的内容. 流体力学在航空、航海、气象、化工、煤气、石油的输运等工程部门中都有广泛的应用,研究流体运动的规律具有重要的意义. §4.1 流体的基本概念 一、理想流体 实际流体的运动是很复杂的.为了抓住问题的主要矛盾,并简化我们的讨论,即对实际流体的性质提出一些限制,然而这些限制条件并不影响问题的主要方面.在此基础上用一个理想化的模型来代替实际流体进行讨论.此理想化的模型即为理想流体. 1. 理想流体 理想流体是不可压缩的.实际流体是可压缩的,但就液体来说,压缩性很小.例如的水,每增加一个大气压,水体积只减小约二万分之一,这个数值十分微小,可忽略不计,所以液体可看成是不可压缩的.气体虽然比较容易压缩,但对于流动的气体,很小的压强改变就可导致气体的迅速流动,因而压强差不引起密度的显著改变,所以在研究流动的气体问题时,也可以认为气体是不可压缩的. 理想流体没有粘滞性.实际流体在流动时都或多或少地具有粘滞性.所谓粘滞性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力(粘滞力).例如瓶中的油,若将油向下倒时,可看到靠近瓶壁的油几乎是粘在瓶壁上,靠近中心的油流速最大,其它均小于中心的流速.但有些实际流体的粘滞性很小,例如水和酒精等流体的粘滞性很小,气体的粘滞性更小,对于粘滞性小的流体在小范围内流动时,其粘滞性可以忽略不计. 为了突出流体的主要性质——流动性,在上述条件下忽略它的次要性质——可压缩性和粘滞性,我们得到了一个理想化的模型:不可压缩、没有粘滞性的流体,此流体即为理想流体.

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理第十章答案讲解

第十章 一、填空题 易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为1 10s -,则物体的总能量为, 周期为 。(4510J -?,0.628s ) 易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m ) 易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。(200N/m ,10rad/s ) 易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。(0.02m ,2.5m ,100Hz ,250m.s -1) 易:5、两个谐振动合成为一个简谐振动的条件是 。(两个谐振动同方向、同频率) 易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。(相同) 易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。(偶数) 易:8、弹簧振子系统周期为T 。现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。(T ) 易:9、作谐振动的小球,速度的最大值为,振幅为 ,则 振动的周期为 ;加速度的最大值为 。( 3 4π ,2105.4-?)

易:10、广播电台的发射频率为 。则这种电磁波的波长 为 。(468.75m ) 易:11、已知平面简谐波的波动方程式为 则 时,在X=0处相位为 ,在 处相位为 。 (4.2s,4.199s) 易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅; 圆频率 ;初相 。(10m, 1.2 -s rad π ,0) 中:13、一简谐振动的运动方程为2x 0.03cos(10t )3 π π=+ ( SI 制),则频率ν为 、周期T 为 、振幅A 为 , 初相位?为 。(5Hz , 0.2s , 0.03m , 23 π) 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ;()12 cos(05.0π ω- =t x ) 中:15、A 、B 是在同一介质中的两相干波源,它们的 位相差为π,振动频率都为100Hz ,产生的波以10.0m/s

大学物理II_第十章

第十章 静电场 电荷守恒定律 电荷守恒定律是物理学的基本定律之一. 它指出, 对于一个孤立系统, 不论发生什么变化, 其中所有电荷的代数和永远保持不变. 电荷守恒定律表明, 如果某一区域中的电荷增加或减少了, 那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷, 那么必定有等量的异号电荷同时产生或消失. 库仑定律 库仑定律(Coulomb's law), 法国物理学家查尔斯·库仑于1785年发现, 因而命名的一条物理学定律. 库仑定律是电学发展史上的第一个定量规律. 因此, 电学的研究从定性进入定量阶段, 是电学史中的一块重要的里程碑. 库仑定律阐明, 在真空中两个静止点电荷之间的相互作用力与距离平方成反比, 与电量乘积成正比, 作用力的方向在它们的连线上, 同号电荷相斥, 异号电荷相吸. 02 21041r r q q F πε= 21212010854187817.8---???=m N C ε, 真空电容率(真空介电常数) 电场强度 电场强度是用来表示电场的强弱和方向的物理量. 实验表明, 在电场中某一点, 试探点电荷(正电荷)在该点所受电场力与其所带电荷的比值是一个与试探点电荷无关的量. 于是以试探点电荷(正电荷)在该点所受电场力的方向为电场方向, 以前述比值为大小的矢量定义为该点的电场强度, 常用E 表示. 按照定义, 电场中某一点的电场强度的方向可用试探点电荷(正电荷)在该点所受电场力的电场方向来确定;电场强弱可由试探电荷所受的力与试探点电荷带电量的比值确定. 0q F E =;02041r r q E πε= 点电荷系在某点产生的电场的电场强度等于各点电荷单独在该点产生的电场强 度的矢量和 ∑∑==02041i i i i r r q E E πε 带电体在一点产生的电场强度等于所有电荷元产生的电场强度的矢量积分 ? ?==0 2 04r r dq E d E πε 高斯定理 真空中的静电场中, 穿过任一闭合曲面的电通量, 在数值上等于该闭合曲面内所包围的电量的代数和乘以ε0的倒数. ∑?= ?ins i S q S d E 0 1ε

大物B课后题10-第十章 波动学基础(1)

习题 10-5 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3 ,,,424 λλλλ。 设振源的振动方程为cos 2y A t πω?? =+ ?? ? ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2x x π ?π ?π πλ λ???== ?== 3432,222x x π?π?ππλλ ???==?== (2) 112233440,, 2 2 2 3 ,222 π π π ????ππ ??π??π = -?== -?=- =-?=-=-?=- (3) 1212343411 ,2422 3,242t T T t T T t T T t T T ??ππ??ππ ???= =?==???==?== 10-6 波源做谐振动,周期为0.01s ,振幅为2 1.010m -?,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1 400u m s -=?的速度沿x 轴的正方向传播,试写出波动方程。 解 根据题意可知,波源振动的相位为3 2 ?π= 2122200, 1.010,4000.01 A m u m s T ππωπ--====?=? 波动方程 2 31.010cos 2004002x y t m ππ-??? ?=?- + ???? ?? ? 10-7 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。 解 (1)比较系数法

大学物理学第版修订版北京邮电大学出版社 下册 第十章 习题答案

习题10 选择题 (1) 对于安培环路定理的理解,正确的是: (A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流; (C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。 [答案:C] (2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比; (B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比; (D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。 [答案:B] (3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。 [答案:B] (4)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A );(B );(C );(D )14J 。 [答案:A] 填空题 (1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度 。 [答案: a I πμ220,方向垂直正方形平面] (2)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求得(填能或不能)。 [答案:能, 不能] (3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为 。电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为 。 [答案:零,正或负或零] (4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以 电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将 。 [答案:相同,不相同] 在同一磁感应线上,各点B ? 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强 度B ? 的方向? 解: 在同一磁感应线上,各点B ? 的数值一般不相等.因为磁场作用于

大学物理-波动光学

第十章波动光学 第1课电磁波光的电磁本性 教学目标:1.了解电磁场和电磁波的一般概念 2.了解电磁波的性质及电磁波谱。 教学重点:光的电磁性 教学难点:物质发光的原理 教学资源:网络视频、图片、多媒体设备 教学方法:讲授法、演示法、练习法 课时:2 教学过程: 引入课题: 人们对光(这里主要指可见光)的规律和本性的认识经历了漫长的过程。最早也是最容易观察到达规律是光的直线传播。在机械观的基础上,人们认为光是一些微粒组成的,光线就是这些微粒的运动路径。但人们已觉察到许多光现象可能需要用波动来解释,如牛顿环。与牛顿同时代的惠更斯明确提出光是一种波动,直到进入19世纪,才由托马斯.杨和菲涅尔从实验和理论上建立起一套比较完整的光的波动理论。19世纪中叶光的电磁理论的建立使人们对光波的认识更深入了一步,19世纪末麦克耳孙的实验及爱因斯坦的相对论更完善了光的波动理论。本书关于光的波动规律基本上还是近200年前托马斯.杨和菲涅尔的理论。但许多应用实例是现代化的。正确的基本理论是不会过时的,而且它的应用将随时代的前进而不断翻新,现代的许多高新技术中的精密测量与控制就应用了光的干涉和衍射原理。激光的发明也是40年前的事情。人们对光的理论的认识也没有停止,20世纪初从理论和实验上证实了光具有粒子性,波动光学本身也在不断发展,光孤子就是一例。

本章主要光的波动理论及一些应用。 讲授新课: 一、电磁波的产生 1 无阻尼自由电磁振荡 在电路中,电荷和电流以及与之相伴的电场和磁场的振动,称为电磁振荡。 LC 电磁振荡电路就是一种无阻尼的电磁振荡。开关K 板向右边,使电源对电容器C 充电。 开关K 板向左边,使电容器C 和自感线圈L 相连接。 设某一时刻电路中的电流为i ,此时刻的自感电动势 由于 则 令 则有 其解为 无阻尼自由振荡中的电荷和电流随时间的变化 K A B L C n A B d d i q L V V t C == -22 d 1 d q q t LC =-d d q i t =22 2d d q q o t ω+=21 LC ω=0cos() q Q ω t ?=+00d sin()d π cos(2 q i Q t t I t ωω?ω?= =-+=++

大学物理第10章稳恒磁场习题参考答案

第10章 稳恒磁场 10-1 由毕—沙定律3 0d 4r r l I B d ?=πμ可得 ),,(o o a 点,k a l I i j a l I B 20204d )(4d d πμπμ-=?= ),,(o a o 点,0)(4d d 20=?=j j a l I B πμ ),,(a o o 点,i a l I k j a l I B 2 0204d )(4d d πμπμ-=?= ,,( a a ,,(o a 10-2 在 B = 显然10-3 )sin (sin 4220ααπμ+= r I B 可得A 点的磁感(见图示) )T (1073.110 220310343 3 10---?=???== a I πμ B 的方向由右手定则知为垂直纸面向外。 习题10-3图 2 3326sin 2sin 60sin 400?= ??? ??+?=a I a I B πμππ πμ

解法(二) P 点的磁感应强度大小为 )cos (cos 4210ββπμ-= b I B b 为场点P 到载流直导线的垂直距离。 第1段载流直导线在A 点产生的01=B 。 第2段载流直导线在A 点产生的B 2。 a a b 2 3 60sin 180, 6021=?=? =?=ββ 则 10-4 0B 10-5 (174 21B B B + = [ ] [ ] ?? ? ????? ??-++++= 2 /3222 /32 2 20)2/(1 ) 2/(1 2 x a R x a R NIR μ (2)据题设R a =,则P 点的B 为 [ ] [ ] ?? ? ????? ??-++++= 2 /3222 /32 2 20)2/(1 ) 2/(1 2 x R R x R R NIR B μ 令 2 2222 2 )2/(,)2/(x R R v x R R u -+=++= 习题10.3图(2) 图(3)

上海理工大学大学物理第十章静电场中的导

第十章 静电场中的导体和电介质 一.选择题 [ B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平 行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面 密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21- , σ 2 =σ2 1 +. (C) σ 1 = σ21- , σ 1 = σ2 1 -. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出 σ 1S+σ 2S=0 02220 2010=-+εσεσεσ [ C ]2、(基训4)三个半径相同的金属小球,其中甲、乙两个带有等量同号电荷,丙球不带电,已知甲、乙两球间距离远大于本身直径,它们之间的静电力为F ;现用带绝缘柄的丙球先与甲球接触,再与乙球接触,然后移去,则此后甲、乙两球间的静电力为 (A)3F/4; (B)F/2; (C)3F/8; (D)F/4。 【解析】 设甲、乙两球带有电量为q ,则用带绝缘柄的丙球先与甲球接触后,甲球带电量为q/2,丙球再与乙球接触,乙球带电量为3q/4。根据库仑定律可知接触后甲、乙两球间的静电力为原来的3/8。 [ C ]3、(基训6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图10-6所示,设地的电势为零,则球上的感生电荷q '为: (A) 0. (B) 2q . (C) -2 q . (D) -q . 【解析】 利用金属球是等势体,球体上处电势为零。球心电势也为零。 0442q o o dq q R R πεπε' '+=? R q R q d o q o o 244πεπε-='?' R q R q 2- =' 2 q q -='∴ [ C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V , A B +σσ1σ2 O R d q

大学物理 第二版 课后习题答案 第十章

习题精解 10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是 3 ,,,424 λλλλ。设振源的振动方程为cos 2y A t πω? ?=+ ?? ? ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多 少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2x x π ?π ?π πλ λ???== ?== 3432,222x x π?π?ππλλ ???==?== (2) 112233440,, 2 2 2 3 ,222π π π ????ππ ??π??π = -?== -?=- =-?=-=-?=- (3) 121234 3411 , ,,2422 3,,,242t T T t T T t T T t T T ??ππ??ππ ???==?==???==?== 10-2 波源做谐振动,周期为0.01s ,振幅为2 1.010m -?,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1 400u m s -=?的速度沿x 轴的正方向传播,试写出波动方程。 解 根据题意可知,波源振动的相位为32 ?π= 2122200, 1.010,4000.01 A m u m s T ππωπ--====?=? 波动方程 231.010cos 2004002x y t m ππ-??? ?=?- + ??????? 10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。 解 (1)比较系数法 将波动方程改写成 0.05cos10 2.5x y t m π??=- ??? 与cos x y A t u ω?? =- ??? 比较得

大学物理练习册答案

第十章 练习一 一、选择题 1、下列四种运动(忽略阻力)中哪一种是简谐振动( ) (A)小球在地面上作完全弹性的上下跳动 (B)细线悬挂一小球在竖直平面上作大角度的来回摆动 (C)浮在水里的一均匀矩形木块,将它部分按入水中,然后松开,使木块上下浮动 (D)浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动 2、质点作简谐振动,距平衡位置2.0cm 时,加速度a=4.0cm/s 2,则该质点从一端运动到另一端的时间为( ) (A) (B) (C) (D) 3、如图下所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动,若从松手时开始计时,则该弹簧振子的初相位为( ) (A) 0 (B) 2 π (C) 2 π - (D) π 4、一质量为m 的物体与一个劲度系数为k 的轻弹簧组成弹簧振子,当其振幅为A 时,该弹簧振子的总能量为E 。若将其弹簧分割成两等份,将两根弹簧并联组成新的弹簧振子,则新弹簧振子的振幅为多少时,其总能量与原先弹簧振子的总能量E 相等( ) (A) 2A (B) 4A (C)2 A (D)A 二、填空题 1、已知简谐振动A x =)cos(0?ω+t 的周期为T ,在2 T t = 时的质点速度为 ,加速度为 。 2、已知月球上的重力加速度是地球的1/6,若一个单摆(只考虑小角度摆动)在地球上的振动周期为T ,将该单摆拿到月球上去,其振动周期应为 。 3、一质点作简谐振动,在同一周期内相继通过相距为11cm 的A,B 两点,历时2秒,速度大小与方向均相同,再经过2秒,从另一方向以相同速率反向通过B 点。 该振动的振幅为 ,周期为 。 4、简谐振动的总能量是E ,当位移是振幅的一半时,k E E = ,P E E = ,当x A = 时,k P E E =。

大学物理教程第10章习题答案

思 考 题 10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。 10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。 10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响? 答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。入射光强度增加一倍时,饱和电流增加一倍。(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。 10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。 10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子? 答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。 10.6 完成下列核衰变方程。 (1)?234 238+?→ ?Th U (2)?90 90+?→?Y Sr (3)?29 29+?→?Ni Cu (4)Zn Cu 29 29??→?+ 答:(1) e H Th U 4 2234 90238 92 +?→ ? (2)e Y Sr 0 190399038-+?→? (3)e Ni Cu 0 129282929++?→? (4)Zn e Cu 2930012929?→?++

大学物理学-(第3版.修订版)-北京邮电大学出版社-下册--第十章-习题10标准答案..

习题10 10.1选择题 (1) 对于安培环路定理的理解,正确的是: (A )若环流等于零,则在回路L 上必定是H 处处为零; (B )若环流等于零,则在回路L 上必定不包围电流; (C )若环流等于零,则在回路L 所包围传导电流的代数和为零; (D )回路L 上各点的H 仅与回路L 包围的电流有关。 [答案:C] (2) 对半径为R 载流为I 的无限长直圆柱体,距轴线r 处的磁感应强度B () (A )内外部磁感应强度B 都与r 成正比; (B )内部磁感应强度B 与r 成正比,外部磁感应强度B 与r 成反比; (C )内外部磁感应强度B 都与r 成反比; (D )内部磁感应强度B 与r 成反比,外部磁感应强度B 与r 成正比。 [答案:B] (3)质量为m 电量为q 的粒子,以速率v 与均匀磁场B 成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要() (A ) 增加磁场B ;(B )减少磁场B ;(C )增加θ角;(D )减少速率v 。 [答案:B] (4)一个100匝的圆形线圈,半径为5厘M ,通过电流为0.1安,当线圈在1.5T 的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为() (A )0.24J ;(B )2.4J ;(C )0.14J ;(D )14J 。 [答案:A] 10.2 填空题 (1)边长为a 的正方形导线回路载有电流为I ,则其中心处的磁感应强度。 [答案: a I πμ220,方向垂直正方形平面] (2)计算有限长的直线电流产生的磁场用毕奥——萨伐尔定律,而用安培环路定理求得(填能或不能)。 [答案:能, 不能] (3)电荷在静电场中沿任一闭合曲线移动一周,电场力做功为。电荷在磁场中沿任一闭合曲线移动一周,磁场力做功为。 [答案:零,正或负或零] (4)两个大小相同的螺线管一个有铁心一个没有铁心,当给两个螺线管通以电流时,管内的磁力线H 分布相同,当把两螺线管放在同一介质中,管内的磁力线H 分布将。 [答案:相同,不相同] 10.3在同一磁感应线上,各点B 的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B 的方向? 解: 在同一磁感应线上,各点B 的数值一般不相等.因为磁场作用于运动电荷的磁力方向 不仅与磁感应强度B 的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁

相关主题
文本预览
相关文档 最新文档