当前位置:文档之家› 钕铁硼稀土永磁材料制备技术演变与发展

钕铁硼稀土永磁材料制备技术演变与发展

钕铁硼稀土永磁材料制备技术演变与发展
钕铁硼稀土永磁材料制备技术演变与发展

钕铁硼稀土永磁材料制备技术演变与发展

稀土永磁材料是20世纪60年代出现的新型永磁材料,至今已形成三代,第三代便是以NdFeB合金为代表的Fe基稀土永磁合金。

它由主相Nd2Fe14B和少量富Nd相、少量富B相所组成,是一种三元金属间化合物。化学成分为Nd36%、Fe63%、B约1%。Nd2Fe14B熔点1170℃。用烧结法生产的其磁性能为:最大磁能积(BH)m=199~389kJ/m3,剩磁(Br)=1.31T,矫顽力(Hc)=12.47kOe,居里温度(Tc)=310K,使用温度(t)=100℃,密度=7.4g/cm3硬度(Hv)=600。①从 1983 年,佐川真人发现钕铁硼磁体以来,全球钕铁硼磁体产量从 1983

年的不足 1t,猛增到2006 年的 5 万多 t,其中烧结钕铁硼磁体产量占总量的 90 %,尤其是从 2003 年~2006 年的近 3 年时间内,全球烧结钕铁硼磁体年产量从 2 万t 猛增到 5 万 t,平均年增长率超过 30%。经过 20

多年的发展,烧结钕铁硼磁体的磁能积也由 279kJ/m3 提升至 474kJ/m3。

由于烧结钕铁硼磁体的特性和性价比较传统永磁材料优异,已被广泛应用于计算机、电动机、风力发电机、电动汽车、仪器仪表、磁传动轴承、高保真扬声器、核共振成像仪和航天航空导航器等各行各业,在磁悬浮列车等新兴技术领域具有巨大的潜在应用前景。我国凭借稀土资源优势和生产成本优势,大力发展钕铁硼磁体产业,已成为世界第一生产大国和消费大国。

2006

年,我国采取了一系列宏观调控措施,稀土原材料产品价格大涨,使烧结钕铁硼磁体价格出现了第一次上涨。

其后,随着钕铁硼生产成本的增加以及磁体价格的逐年降低,使得发达国家的磁体生产企业向中国转移,现在只有日本在高性能的磁体领域维持一定的产能。目前我国生产的烧结钕铁硼磁体价格远远低于世界平均价格,一方面是因为我国钕铁硼磁体产品质量不高,另一方面是由于各钕铁硼企业恶性竞争,竞相压价。②

在2003年以前,对烧结钕铁硼永磁材料研究的主要目标是提高其磁能积,而2003年以后则主要集中在提高材料的矫顽力和工作温度方面。

㈠烧结钕铁硼磁体生产工艺的发展

烧结磁体是目前最大宗的商品磁体。其工艺基本沿用制备钐—

钴磁体的粉末冶金法,程序为:熔烧—合金锭粉碎—研磨—磁场下取向成型—烧结—回火时效—充磁检测等。首先将Fe和B冶炼成Fe-

B合金,然后于真空反应炉中按一定要求配比,在Ar气下融化成三元合金,浇铸至水冷铜模中。然后进行制粉,通常采用球磨和气流磨等方法,还有还原扩散制粉,HDDR方法制粉,用快淬技术加球磨或气流磨方法制粉等。

烧结钕铁硼磁体的永磁性能取决于内禀磁性和微结构。内禀磁性主要由材料的化学成分决定,是结构不灵敏。内禀磁性决定了材料宏观磁性能的理论极限,

为得到高性能钕铁硼磁体,首先要提高钕铁硼磁体中磁性相的饱和磁极化强度,可以通过以下措施实现:

(1)保证原材料的纯度,以减少由于杂质元素引起的性能降低;

(2)增加钕铁硼磁体中磁性相的含量,这可以通过合适的成分配比,在保证矫顽力的前提下使得生产后磁体的组分接近磁性相的组分;

(3)提高磁性相的取向度,主要通过生产工艺保证磁体中的颗粒都是单晶颗粒或接近单晶颗粒,并且有良好的颗粒粒径分布。在原材料纯度一定的前提下,生产工艺决定了磁体的性能。

1°铸锭生产工艺及装备的发展③

合金铸锭的显微组织对于后续工艺的制粉环节、磁场取向成型环节、坯料烧结过程都有重要的影响,并进而影响到烧结钕铁硼磁体的性能。从制造永磁材料的角度来看,希望铸锭组织中不存在粗大的α—Fe 枝状晶。(这是由于α—Fe

枝状晶的塑性较好,使铸锭难以破碎,给制粉过程造成困难;同时需延长烧结时间以获得均匀的 Nd2Fe14B晶体。同时,如铸锭组织中存在团块状富 Nd

相,则会影响烧结时富 Nd 相均匀分布。)为了减少α—Fe

枝状晶,可以采用大容量的感应炉,并选用导热性能良好的铜锭模,采用以下两种工艺:一种工艺是把铸锭高温均匀化处理,在1000℃的温度且在惰性气体保护下恒温 10h 左右,可以减少α—

Fe,但该工艺耗费时间、增加成本,不适合工业化批量生产;另一种工艺是双相合金法,即主相和液相分别熔炼、破碎,然后混合、制粉、烧结,这种方法也可以用于生产高性能磁体,但工艺复杂,不适合大批量的工业生产。SC

鳞片技术的出现,使铸锭生产工艺达到最新水平。SC

鳞片技术是将熔融的合金浇注到旋转的水冷铜辊上,生产出鳞片状铸锭,厚度大约0.25~0.35mm。鳞片的冷凝速度快,可以很好的抑制α—Fe

的析出,且鳞片的粉碎性很好,同时鳞片技术改善了富钕相的分布,可以生产磁性能优异的钕铁硼磁体。 2°破碎制粉工艺及装备的发展

钕铁硼粉末的状态,特别是粒径分布、颗粒形状对磁体的取向度和烧结工艺有着重要的影响。粉末制备的传统方法是机械破碎与球磨制粉。机械破碎采用颚式破碎、带筛球磨等方法,在惰性气体保护下进行。球磨制粉有振动球磨和滚动球磨等,振动球磨制备的粉末形状不规则,不利于磁场取向;滚动球磨由于需要汽油保护,工艺复杂,效率不高。目前,钕铁硼厂家基本上都用气流磨制粉。气流磨制粉是采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,无污染,可以高效率地制备粉末。但是该工艺严重破坏了合金的主相晶粒结构,使富钕相不能均匀分布在主相晶粒边界,特别是对一些晶粒粗大的合金,破碎后的主相晶粒和富钕相各自分离,无法制备高性能的磁体。

现在采用HD工艺,即将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎,沿富钕相层处开裂,保证了主相晶粒及富钕晶粒间界相的完整。HD

工艺破碎后的气流磨制备的粉末粒度分布集中,表面缺陷少,可以用于制造高性能的磁体。稀土元素极易氧化,由于钕铁硼粉末的粒度特别小,更是易于氧化,因此气流磨制粉的过程中要用惰性气体保护,同时在制粉前添加一定比例的防氧化剂可以保护粉末使之不易氧化,并且可以提高制粉效率。

3°磁场取向成型工艺及装备的发展

磁场取向成型工艺中取向场的大小,与压制方向的相对方向,粉末的松装密度都对磁体的取向度有重要影响。目前已有:①湿压成型技术,是把钕铁硼的粗粉装入喷射式超细粉碎机,超细粉出口处进入溶剂油形成粉浆,注入模具内进行磁场取向成型,该技术粉浆不易氧化,可以取得较高的取向度,所制得的钕铁硼磁体晶粒尺寸小,均匀一致,磁性能较高

;②脉冲磁场取向技术,在压机恒磁场上加脉冲磁场,脉冲磁场一方面可以提高主相颗粒的取向度,还可以提高粉末的松装密度,从而进一步提高取向度,取向度约可提高1.5%

;③橡皮模压技术,将粉末装入橡皮模,在脉冲磁场中进行取向,再在压机的恒磁场中压制成型,在橡皮模中,粉末受到的的是等静压压缩,可以使磁体获得较高的取向度和剩磁,与金属模压相比,剩磁大约可以提高

5%~7%;④近终成型磁场压机,对于异形磁体,采用特殊的模具工装,直接成型,烧结后的磁体只需要进行稍微表面处理即可投入使用,大大节省了材料和后续的加工成本。

4° 烧结热处理工艺及装备的发展

烧结是材料的最后成型过程,对磁体的密度和微观结构有着极为重要的影响。烧结炉有单室和多室两种结构。对单室结构烧结炉,通过控制温度、压力调节烧结工艺。多室连续多功能烧结炉具有准备室、预热室、烧结室、冷却室,每个工作室按工艺要求具有确定的温度

和气氛条件,待烧结的坯件按工艺流程依次进入上述各室,经预定的烧结程序后出炉。采用多室连续多功能烧结技术可使坯料在保护气氛下进入烧结炉,加热室控温精度高,准备室具有脱去气体和有机溶剂的功能,冷却室具有

600kPa(6bar)的高压气淬功能,从而保证工艺条件均匀,产品一致性好。适于大批量生产高性能钕铁硼磁体,但是多室设备价格昂贵,维护费用较高。

但是磁性能提高的同时磁体的脆性增大,韧性降低。而且随着烧结NsFeB磁体应用领域的不断扩展,磁体要经受冲击、震动等恶劣环境的考验。所以今后要优化生产工艺,提高磁体的韧性,降低毛坯后续处理过程的破损和在环境中断裂的危险。

在研究不同工艺磁体微观断裂机制的差异时,发现合金锭加氢化磁体只有富钕相参与氢化,而速凝加氢化磁体主相晶粒参与了氢化,并且在氢化过程中发生了晶格畸变。

5° 机加工与表面处理工艺及装备的发展

我国生产的钕铁硼磁体一般均为毛坯,需要进一步的表面机械加工处理。钕铁硼磁体比较脆,力学性能较差,一般只能采用磨削加工和切削加工。随着钕铁硼产业的发展,对钕铁硼磁体的要求越来越高,有的磁体设计得特别小,特别薄,重量只有十几毫克到几十毫克,形状也十分复杂,原来的加工设备越来越不能满足钕铁硼加工的需要。同时,钕铁硼磁体由于耐腐蚀性较差,一般要经过表面防腐处理后才能使用,目前主要采用保护涂层的方法用以防腐。常用的金属涂层有 Ni、Zn

等等,用电镀、化学镀的方法覆盖磁体表面;常用的聚合物涂层是环氧树脂,用喷涂和电泳的方法覆盖磁体表面。近来 Al

的真空离子镀和有机溶液镀在钕铁硼磁体的表面处理取得了积极的进展,Al

涂层显示了优良的防护性能。④ 6°不同元素对其性能的影响

磁能积NdFeB磁体中稀土Nd、Dy含量强烈影响磁性能和耐蚀性能,当Nd含量在12·77 %时,磁体具有较高的最大磁能积,但形成了较多的易腐蚀阳极含量,不利于耐腐蚀性能提高。添加的Dy改善了磁体的微观组织,提高阳极过电位,有利于矫顽力、耐蚀性能提高。⑤

可添加Zr元素,以降低钕铁硼磁体对烧结温度的敏感性,提高磁体的耐烧结温度,并且不发生晶粒的异常长大。复合添加 Zr 和 Nb

克服了烧结炉内温度场分布不均匀引起的磁体性能稳定性差的问题,最终制备了高磁能积且性能稳定的磁体。⑥

在钕铁硼合金中加入适量的Gd,可以抑制α-

Fe的生成。在高氧含量工艺下制作烧结钕铁硼磁体, Gd的含量应小于5%,否则,

Gd将大幅降低钕铁硼磁体的磁性能。在磁体中, Gd除了进入主相外,还进入Gd富稀土相, Gd进入主相是降低磁体矫顽力的主要原因。⑦ 7°粘结磁体⑧

粘结 NdFeB 磁体是由 NdFeB

磁粉与粘结剂和其它助剂按一定比例均匀混合,然后用压制、挤出或注射成型等方法制成的复合永磁材料。它主要采用模压工艺,粘结剂一般使用热固性树脂较为合适。粘结磁体具有优异的磁性能和机械性能以及良好的可加工性,且价格适中。全球汽车产量的持续增长为粘结 NdFeB

磁体提供了广阔的市场前景。而其高性能使高新技术产业中的磁器件高效小型化、轻型化,在汽车,计算机中应用量很大。

稳定性⑨

永磁性材料在受到强冲击波压缩后,磁性会减弱或完全消失,这种物理现象称为冲击去磁效应。在20世纪90年代以前,人们都是以软磁材料为研究对象。由于软磁体的能量密度较低,以它作为能量转换单元的爆炸去磁脉冲功率源,其输出功率不高,因而实用范围有限。以强磁体为基础的爆炸去磁脉冲功率源,其单位体积输出功率大幅度提高。

Nd2Fe14B磁体容易发生冲击去磁效应,发生冲击去磁的临界压力低于8·52

GPa。磁体尺寸对感生电动势的影响研究结果表明,当磁体直径相同时,磁体高度越高感生电动势峰值反而越低;当磁体高度相同时,磁体直径越大感生电动势峰值越大。

钕铁硼磁铁介绍及性能表(Word)

钕铁硼磁铁介绍及性能表 第三代稀土永磁钕铁硼是当代磁铁中性能最强的永磁铁。它的BHmax值是铁氧体磁铁的5-12倍,是铝镍钴磁铁的3-10倍;它的矫顽力相当于铁氧体磁铁的5-10倍,铝镍钴磁铁的5-15倍,其潜在的磁性能极高,能吸起相当于自身重量640倍的重物。 由于钕铁硼磁铁的主要原料铁非常便宜,稀土钕的储藏量较钐多10-16倍,故其价格也较钐钴磁铁低很多。 钕铁硼磁铁的机械性能比钐钴磁铁和铝镍钴磁铁都好,更易于切割和钻孔及复杂形状加工。 钕铁硼磁铁的不足之处是其温度性能不佳,在高温下使用磁损失较大,最高工作温度较低。一般为80摄氏度左右,在经过特殊处理的磁铁,其最高工作温度可达200摄氏度。由于材料中含有大量的钕和铁,故容易锈蚀也是它的一大弱点。所以钕铁硼磁铁必须进行表面涂层处理。可电镀镍(Ni), 锌(Zn), 金(Au), 铬(Cr), 环氧树脂(Epoxy)等。 钕铁硼磁铁目前广泛应用于工业航空航天,电子,机电,仪器仪表,医疗等领域。而且非技术领域使用也越来越广泛,如吸附磁铁,玩具,首饰等。 生产流程: 配料---->熔炼---->制粉---->成型---->烧结---->测试---->机械加工---->电镀---->磁化---->检验---->包装 钕铁硼磁铁磁性能 Magnetic Properties of NdFeB Magnets

注:工作温度是指该温度下的开路磁通不可逆损失小于或等于5%,测试温度为20°C±2°C Note: Working temperature is tested under 20°C±2°C, the inevitable loss of magnetic force is no more than 5%.

我国高性能钕铁硼永磁材料发展现状浅析

我国高性能钕铁硼永磁材料发展现状浅析 高性能钕铁硼永磁材料定义:根据《中国高新技术产品目录(2006)》第六大类新材料中第895项的规定,以速凝甩带法制成,Hcj(KOe)+(BH)max(MGOe)>60,用于制做中、小、微型特殊用途的永磁电机、传感器、磁共振仪、高级音像设备等的烧结钕铁硼永磁材料,属于我国重点鼓励和支持发展的新材料和高新技术产品。以下将达到《中国高新技术产品目录(2006)》中规定指标的烧结钕铁硼永磁材料称为高性能钕铁硼永磁材料。 高性能钕铁硼永磁材料属于功能性材料,是下游行业生产企业电子组件的关键功能材料。从应用来看,大量高性能钕铁硼永磁材料是通过使用在电机内发挥作用的,而使用永磁材料的电机通常被称为永磁电机。永磁电机又分为铁氧体励磁电机和稀土永磁电机。 电机是以磁场为媒介进行机械能和电能相互转换的电磁装置。为在电机内建立进行机电能量转换所必需的气隙磁场,有两种方法: ?在电机绕组内通电流产生,既需要有专门的绕组和相应的装置,需要不断提供能量以维持电流流动,通常称为电励磁电机,如普通的直流电机和同步电机; ?有永磁磁体来产生磁场,既可简化电机结构,又可节约能量,这就是永磁电机。 永磁电机的应用极为广发,遍及航空、航天、国防、装备制造、工农业生产和日常生活的各个领域:其容量从大到小,目前已达到兆瓦,应用范围越来越广;其地位越来越重要,从军工到民用,从特殊到普通领域,不仅在微特电机中占优势,而且在电力推进系统中也显示出了强大的生命力。 与传统的电励磁电机相比,稀土永磁电机具有结构简单、运行可靠、体积小、质量轻、损耗小、效率高、电机的形状和尺寸灵活多样等显著优点。与应用传统钕铁硼永磁材料生产的稀土永磁电机相比,应用高性能钕铁硼永磁材料的新型稀土永磁电机体积更小、损耗更低,效率显著高于传统稀土永磁电机。 稀土永磁电机是一种高效节能产品,平均节电率高达10%以上,应用高性能钕铁硼永磁材料的稀土永磁电机的节电率可高达15%~20%。在风电机、压缩机等需要无极变频调速的场合,永磁变频调速节电率高达30%以上。国际电机节能的先进水平是风机自身运行效率一般在80%以上,系统运行效率在85%左右。而目前我国国产设备的本体设计效率为70%,系统运行效率不到30%,电源浪费十分严重。 据国际能源机构(IEA)2006年7月的工作报告,通过改善电动机效率结合变频调速可以节约大约7%的电能,其中大致有1/4~1/3是靠提高电动机效率来获得的。为协调各国能效分级标准,2006年,国际电工委员会(IEC)制定了一项能效标准IEC60034-30。

烧结钕铁硼永磁材料国家标准

烧结钕铁硼永磁材料国家标准 磁学名词 关于钕铁硼永磁体常用的衡量指标有以下四种: 剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1T=10000Gs 将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的最大的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。钕铁硼的剩磁一般是11500高斯以上。 磁感矫顽力(Hcb)单位是奥斯特(Oe)或安/米(A/m) 1A/m= 磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是10000Oe以上。 内禀矫顽力(Hcj)单位为奥斯特(Oe)或安/米(A/m) 使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。 磁能积((BH)max ) 单位为兆高·奥(MGOe)或焦/米3(J/m3) 退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的最大值称之为最大磁能积,为退磁曲线上的D点。磁能积是恒量磁体所储存能量大小的重要参数之一。在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。 ·各向同性磁体:任何方向磁性能都相同的磁体。 ·各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能最高的磁体。 烧结钕铁硼永磁体是各向异性磁体。 ·取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作"取向轴","易磁化轴"。·磁滞回线:铁磁材料在经过充磁、退磁、反向充磁、再退磁周期性变化时,所获得的关于磁感应强度(横坐标)相对于磁场强度(纵坐标)变化的闭合曲线。 退磁曲线(即B-H曲线):磁滞回线中,位于第二象限中的部分我们称之为退磁曲线。也即我们所说的B-H的曲线。如图所示:·退磁曲线的膝点:磁体退磁曲线上发生突变、明显发生弯曲的点。室温时退磁曲线呈直线的磁体,在温度升高到一定程度时都会出现膝点。如果磁体的工作点在膝点以下,磁体在动态磁路中工作时会产生不可逆损失。 ·负载线:连接工作点和退磁曲线坐标原点的一条直线(见上图)。·磁化强度:指材料内部单位体积的磁矩矢量和,用M

我国钕铁硼永磁材料产业技术现状与发展趋势_钟明龙

第32卷第10期电子元件与材料V ol.32 No.10 2013年10月ELECTRONIC COMPONENTS AND MATERIALS Oct. 2013 我国钕铁硼永磁材料产业技术现状与发展趋势 钟明龙,刘徽平 (江西理工大学 工程研究院,江西 赣州 341000) 摘要: 简述了我国钕铁硼永磁材料产业技术现状,针对存在的高磁能积、高矫顽力、产品一致性好烧结钕铁硼磁体生产工艺不稳定以及各向异性粘结钕铁硼磁体产业化技术不成熟等问题,提出了可通过改善烧结钕铁硼制备工艺、开发耐高温高矫顽力烧结钕铁硼以及加大各向异性粘结钕铁硼产业化技术研究来提升我国钕铁硼永磁材料产业技术水平。 关键词:钕铁硼;烧结磁体;综述;粘结磁体;技术现状;发展趋势 doi: 10.3969/j.issn.1001-2028.2013.10.002 中图分类号: TM273 文献标识码:A 文章编号:1001-2028(2013)10-0006-04 Industrial technology situation and development trends of Nd-Fe-B permanent magnetic materials in China ZHONG Minglong, LIU Huiping (Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, China) Abstract: Industrial technology situation of Nd-Fe-B permanent magnetic materials in China are summarized. Aim at the problems such as the production process of sintered Nd-Fe-B permanent magnets with high (BH)max, high coercivity and good consistency is unstable, and anisotropic bonded Nd-Fe-B magnets industry technology is immature, a scheme for improving preparation process of sintered Nd-Fe-B, developing high Curie temperature, high coercivity new Nd-Fe-B magnetic and increasing anisotropic bonded Nd-Fe-B industrial technology research are proposed to enhance industrial technology level of Nd-Fe-B material in China. Key words: Nd-Fe-B; sintered magnets; review; bonded magnets; technology situation; development trends 20世纪80年代问世的钕铁硼永磁体具有磁能积高、体积小及质量轻等优点,是迄今为止性能价格比最佳的商品化磁性材料,亦因其优异的磁性能被誉为“磁王”。经过近三十年的努力,钕铁硼磁体的磁能积有了大幅提高,烧结钕铁硼磁体的磁能积由最初的280 kJ/m3(35 MGOe)[1]提高到目前的476.8 kJ/m3(59.6 MGOe)[2];粘结钕铁硼磁体中,各向同性粘结钕铁硼磁体的磁能积为72~88 kJ/m3(9~11 MGOe)[3],各向异性粘结钕铁硼磁体的磁能积已达200 kJ/m3(25 MGOe)[4]。钕铁硼磁体已在电子信息、机械、医疗以及国防等领域广泛应用。近年来,应用于新能源汽车、风能发电和变频空调等的稀土永磁电机产量因我国节能环保产业的快速发展而迅速增长[5-10],给高性能钕铁硼永磁材料带来了巨大的市场需求。因此,厘清我国钕铁硼材料产业技术现状,对加强高性能烧结钕铁硼以及各向异性粘结钕铁硼永磁材料研究及其产业化技术开发具有非常重要的意义。 1钕铁硼磁体发展状况 全球钕铁硼产量在过去近三十年中取得了快速增长,由1983年的不足1吨增加到2010年的13.43万吨,其中我国的产量达10.8万吨,占全球钕铁硼总产量的80%。烧结钕铁硼磁体产量由2001年的1.25万吨,增加到2010年的12万吨,约占钕铁硼总产量90%,并在过去十年间保持年均26.5%的速率 综述 收稿日期:2013-07-27 通讯作者:钟明龙 基金项目:国家自然科学基金资助项目(No. 51264013);江西理工大学博士启动基金资助项目(No. jxxjbs13017) 作者简介:刘徽平(1963-),男,江西兴国人,副教授,主要从事稀土合金的生产与分析研究,E-mail: cammjust@https://www.doczj.com/doc/b39291173.html, ; 钟明龙(1985-),男,江西南康人,博士,主要从事高性能稀土永磁材料的制备及应用研究,E-mail: memlzhong@https://www.doczj.com/doc/b39291173.html, 。网络出版时间:2013-09-27 09:39 网络出版地址: https://www.doczj.com/doc/b39291173.html,/kcms/detail/51.1241.TN.20130927.0939.008.html

从世界永磁材料的发展历史,看未来钕铁硼(NdFeB)稀土永磁的广泛应用

从世界永磁材料的发展历史过程,看未来钕铁硼(NdFeB)稀土永磁的广泛应用。 世界永磁材料的发展经历了如下过程:40年代末出现了AlNiCo永磁,50年代诞生了铁氧体永磁,60 年代研制出了第一代稀土永磁SmCo5,70年代开发成功第二代稀土永磁SmCo17,1983年, 日本住友特殊金属公司和美国通用汽车公司各自研制成功钕铁硼(NdFeB)永磁,笫三代稀土永磁材料。研制成功最新一代“永磁王”—NdFeB。钕铁硼具有体积小、重量轻和磁性强的特点,是迄今为止性能价格比最佳的磁体。 常用各种永磁材料解释: 具有宽磁滞回线、高矫顽力、高剩磁,一经磁化即能保持恒定磁性的材料。又称硬磁材料。实用中,永磁材料工作于深度磁饱和及充磁后磁滞回线的第二象限退磁部分。常用的永磁材料分为铝镍钴系永磁合金、铁铬钴系永磁合金、永磁铁氧体、稀土永磁材料和复合永磁材料。 ①铝镍钴系永磁合金。以铁、镍、铝元素为主要成分,还含有铜、钴、钛等元素。具有高剩磁和低温度系数,磁性稳定。分铸造合金和粉末烧结合金两种。20世纪30~60年代应用较多,现多用于仪表工业中制造磁电系仪表、流量计、微特电机、继电器等。 ②铁铬钴系永磁合金。以铁、铬、钴元素为主要成分,还含有钼和少量的钛、硅元素。其加工性能好,可进行冷热塑性变形,磁性类似于铝镍钴系永磁合金,并可通过塑性变形和热处理提高磁性能。用于制造各种截面小、形状复杂的小型磁体元件。 ③永磁铁氧体。主要有钡铁氧体和锶铁氧体,其电阻率高、矫顽力大,能有效地应用在大气隙磁路中,特别适于作小型发电机和电动机的永磁体。永磁铁氧体不含贵金属镍、钴等,原材料来源丰富,工艺简单,成本低,可代替铝镍钴永磁体制造磁分离器、磁推轴承、扬声器、微波器件等。但其最大磁能积较低,温度稳定性差,质地较脆、易碎,不耐冲击振动,不宜作测量仪表及有精密要求的磁性器件。 ④稀土永磁材料。主要是稀土钴永磁材料和钕铁硼永磁材料。前者是稀土元素铈、镨、镧、钕等和钴形成的金属间化合物,其磁能积可达碳钢的150倍、铝镍钴永磁材料的3~5倍,永磁铁氧体的8~10倍,温度系数低,磁性稳定,矫顽力高达800千安/米。主要用于低速转矩电动机、启动电动机、传感器、磁推轴承等的磁系统。钕铁硼永磁材料是第三代稀土永磁材料,其剩磁、矫顽力和最大磁能积比前者高,不易碎,有较好的机械性能,合金密度低,有利于磁性元件的轻型化、薄型化、小型和超小型化。但其磁性温度系数较高,限制了它的应用。 ⑤复合永磁材料由永磁性物质粉末和作为粘结剂的塑性物质复合而成。由于其含有一定比例的粘结剂,故其磁性能比相应的没有粘结剂的磁性材料显著降低。除金属复合永磁材料外,其他复合永磁材料由于受粘结剂耐热性所限,使用温度较低,一般不超过150℃。但复合永磁材料尺寸精度高,机械性能好,磁体各部分性能均匀性好,易于进行磁体径向取向和多极充磁。主要用于制造仪器仪表、通信设备、旋转机械、磁疗器械及体育用品等。 分类 第一大类是:合金永磁材料,包括稀土永磁材料(钕铁硼Nd2Fe14B)、钐钴(SmCo)、铝镍钴(AlNiCo) 第二大类是:铁氧体永磁材料(Ferrite)

稀土永磁材料概述

稀土永磁材料概述 从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类材料成为磁性材料。它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。 永磁材料性能要求 永磁材料的主要性能是由以下几个参数决定的 1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.2.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。 1.2.3矫顽力:铁磁体磁化到饱和后,使它的磁化强度或磁感应强度降低到零所需要的反向外磁场称为矫顽力。它表征材料抵抗退磁作用的本领。 1.2.4剩磁:铁磁体磁化到饱和并去掉外磁场后,在磁化方向保留的剩余磁化强度或剩余磁感应强度称为剩磁。 1.2.5居里温度:强铁磁体由铁磁性和亚铁磁性转变为顺磁性的临界温度称为居里温度或居里点。居里温度高标志着永磁材料的使用温度也高。

永磁材料基本知识

永磁材料基本知识 2006年08月26日星期六 08:56 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=μ0 M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,μ0=4π×10-7 H/m (亨/米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=μ0 H+J (SI单位制)(1-1) B=H+4πM (CGS单位制) 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。

钕铁硼基本知识自行整理

钕铁硼基本知识 入门知识 肖忠洋 2015.03.16 磁学基础知识钕铁硼介绍磁钢运用 磁学基础知识 什么是永磁材料? 可用于制造磁功能器件的强磁性材料称为磁性材料。 磁性材料包括:硬磁材料、软磁材料、半硬磁材料、磁致收缩材料、磁性薄膜、磁性微粉、磁性液体、磁致冷材料、以及磁蓄冷材料等。其中用量最大、用途最广的是硬磁材料和软磁材料。 硬磁材料与软磁材料的区别在于硬磁材料的各向异性场(H A)高,矫顽力(H c)高,这就意味着软磁材料很容易退磁,而硬磁材料可以长期保存很强的磁性,因此硬磁材料又成为永磁材料。 永磁材料分类 现代工业与科学技术的广泛应用的永磁材料有铸造永磁材料、铁氧体永磁材料、稀土永磁材料和其他永磁材料等四大类。铸造永磁材料是指AlNiCo(铝镍钴)系永磁材料;铁氧体永磁材料包括:Ba铁氧体永磁,Sr铁氧体永磁;稀土永磁材料包括:稀土钴系永磁材料和稀土铁系永磁材料;其他永磁材料主要有Fe-Cr-Co系,Fe-Ni-Gu系,Pt-Co系,Fe-Pt系.稀土钴系包括:1:5型Sm-Co永磁,2:17型Sm-Co永磁和粘结Sm-Co永磁。 稀土铁系包括:烧结Nd-Fe-B系永磁,粘结Nd-Fe-B永磁,2:17与1:12型间隙化合物永磁,纳米符合型永磁和热变型永磁。

永磁材料的性能对照表 永磁材料的主要磁性能指标是那些? 永磁材料的主要磁性能指标是:剩磁(J r,B r)、矫顽力(H cb)、内禀矫顽力(H cj)、磁能积(BH) m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(T c)、可工作温度(T w)、剩磁及内禀矫顽力的温度系数(α、β)、回复导磁率(μ 永磁材料技术磁参量 永磁材料的技术磁参量可分为非结构敏感参量(即内禀磁参量)如饱和磁化强度M s、居里温度T c等,和结构敏感参量如剩磁M r或B r、H cb、(BH) m等。前者主要有材料的化学成分和晶体结构来决定;后者除了与内禀参量有关外,还与晶粒尺寸、晶粒取向、晶体缺陷、参杂物等因素有关。 1、饱和磁化强度M

注射成形钕铁硼粘结磁体研究的现状及前景_王旭波

注射成形钕铁硼粘结磁体 研究的现状及前景 王旭波* 曲选辉 段柏华 (中南大学粉末冶金国家重点实验室,长沙 410083) 摘 要: 论述了注射成形钕铁硼粘结磁体的特点及发展趋势,分析了其生产工艺中的四个关键因素,包括磁粉,粘结剂与耦联剂,注射过程,充磁过程,并对这四个关键因素的研究状况作了综合评述,认为今后对注射成形钕铁硼粘结磁体的研究开发将集中在四个主要的方面。关键词: 注射成形;钕铁硼粘结磁体;磁粉;粘结剂 Present status and future of research on bonded NdFeB magnets prepared by powder injection molding Wang X ubo ,Qu Xuanhui ,Duan Bohua (State Key L aboratory for Pow der M etallurgy ,Central South University ,Changsha 410083,China )Abstract :Trait and developing trend of bonded NdFeB magnets are discussed .F our key facto rs in production pro -cess are analysed ,including mag netic pow ders ,binders ,injectio n molding ,charging mag netism process .T he re -search on the four key factors is reviewed .It is believ ed that the study and development o f bonded NdF eB mag nets prepared by powder injection molding will focus on four main fields . Key words :injection molding ;bonded N dFeB mag net ;magnetic powder ;binder *王旭波(1979.11-),男,硕士,主要从事磁性材料注射成形的研究。电话:+86-731-8830203收稿日期:2001-12-14 1 前言 钕铁硼自1983年发明以来取得了迅速发展,这种强力磁体已成为人们日常生活中不可缺少的磁性材料,其应用迅速普及到电子学领域、情报信息领域、医疗领域。钕铁硼永磁材料已经成为信息产业和机电产业的基础性材料。 钕铁硼永磁材料可分为烧结钕铁硼和粘结钕铁硼,两者各有优缺点。烧结钕铁硼的磁性能较好,但生产工艺较为复杂,成本也相应较高。粘结钕铁硼磁体,虽然因粘结剂的加入使得磁性能降低了,但其具有批量生产容易,制造尺寸精确,易成形复杂形 状,比重轻,磁性能稳定等诸多优点,并且可以辐向多极化充磁,因此广泛应用于电子和医疗领域,近些年来其产量一直在高速增长。 粘结磁体目前主要有模压成形和注射成形两种成形工艺:模压成形工艺是将磁粉和粘结剂的混合物装入压机模腔内以一定压力压制,压制磁体于150~175℃温度固化;注射成形工艺是使加热的混合物通过流道进入模腔,在模腔中成形,冷却和硬化,一般粉末的装载量为70%。模压成形法制得的钕铁硼粘结磁体非磁性物质含量较低,因而磁性能较好,而注射成形钕铁硼磁体由于粘结剂的稀释,磁 第21卷第3期2003年6月 粉末冶金技术Powder M etallurgy Techonology Vol .21,No .3 Jun .2003

稀土永磁材料

稀土永磁材料 李世东材卓121 1209010103 摘要:稀土永磁材料具有高的磁能积、良好的稳定性、不易受温度、外界磁场和冲击的影响,它广泛用于雷达、航天技术、卫星通信、计算机、自动控制,旋转机械设备、交通运输、磁分离、石油化工、医疗卫生、电动玩具、办公设备、以及各种仪器仪表等方面。稀土钕铁硼永磁材料产业本身是个新兴产业,新的应用领域在不断涌现,特别是以信息产业为代表的知识经济发展,给稀上永磁等功能材料不断带来新的用途。除了在上述等方面的广泛应用外,汽车中的发电机、电动机和音响系统、风力发电、节能电梯、变频空调等应用已经开始,这将极大地带动钕铁硼永磁材料产业的发展。 关键词:稀土永磁材料制备特性分类应用 Abstract:Rare earth permanent magnetic material with high magnetic energy product, good stability, less susceptible to temperature, the influence of external magnetic field and impact. It is widely used in radar, space technology, satellite communication, computer, automatic control, rotation machinery and equipment, transportation, magnetic separation, petroleum chemical industry, medical and health, electric toys, office equipment, and a variety of instrumentation, such as aspects. Rare earth neodymium iron boron permanent magnetic material industry is a new industry, new application areas are emerging, especially in the information industry as the representative of the knowledge economy development, to dilute the permanent magnet and other functional materials continue to bring new uses. In addition to a wide range of applications in the automotive, motor and audio systems, electric motors and sound systems, wind power, energy saving, energy saving, such as the application has begun, which will greatly promote the development of the permanent magnet material industry. Key word:Rare earth permanent magnetic materialPreparation CharacteristicClassificationApplication 引言:永磁材料作为一种重要的功能材料,已被广泛应用于能源、交通、机械、医疗、计算机、家电、航天等领域,深入国民经济的方方面面,其产量与用量已成为衡量一个国家综合国力与国民经济发展水平的重要标志。稀土永磁的出现是永磁材料领域中的一个巨大进步,尤其是NdFeB稀土永磁材料的高性能使得高新技术产业中的磁器件高效化,小型化,轻型化成为可能。相信随着稀土永磁材料应用的扩展,定会迎来一个稀土永磁高新技术应用的新时代。 1.定义 稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。 稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)永磁体。其中SmCo磁体的磁能积在15--30MGOe之间,NdFeB系磁体的磁能积在27--50MGOe之间,被称

中国磁性材料产业现状及其发展展望(1)

中国磁性材料产业现状及其发展展望(1) 摘要:磁性材料是各种电子产品主要的配套产品,无论是消费家电产品和工业类如计算机、通讯设备、汽车,以及国防工业均离不开磁性材料。当前,中国各种磁性材料的产量基本上世界第一,成为磁性材料生产大国和磁性材料产业中心。中国磁性材料的中长期市场前景十分光明,中国的磁性材料产品在全球的地位必将进一步提高。必须加强科技创新力度、加强技术改造加强企业管理水平,调整产业结构和提高产品档次,使中国磁性材料从大国走向强国。本文着重从宏观角度分析了中国磁体产业整体情况,介绍了稀土永磁材料特别是中国钕铁硼烧结和粘结产业现状,以及中国新型的稀土永磁材料的研究开发情况,同时对我国磁体产业发展前景进行了预测和分析。 1 中国磁体产业的发展历程 目前,全球的经济已进入了一个信息时代,作为一种功能材料,磁性材料所占的地位越来越重要。当前主要的商品磁体共有4类:20世纪30年代开发的铝-镍-钴永磁;50年代初期开发的铁氧体磁体;60年代末开发的钐-钴磁体,包括第一代稀土永磁-SmCo5和第二代稀土永磁-Sm2Co17;80年代初开发的稀土永磁钕铁硼。而稀土永磁,特别是钕铁硼是磁性材料里最重要的一部分,在永磁材料中发展最快,平

均以每年10%的速度增长。中国磁体产业在中国的出现远较西方发达国家晚,起始期是1969年到1987年之间。因为当时的稀土永磁钐钴磁体的高成本、国内市场的需求量少,所以到八十年代初还没有形成自己的磁体工业。1987~1996的十年是中国磁体产业开始发展的第一阶段,其特点是起点低:由于投资小,设备简陋,生产设备基本完全是国产的,经营理念落后,仍局限于小生产的模式。 1997~20XX的五年是中国磁体产业发展的第二阶段,其特点是起点远高于前一阶段:投资强度大,引进一部分国外的先进技术设备,能够按先进的工艺路线组织生产,产品质量一般属中低档。 20XX年起,中国磁体产业的发展将进入第三阶段。企业建立的特点将是“三高”,即高起点、高投入、高回报:1)产品瞄准特定用途所需的高档磁体;投资规模巨大,引进整条先进生产线;2)按现代化管理的理念,组织集约式分段联营的大生产:磁体生产分为两段—母合金/粉料的生产和磁体制备,投资显著降低,效益则大为提高;3)按资本运作的规律运营,从而保证磁体产业较高的回报率。特别是有可能从国外引进最先进的或采用国产先进生产线,生产高档的磁体产品。 进入21世纪,发达国家的磁体生产由于成本过高,已难以为继,世界磁性材料行业纷纷向中国或第三世界地区转移,中国作为首选的国家。世界一些著名的磁性材料制造企

稀土永磁材料与应用

稀土永磁材料与应用 一、稀土永磁材料 稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。 稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)系永磁体,其中SmCo磁体的磁能积在15~30MGOe之间,NdFeB系永磁体的磁能积在27~50MGOe之间,被称为“永磁王”,是目前磁性最高的永磁材料。钐钴永磁体,尽管其磁性能优异,但含有储量稀少的稀土金属钐和稀缺、昂贵的战略金属钴,因此,它的发展受到了很大限制。我国稀土永磁行业的发展始于60年代末,当时的主导产品是钐-钴永磁,目前钐-钴永磁体世界销售量为630吨,我国为90.5吨(包括SmCo磁粉),主要用于军工技术。 随着计算机、通讯等产业的发展,稀土永磁特别是NdFeB永磁产业得到了飞速发展。 稀土永磁材料是现在已知的综合性能最高的一种永磁材料,它比十九世纪使用的磁钢的磁性能高100多倍,比铁氧体、铝镍钴性能优越得多,比昂贵的铂钴合金的磁性能还高一倍。由于稀土永磁材料的使用,不仅促进了永磁器件向小型化发展,提高了产品的性能,而且促使某些特殊器件的产生,所以稀土永磁材料一出现,立即引起各国的极大重视,发展极为迅速。我国研制生产的各种稀土永磁材料的性能已接

近或达到国际先进水平。 现在稀土永磁材料已成为电子技术通讯中的重要材料,用在人造卫星,雷达等方面的行波管、环行器中以及微型电机、微型录音机、航空仪器、电子手表、地震仪和其它一些电子仪器上。目前稀土永磁应用已渗透到汽车、家用电器、电子仪表、核磁共振成像仪、音响设备、微特电机、移动电话等方面。在医疗方面,运用稀土永磁材料进行“磁穴疗法”,使得疗效大为提高,从而促进了“磁穴疗法”的迅速推广。在应用稀土的各个领域中,稀土永磁材料是发展速度最快的一个。它不仅给稀土产业的发展带来巨大的推动力,也对许多相关产业产生相当深远的影响。 二、稀土永磁材料分类 1.稀土钴永磁材料,包括稀土钴(1-5型)永磁材料SmCo5和稀土钴(2-17型)永磁材料Sm2Co17两大类。 2.稀土钕永磁材料,NdFeB永磁材料。 3.稀土铁氮(RE-Fe-N系)或稀土铁碳(RE-Fe-C系)永磁材料。 三、稀土永磁材料制备工艺分类 1.粉末冶金烧结工艺制备的烧结磁体; 2.还原扩散制粉或氢碎处理粉末及粉末冶金烧结工艺制备的烧结磁体; 3.快速凝固制粉或氢碎制粉(HDDR),粉末模压粘结工艺制备的粘结磁体; 4.快速凝固制粉或氢碎(HDDR)粉末的注射工艺制备的注射磁

高性能稀土永磁材料制备工艺及产业化关键技术

高性能稀土永磁材料、制备工艺及产 业化关键技术 "高性能稀土永磁材料、制备工艺及产业化关键技术"由钢铁研究总院、北京中科三环高技术股份有限公司、安泰科技股份有限公司承担完成。项目针对我国稀土永磁材料产业领域的总体水平及长期发展具有重要影响的关键技术问题,开展了一系列具有创新性的工作,发明了"合金薄片制备装置及工艺"、"多织构整体烧结成型稀土永磁体及其制造方法"、"烧结稀土永磁合金及其制造方法"和"单织构R(稀土)-Fe-B永磁速凝合金带及其制备技术",推动了整个行业产业化规模和产品档次的提高。掌握了N55档钕铁硼磁体产业化、辐环、高使用温度磁体等生产的核心技术,自主创新技术不低于总体技术的90%。产品成功使用在"神舟"飞船和"嫦娥"探月工程等国防与民用高技术领域的核心器件上。 该项目在国际上率先研制出SmCo高温磁体,在500℃时磁体的性能指标为:Br=6.87kGs,Hbc=5.4kOe,Hcj=8.01kOe。普通磁体在500℃时的内禀矫顽力Hcj仅有1~3kOe,Hcj过低使得磁体无法在高温下使用。国内尚无单位能生产500℃使用的高温稀土永磁体。 项目还发明了"多织构整体烧结成型稀土永磁环及其制造方法",研制的高性能辐向多极磁环,同时具有较好的力学特性。其气隙磁密达到0.4T,且多极环的极间磁密差很小,气隙磁密波形优于正弦波。国外同类磁环的气隙磁密为0.3~0.35T。国内尚无其它单位能生产这种多极环。商业化钕铁硼永磁环性能达到或超过日本、欧洲等发达国家同类产品的最高水平。 在特种用途及新型稀土永磁材料探索方面,合成了具有高居里温度、单轴各向异性的1:7型金属间化合物;发明了"高强韧性稀土永磁材料及其制备方

钕铁硼辐射取向环近况及前景讲解

钕铁硼辐射取向环近况及前景

本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的钕铁硼辐射取向环项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业钕铁硼辐射取向环项目立项、申请资金、融资提供全程指引服务。 可行性研究报告是在招商引资、投资合作、政府立项、银行贷款等领域常用的专业文档,主要对钕铁硼辐射取向环项目实施的可能性、有效性、如何实施、相关技术方案及财务效果进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。 可行性研究是确定建设钕铁硼辐射取向环项目前具有决定性意义的工作,是在投资决策之前,对拟建钕铁硼辐射取向环项目进行全

面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建钕铁硼辐射取向环项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证钕铁硼辐射取向环项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。 投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注钕铁硼辐射取向环项目的社会经济效益和影响;融资用报告侧重关注钕铁硼辐射取向环项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。 报告通过对钕铁硼辐射取向环项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对钕铁硼辐射取向环项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的钕铁硼辐射取向环项目投资价值评估及钕铁硼辐射取向环项目建设进程等咨询意见。 报告用途:发改委立项、政府申请资金、申请土地、银行贷款、境内外融资等 关联报告:

钕铁硼稀土永磁材料制备技术演变与发展

钕铁硼稀土永磁材料制备技术演变与发展 稀土永磁材料是20世纪60年代出现的新型永磁材料,至今已形成三代,第三代便是以NdFeB合金为代表的Fe基稀土永磁合金。 它由主相Nd2Fe14B和少量富Nd相、少量富B相所组成,是一种三元金属间化合物。化学成分为Nd36%、Fe63%、B约1%。Nd2Fe14B熔点1170℃。用烧结法生产的其磁性能为:最大磁能积(BH)m=199~389kJ/m3,剩磁(Br)=1.31T,矫顽力(Hc)=12.47kOe,居里温度(Tc)=310K,使用温度(t)=100℃,密度=7.4g/cm3硬度(Hv)=600。①从 1983 年,佐川真人发现钕铁硼磁体以来,全球钕铁硼磁体产量从 1983 年的不足 1t,猛增到2006 年的 5 万多 t,其中烧结钕铁硼磁体产量占总量的 90 %,尤其是从 2003 年~2006 年的近 3 年时间内,全球烧结钕铁硼磁体年产量从 2 万t 猛增到 5 万 t,平均年增长率超过 30%。经过 20 多年的发展,烧结钕铁硼磁体的磁能积也由 279kJ/m3 提升至 474kJ/m3。 由于烧结钕铁硼磁体的特性和性价比较传统永磁材料优异,已被广泛应用于计算机、电动机、风力发电机、电动汽车、仪器仪表、磁传动轴承、高保真扬声器、核共振成像仪和航天航空导航器等各行各业,在磁悬浮列车等新兴技术领域具有巨大的潜在应用前景。我国凭借稀土资源优势和生产成本优势,大力发展钕铁硼磁体产业,已成为世界第一生产大国和消费大国。 2006 年,我国采取了一系列宏观调控措施,稀土原材料产品价格大涨,使烧结钕铁硼磁体价格出现了第一次上涨。 其后,随着钕铁硼生产成本的增加以及磁体价格的逐年降低,使得发达国家的磁体生产企业向中国转移,现在只有日本在高性能的磁体领域维持一定的产能。目前我国生产的烧结钕铁硼磁体价格远远低于世界平均价格,一方面是因为我国钕铁硼磁体产品质量不高,另一方面是由于各钕铁硼企业恶性竞争,竞相压价。② 在2003年以前,对烧结钕铁硼永磁材料研究的主要目标是提高其磁能积,而2003年以后则主要集中在提高材料的矫顽力和工作温度方面。 ㈠烧结钕铁硼磁体生产工艺的发展 烧结磁体是目前最大宗的商品磁体。其工艺基本沿用制备钐— 钴磁体的粉末冶金法,程序为:熔烧—合金锭粉碎—研磨—磁场下取向成型—烧结—回火时效—充磁检测等。首先将Fe和B冶炼成Fe- B合金,然后于真空反应炉中按一定要求配比,在Ar气下融化成三元合金,浇铸至水冷铜模中。然后进行制粉,通常采用球磨和气流磨等方法,还有还原扩散制粉,HDDR方法制粉,用快淬技术加球磨或气流磨方法制粉等。 烧结钕铁硼磁体的永磁性能取决于内禀磁性和微结构。内禀磁性主要由材料的化学成分决定,是结构不灵敏。内禀磁性决定了材料宏观磁性能的理论极限, 为得到高性能钕铁硼磁体,首先要提高钕铁硼磁体中磁性相的饱和磁极化强度,可以通过以下措施实现: (1)保证原材料的纯度,以减少由于杂质元素引起的性能降低; (2)增加钕铁硼磁体中磁性相的含量,这可以通过合适的成分配比,在保证矫顽力的前提下使得生产后磁体的组分接近磁性相的组分; (3)提高磁性相的取向度,主要通过生产工艺保证磁体中的颗粒都是单晶颗粒或接近单晶颗粒,并且有良好的颗粒粒径分布。在原材料纯度一定的前提下,生产工艺决定了磁体的性能。

相关主题
文本预览
相关文档 最新文档