当前位置:文档之家› 电磁兼容与信号完整编辑性设计规范标准

电磁兼容与信号完整编辑性设计规范标准

电磁兼容与信号完整编辑性设计规范标准
电磁兼容与信号完整编辑性设计规范标准

武汉光迅科技股份有限公司

Accelink Technologies Co., Ltd

管理规程

电磁兼容与信号完整性设计规范

文件编号:生效日期:

编制:江毅日期:

审核:日期:

批准:日期:

页数:共页版本:第 A 版

文件发放号:

目录

0.修改记录 (2)

1.目的 (3)

2.适用范围 (3)

3.职责 (3)

3.1开发工程师 (3)

3.2开发管理部 (3)

4.工作程序 (3)

4.1新增备案 (3)

4.2更改程序 (11)

4.3通讯协议的调用 (11)

4.4通讯协议规范 (11)

5.相关文件 (11)

6.附件 (12)

7.记录 (16)

1) (18)

1.目的

本规范制定目的是为光迅公司内部的硬件系统研发、系统集成以及电磁兼容试验中的电磁兼容(EMC)与信号完整性(SI)的设计与改进实施提供技术参考。

2.适用范围

本规范适用于光迅公司所有的硬件研发项目。

3.职责

3.1 开发工程师

3.2 开发管理部

4.工作程序

4.1 基本术语

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

ESD Electrostatic Discharge

(待补充)

4.2 电磁兼容基本概念

E MC的定义

设备在共同的电磁环境中能一起执行各自功能的共存状态。

EMC模型与抑制方法

组成

抑制

措施

评定指标

传导性耦合辐射性耦合

CS传导敏感度(传导抗扰度)

CE辐射敏感度(辐射抗扰度)RS传导发射(传导骚扰)

RE辐射发射(辐射骚扰)

EMC 设计的层次及主要工作

4.3 电磁兼容性的要求

通信产品类电磁兼容性标准要求 电快速瞬变脉冲群试验 静电放电试验 雷击浪涌试验 电磁发射试验 敏感度试验 (待细化)

· 材料特性· 内部封装

· 分布参数

· 屏蔽

· 电源滤波· 印制板布局· 部件布局· 接地

4.4 电磁屏蔽设计技术

(待补充)

4.5 互连电缆设计技术

互连电缆的接地

屏蔽电缆一般分为低频电缆和高频电缆

?对低频信号电缆屏蔽层应单点接地

?对屏蔽的电力电缆和高频电缆的屏蔽层至少应在电缆两端接地。

?当电缆长度L<0.15λ时,要求单点接地,一般均在输出端接地,不存在接地环路,磁屏蔽效果好,也可在输入端接地;

?当电缆长度L>0.15λ时,采用多点接地,一般屏蔽层按0.05λ或0.1λ的间隔接地,以降低地线阻抗,减少地电位引起的干扰;

?对于输入信号电缆的屏蔽层,不能在机壳内接地,只能在机壳的入口处接地,此时的屏蔽层上的外加干扰信号直接在机壳入口处入地,避免

屏蔽层上的外加干扰信号带入设备内的信号电路上;

?对于高输入或高输出阻抗电路,尤其是在高静电环境下,可能需要双层屏蔽的电缆,此时内屏蔽层可以在信号源端接地,外屏蔽层则在负载

端接地。

4.6 印制板设计技术

4.6.1印制板设计的基本原则

?减少设计带宽

通常办法

?电源输入端滤波

?IC芯片滤波

?存储型器件接去耦电容

?基尔霍夫定律

?

?差模/共模电流的耦合控制

?印制线间距的准则(3-W原则)

?存在于PCB走线之间的串扰不仅与时钟或周期信号有关,而且与

系统中的其他重要走线有关。数据线、地址线、控制线和I/O都会

受到串扰和耦合的影响。

?3-W原则:走线间的距离间隔(走线中心间的距离)必须是单一走

线宽度的3倍。

?5/5原则

?时钟频率超过5MHz或上升时间小于5ns时,需要使用多层板。

4.6.2信号完整性设计

信号完整性(SI)是指在信号线上的信号质量好坏;在要求的时间内,信号能以要求的时序、持续时间和电压幅度作出响应,不失真的从源端传递到接收端。

高速信号的电磁干扰以及传输线效应将导致信号完整性降低,出现串扰、数据丢失、判断出错等问题。

影响信号完整性的主要因素有:

?电路与网络的阻抗不匹配所引起的反射。(线宽变化、信号层间转移、接插件与分支线、源端负载不匹配等)

?电路与网络间的分布参数所引起的信号串扰。(分布电容、分布电感)?有源及功率器件开关所引起的电源及地的电位波动。

控制方法

反射的抑制

(待补充)

串扰的抑制

?减小两根或多根信号线的平行长度;

?尽可能加大两平行线的间距;

?3-W原则代表的是逻辑电流中近70%的通量边界

?10-W原则代表的是逻辑电流中近98%的通量边界

?距接地面的距离减小可以使串扰耦合迅速减小

?在PCB(尤其是高频电路PCB)的设计中,可以在装元件的一面用

铜箔作为地平面,使其串扰显著减小;

?对于微带传输线和带状传输线,将走线高度限制在高于地线平面

10mil以内,可以显著减小串扰。

?在串扰较严重的两条线之间插入一条地线,可以起到隔离的作

用,从而减少串扰。

4.6.3电源完整性设计

电路设计的结果是从信号完整性上表现出来的,但不能忽略电源完整性设计。因为电源完整性直接影响到PCB板的信号完整性。电源完整性和与信号完整性二者是密切相关的,而且很多情况下,影响信号畸变的主要原因是电源系统。例如,地反弹噪声太大、去耦电容的设计不合适、回路影响很严重、多电源/地平面的分割不好、地层设计不合理、电流不均匀等等。

(待补充)

4.6.4单层印制板设计技术参照PCB设计规范

4.6.5多层印制板设计技术参照PCB设计规范

4.7 EMI滤波设计技术

EMI滤波包括EMI电源滤波与EMI信号线滤波。其中

4.7.1电源滤波的工程应用必须考虑以下特性

●器件温度特性

●耐压及漏电流限制

●磁性材料的磁饱和问题

●安装及使用要求

●阻抗失配端接原则

按照阻抗失配端接原则采用的滤波电路结构如下图

EMI电源滤波器的安装应该注意

●减小接地阻抗,滤波器应安装在导电金属表面或通过编织接地带与接地点

就近相连,避免细长接地导线造成较大的接地阻抗。

●滤波器应尽量安装在设备的入口/出口处。

●为避免输入/输出互相耦合,应尽量做到输入/输出隔离,至少严格禁止滤波

器输入/输出线的相互交叉、路径平行等。若由于位置及空间的限制,无法满足上述要求的,则滤波器的输入/输出线必须采用屏蔽线或高频吸收线。

4.7.2 EMI信号滤波器

(待补充)

4.8 接地与搭接技术

(参照烽火通信《接地设计规范》)

4.9 瞬态干扰及抑制技术

(待补充)

5.相关文件

5.1 参考标准

?EN55022 Electromagnetic Emissions Test Procedure

?EN61000-3-2 Power Harmonics Test Procedure

?EN61000-3-3 Flicker Test Procedure

?EN61000-4-2 ESD Test Procedure

?EN61000-4-3 Radiated RF Immunity Test Procedure

?EN61000-4-4 Electrical Fast Transient Test Procedure

?EN61000-4-5 Lightning Surge Test Procedure

?EN61000-4-6 Conducted RF Immunity Test Procedure

?EN61000-4-11 Power Interrupts, Variations, and Disturbances Test Procedure

5.2 参考企业规范

5.3 参考文章

6.附件

6.1 电磁兼容国际标准化组织介绍

标准化组织关系图

不同标准化组织的标准编号规则

电磁兼容标准体系结构

6.2 设计案例

下图给出一个机盘布线示意图,其中对电磁辐射和抗扰有严格要求的区域都以符号标注出来。现实中,图中标注的布线区域可能并不同时存在,但是它们代表了系统(设备)现场运行将面对着的电磁辐射、电磁抗扰以及ESD防护等问题。对部分布线区域的元件放置与布线设计给出了详细说明。

标注 1

建议在靠近前面板预留一隔离区域,用以设计ESD环,I/O电缆滤波与解耦敷铜。其他走线与敷铜都不允许穿越此保留区域。

设计目的–减少PCB边缘与前面板的辐射或耦合、建立I/O滤波的参考面与ESD放电区。

标注 2

在所有布线层中,在与前面板相邻的屏蔽地和ESD环的区域周围,建立最小0.7mm 宽的间距区。间隔区应沿着双点划线保持连续。

设计目的–减少耦合到顶部与底部的PCB边缘效应,建立单盘功能区的边界。

标注 3

ESD 操作环的设计

设计目的–保证在制作和安装过程中的单盘操作ESD要求

标注 4

双点划线区域内为功能电路与敷铜区域

设计目的– PCB功能区域,用于放置元件、走线与敷铜。

标注 5

48V 电源转换的隔离区域设计。

设计目的–耦合到功能区域的电源模块的开关dI/dt噪声最小化,耦合到48V I/O连接件的单盘时钟最小化。

标注 6

SFP and XFP 光收发模块的布线设计

设计目的–参照多源协议厂家提供的SFP和XFP模块的推荐布线设计。

标注7

机壳地与屏蔽地的连接,用以PCB板与铜质线缆接口的共模滤波和ESD泄放。

设计目的–地的连接

标注8

10/100 Base-T 接口元件的走线

设计目的–满足以太网接口的辐射与抗扰要求。

标注9

RS-232 串行接口元件的走线

设计目的–满足串行通讯口的辐射与抗扰要求。

6.2.1 DC-DC电源供电的布线设计

1. 在双点划线的区域内建议不要敷铜;

2. 信号线与监控信号线在未光学隔离的条件下,建议不要穿越双点划线区域;3.在滤波元件(线圈)放置的区域(参见短划线之间的区域),建议在任何布线层都不要敷铜;

4.采用光耦隔离穿越双点划线的电源监控信号线;

目前很多设计中,在滤波元件下方采用敷铜以抑制开关电源电路与通过DC-DC电源内寄生元件耦合进来的系统时钟谐波所产生RF噪声。但是在滤波元件下方的任意布线层敷铜,都肯定会在滤波器的输入输出端之间引起高频短路,这将限制滤波器的滤波效果。图中包含了2个差模电感、3个差模电容与1个共模电感,在图中短划线之间的区域不要敷铜。

电源滤波器的最佳位置就是与电源模块的输入端直接相邻,但这需要2个滤波器(例如,每一个滤波器对应一路电源输入)。滤波器靠近电源输入端,可以限制滤波器与输入端之间的铜箔走线长度,以免电磁辐射耦合到滤波器中。有效的电源滤波通常采用Faraday屏蔽罩进行屏蔽,以防止电磁辐射耦合到滤波元件中。

6.2.2 SFP and XFP MSA 光收发模块的布线设计

SFP与XFP屏蔽网笼的结构参数可以参见厂家提供的数据。下图中只是给出的多源协议要求的的布线设计说明。

1. 阅读SFP和XFP的多源协议文档,了解光收发模块的布线设计要求;

2. 网纹标注区域是网笼在顶层的安装区域。顶层的机壳地敷铜在任何时候都不能舍弃。与顶层相邻的内层不能作为信号布线层;

3. 多源协议要求网笼安装的网纹标志区域不允许放置元件或走线,网笼底部的任意层内最好都不要走线或敷铜。因为从内部敷铜面容性耦合到顶层的高频RF,将会引入共模电流到前面板上。如果网笼底部的区域确实需要用来布线,那么需要从PCB 另一侧的底层开始布线;

4. 在网笼区域下方不要走时钟或高速信号线;

5. 如果Tx或Rx差分线从内层进行走线,那么过孔引起的反射会劣化回损指标,从而危及到信号完整性;

6. 内层来的过孔不允许放置在网笼安装的网纹区域。

6.2.3 10/100/1000 Base-T 以太网接口的布线设计

图给出10/100 Base-T 与外部线缆接口的布线设计要求。

1. 与外部线缆相关的所有端接元件都必须与RJ-45连接器直接相邻。

2. 变压器中心抽头线缆侧的端接电容与外部线缆端接元件的绝缘性能,要能满足1500Vrms 1分钟;

3. 所有与线缆和变压器中心抽头线缆侧直接连接的端接元件,都必须以机壳地为终结参考。不要将外部线缆端接的元件放置在数字布线区域,或是将这些元件终结到数字布线区;

4. 以太网收发芯片侧变压器的元件或走线都不允许放置在为以太网线缆输入的保留区域内。

5. 理想的元件放置如上图所示,除了时钟线最好是放置在PCB板的另一侧以保证与以太网收发芯片时钟输入管脚的最短连接。

6. TX和RX差分线的走线不能与时钟和高速数字线相邻。

7. 在RJ-45接口附近区域不允许放置时钟源,走时钟线或高速数字信号线。

8. 除了屏蔽地,在以太网阻抗平衡变压器和变压器与RJ-45连接器之间的区域的正下方的任意层内都不允许有走线或敷铜面。

记录

关于SI信号完整性,你应该了解以下几点

关于SI信号完整性,你应该了解以下几点 1、什么是信号完整性(Singnal Integrity)?信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法:问题可能原因解决方法其他解决方法过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略振荡阻抗不匹配在发送端串接阻尼电阻 2、什么是串扰(crosstalk)?串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。 3、什么是电磁兼容(EMI)?电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。 4、在时域(time domain)和频域(frequency domain)之间又什么不同?时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。频域

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

电磁兼容的设计方法介绍

电磁兼容的设计方法介绍(1—2) 一﹑前言 关于电磁兼容的要求﹐目前世界上大多的先进国家﹐都已经有管制的法规并有相关的符合要求的单位﹐若产品无法符合要求规定﹐往往无法销售到该地区的市场﹐因此多数的电子产品﹐在销售前都必须经过电磁兼容的测试﹐若无法通过则需要经过适当的修改﹐来符合相关的规定。 本文主要是说明﹐在电子产品设计的阶段﹐如何考虑避免电磁干扰的产生﹐和增加产品耐干扰的程度﹐从许多的经验得知﹐若能在设计开始的阶段﹐就能适当的做好电磁兼容的防制﹐往往可以节省事后大量的修改时间和金钱的﹐尤其在现代产品汰换期非常短﹐若不能快速的通过EMC的测试﹐很容易影响到市场上的高机。 目前市面上介绍EMI&EMC相关的书籍﹐也算是林林总总﹐但是在实务运用上﹐总是会感觉有一段的差距﹐许多的读者虽然将一些经典的书籍读的很彻底﹐但是一面临实际产品无法符合EMI要求﹐或开始作产品设计时﹐都会有一种不知从何下手的感觉。 太多的重点反而没有重点﹐太多的理论反而没有理论?,所谓执简御繁﹐?知其要者﹐一言以终﹐不知其要﹐流散无穷?,为使读者能有一清楚的认识﹐与实务上的充分掌握﹐笔者参考 Isidor 于1992年在Compliance Engineering 杂志所发个的Designing for Compliance文章﹐以讲义的方式作一详细的解说与应用的原则﹐期使读者能真正深入的了解一些EMI的设计原理与方法。 该文虽然距今已有八年多的历史了﹐在这八年的期间﹐个人计算机从286的时代已经进步到现在迈入GHz的时代﹐进步可以说非常的神速﹐但是我们回过头来看﹐一些处理电磁兼容的基本原则与方法还是没有变的。能够掌握住这些基本的原则与方向﹐往往

基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法研究

基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法 研究 摘要:基于数字样机的多学科协同设计,是应对传统的印制电路板(PCB:PrintedCircuitBoard)设计周期长、成本高和一次设计成功率低等不足的重要技术 手段,已被广泛地应用于电子产品的研发设计中。PCB协同设计主要是对其功能、性能和可靠性等方面进行评估和改进,涉及到多物理场、多学科的仿真软件工具集。针对日益复杂的电子设备电磁兼容设计,提出基于信号完整性与电源完整性 的PCB电磁兼容协同仿真方法。 关键词:信号完整性;电源完整性;PCB;电磁兼容;协同仿真;方法研究 1、前言 随着电子设备高速化、低功耗、小型化的飞速发展,PCB(PrintedCircuitBoard,印刷电路板)设计人员面临的信号完整性、电源完整性与电磁兼容性问题日益突出,已成为高可靠性PCB设计的瓶颈之一。信号完整性、电源完整性与电磁兼容 性问题不是独立的现象,核心都是电磁场问题,它们之间相互影响,1个方面的 改善可促进另2个方面的改善,割裂、单一地进行分析不能全面解决问题,只有 对三者进行整体的分析研究才能解决高性能、高可靠PCB设计所面临的难题,从 根本上提高PCB的电磁兼容性能。 2、基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法 针对目前日益突出的SI,PI和EMC问题及它们之间紧密的联系,本文提出基 于信号完整性与电源完整性的PCB电磁兼容协同仿真方法,其核心是基于电磁场 和电路仿真结合的方法从SI,PI和EMC这3个方面对PCB进行整体的、全流程 的仿真,从3个方面来提高PCB设计的电磁兼容性,仿真方法与流程如图1所示。 图1 PCB 电磁兼容的协同仿真方法与流程 PCB的电源平面与地平面相当于一个谐振腔,具有谐振特性,利用电磁场仿 真分析方法分析PCB电源平面与地平面谐振,查看谐振频率点及谐振电压分布, 避免PCB的工作频率落到谐振频率附近,避免关键芯片的布局位置位于谐振电压 峰值处,从而减少噪声的耦合和辐射发射。 稳定干净的电源是PCB正常工作的基本保证,进行电源平面阻抗仿真分析, 查看所关注电源平面的阻抗是否低于目标阻抗值,若平面阻抗高于目标阻抗,添 加去耦电容或优化PCB叠层设计降低电源与地平面之间的阻抗,以减少电压波动 对芯片工作的影响。过大的直流电压压降会引起芯片工作异常,通过分析电源平 面电流及电压分布,减少不合理的电源平面分割所造成电流分布密度过大和电压 压降过大的问题。 信号完整性分析主要从信号的时序、电压等方面考察信号质量,确保信号能 正常到达接收端,同时减少噪声的产生和传播,利用电磁场仿真方法提取PCB上 关键信号网络的参数模型,结合芯片模型搭建仿真电路进行电路仿真,查看关键 信号网络的信号质量,通过调整布线等手段优化信号质量较差的电路网络。PCB 辐射仿真分析有助于掌握单板各部分的辐射情况,将关键芯片驱动端输出作为辐 射源放置到PCB上芯片实际管脚位置,进行辐射仿真,查看PCB单板辐射,对于 辐射较大处可以通过抑制手段来降低单板辐射。 基于信号完整性与电源完整性的PCB电磁兼容协同仿真方法通过电磁场仿真 与电路仿真相结合从SI,PI和EMC这3个方面进行全流程的协同仿真,全面解决

华为PCB设计规范标准

华为PCB设计规范 I. 术语 1..1 PCB(Print circuit Board):印刷电路板。 1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。 1..3 网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。 1..4 布局:PCB设计过程中,按照设计要求,把元器件放置到板上的过程。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 1..5 仿真:在器件的IBIS MODEL或SPICE MODEL支持下,利用EDA设计工具对PCB的布局、布线效果进行仿真分析,从而在单板的物理实现之前发现设计中存在的EMC问题、时序问题和信号完整性问题,并找出适当的解决方案。深圳市华为技术有限公司1999-07-30批准,1999-08-30实施。 II. 目的 A. 本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。 B. 提高PCB设计质量和设计效率。 提高PCB的可生产性、可测试、可维护性。 III. 设计任务受理 A. PCB设计申请流程 当硬件项目人员需要进行PCB设计时,须在《PCB设计投板申请表》中提出投板申请,并经其项目经理和计划处批准后,流程状态到达指定的PCB设计部门审批,此时硬件项目人员须准备好以下资料: ⒈经过评审的,完全正确的原理图,包括纸面文件和电子件; ⒉带有MRPII元件编码的正式的BOM; ⒊PCB结构图,应标明外形尺寸、安装孔大小及定位尺寸、接插件定位尺寸、禁止布线区等相关尺寸; ⒋对于新器件,即无MRPII编码的器件,需要提供封装资料; 以上资料经指定的PCB设计部门审批合格并指定PCB设计者后方可开始PCB设

华为电磁兼容性结构设计规范_第三版

华为技术有限公司企业技术规范 DKBA0.400.0022 REV.3.0 电磁兼容性结构设计规范 2003-11-30发布2003-11-30实施 华为技术有限公司

内部公开 前言 本规范于1999年12月25日首次发布。 本规范于2001年7月30日第一次修订。 本规范于2003年10月30日第二次修订。 本规范起草单位:华为技术有限公司结构造型设计部 本规范授予解释单位:华为技术有限公司结构造型设计部本 华为机密,未经许可不得扩散 第1页,共1页

内部公开 目录 1 范围 ... ....................................................................................................................................................... ..4 2 引用标准 ... . (4) 3 术语 ... ....................................................................................................................................................... ..4 4 电磁兼容基本概念... (5) 4.1 电磁兼容定义 ... .............................................................................................................................. ..5 4.2 电磁兼容三要素 ... ........................................................................................................................... .5 4.3 通讯产品电磁兼容一般要求 ... ..................................................................................................... ..6 5 电磁屏蔽基本理论... (7) 5.1 屏蔽效能 ... ....................................................................................................................................... .7 5.2 屏蔽体的缺陷 ... .............................................................................................................................. ..7 5.2.1缝隙屏蔽 ... (7) 5.2.2开孔屏蔽 ... (8) 5.2.3电缆穿透 ... . (10) 6 屏蔽设计 ... .. (12) 6.1 结构屏蔽效能 ... .......................................................................................................................... (12) 6.2 屏蔽方案与成本 ... ....................................................................................................................... ..12 6.3 缝隙屏蔽设计 ... .......................................................................................................................... (13) 6.3.1紧固点连接缝隙 ... . (13) A. 减小缝隙的最大尺寸 ... ........................................................................................................................... .. 13 B. 增加缝隙深度 ... ........................................................................................................................................ .. 14 C. 紧固点间距 ... ........................................................................................................................................... (15) 6.3.2安装屏蔽材料 ... ....................................................................................................................... ..17 6.3.3屏蔽材料的选用 ... . (18) A. 常用屏蔽材料................................................................... .. 18 B. 常用屏蔽材料性能参数 ... ........................................................................................................................ . 24 6.4 开孔屏蔽设计 ... .......................................................................................................................... (25) 6.4.1通风孔屏蔽 ... .......................................................................................................................... (25) 6.4.2局部开孔屏蔽 ... ....................................................................................................................... ..26 6.5 塑胶件屏蔽 ... . (27) 6.6 单板局部屏蔽 ... .......................................................................................................................... (28) 6.6.1盒体式屏蔽盒 ... ....................................................................................................................... ..28

安全可靠办公信息系统软硬件集成适配关键技术研发及应用规范书(附件一)

附件一 电子信息产业发展基金招标项目 安全可靠办公信息系统软硬件集成适配 关键技术研发及应用 规范书 中华人民共和国工业和信息化部 二〇一二年三月

目录 1.总则 (3) 1.1一般要求 (4) 1.2建议书要求 (4) 2. 项目的目标和主要内容 (6) 2.1项目的目标 (6) 2.2主要内容 (6) 3.技术要求 (9) 3.1总体要求 (10) 3.2功能要求 (10) 3.3性能要求 (14) 3.4安全性要求 (15) 4、主要经济指标 (17) 5.产业化要求 (17) 6.项目进度考核要求 (17) 7. 资金要求 (18) 8. 附录 (18)

1.总则 基于安全可靠CPU/OS的信息系统是保障国家信息安全,促进信息产业发展的重要基础,具有十分重要的战略意义。目前,安全可靠CPU、整机、操作系统、数据库、中间件及办公套件等已基本实现与国外同比软硬件的功能。但在基于安全可靠CPU/OS的办公信息系统建设过程中,国产软硬件之间尚存在部分兼容性适配问题,表现在整机性能、扩展能力以及系统运行效率、可用性、易用性、稳定性等诸多方面。 电子信息产业发展基金设立《安全可靠办公信息系统软硬件集成适配关键技术研发及应用》项目,着力推动系统集成商与CPU、整机、操作系统、办公软件等基础软硬件企业对面向办公领域应用中急需解决的关键问题进行联合攻关,解决安全可靠CPU/OS平台上的国产基础软硬件间的适配问题,解决混合环境下的应用系统支撑问题,解决Java插件运行环境和Flash应用以及替代技术问题,解决安全可靠环境综合管理工具问题,解决基于安全可靠CPU的主板设计、整机研发问题,保障基于国产CPU/OS办公信息系统的实际应用。 本规范书由项目招标方工业和信息化部编写,用于提出项目的技术和进度等具体要求,供项目投标单位编写项目建议书及报价之用。项目投标方应在建议书中详细提出实现本规范书所描述各项技术要求的技术实现方案,并满足本规范书提出的各项要求。项目招标方保留对本规范书的解释和修改的权利。

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

五款信号完整性仿真分析工具

SI 五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB 设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,An soft公司的仿真工具能够从三维场求解的角度出发,对PCB 设计的信号完整性问题进行动态仿真。 Ansoft 的信号完整性工具采用一个仿真可解决全部设计问题: Slwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何 数量的过孔和信号引线条构成。仿真结果采用先进的3D 图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿 (二)SPECCTRAQuest Cade nee的工具采用Sun的电源层分析模块: Cade nee Design System 的SpeeetraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI 。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer 可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

信号完整性名词解释

信号完整性名词解释 1、什么是信号完整性(Singnal Integrity)? 信号完整性(Singnal Integrity)是指一个信号在电路中产生正确的相应的能力。信号具有良好的信号完整性(Singnal Integrity)是指当在需要的时候,具有所必须达到的电压电平数值。主要的信号完整性问题包括反射、振荡、地弹、串扰等。常见信号完整性问题及解决方法: 问题可能原因解决方法其他解决方法 过大的上冲终端阻抗不匹配终端端接使用上升时间缓慢的驱动源 直流电压电平不好线上负载过大以交流负载替换直流负载在接收端端接,重新布线或检查地平面 过大的串扰线间耦合过大使用上升时间缓慢的发送驱动器使用能提供更大驱动电流的驱动源 时延太大传输线距离太长替换或重新布线, 检查串行端接头使用阻抗匹配的驱动源, 变更布线策略 振荡阻抗不匹配在发送端串接阻尼电阻 2、什么是串扰(crosstalk)? 串扰(crosstalk)是指在两个不同的电性能之间的相互作用。产生串扰(crosstalk)被称为Aggressor,而另一个收到干扰的被称为Victim。通常,一个网络既是Aggressor(入侵者),又是Victim(受害者)。振铃和地弹都属于信号完整性问题中单信号线的现象(伴有地平面回路),串扰则是由同一PCB板上的两条信号线与地平面引起的,故也称为三线系统。串扰是两条信号线之间的耦合,信号线之间的互感和互容引起线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。 3、什么是电磁兼容(EMI)? 电磁干扰(Ectromagnetioc Interference),或者电磁兼容性(EMI),是从一个传输线(transmission line)(例如电缆、导线或封装的管脚)得到的具有天线特性的结果。印制电路板、集成电路和许多电缆发射并影响电磁兼容性(EMI)的问题。FCC定义了对于一定的频率的最大发射的水平(例如应用于飞行控制器领域)。 4、在时域(time domain)和频域(frequency domain)之间又什么不同? 时域(time domain)是一个波形的示波器观察,它通常用于找出管脚到管脚的延时(delays)、偏移(skew)、过冲(overshoot)、下冲(undershoot)以及设置时间(setting times)。频域(frequency domain)是一个波形的频谱分析议的观察,它通常用于波形与频谱分析议的观察、它通常用

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

电磁兼容EMC设计指南

EDP电磁兼容设计平台专注EMC解决方案,规范EMC设计流程; 打造智能化的EMC设计平台。 1、企业面临的EMC设计应用现状 ?投入成本高,解决问题周期长;为解决产品EMC问题,不断进行测试验证, 反复的进行改版设计。 ?企业设计人员EMC知识储备不全面;解决EMC问题往往靠设计人员过去的 工作经验。 ?EMC设计流程不规范,EMC设计没有参透于电子产品开发过程各个阶段(总 体方案阶段、设计阶段、开发阶段、测试阶段、认证阶段等)。 ?公司技术文献和多年积累的产品开发经验不能良好的共享、消化,没有一个 系统将公司无形的技术经验转化为有形的产品开发技术要求。 2、企业面临的EMC问题 ?激烈的产品竞争要求企业开发的产品有更高的品质。 ?快速的市场变化要求企业有更高的产品开发效率。 ?高规格的EMC认证和EMC设计技术要求企业有更高的产品开发能力。 ?规范化的企业文化要求有更高效的产品开发流程。 3、EDP电磁兼容设计平台优势 ?赛盛技术多位专家10多年的经验融合荟萃; ?赛盛技术多项产品电磁兼容设计专利技术; ?智能化标准化项目管理设计平台 ?几十种典型接口电磁兼容解决方案; ?上百种PCB层叠电磁兼容设计方案; ?完整的电磁兼容布线设计规则; ?完整的结构屏蔽电磁兼容设计方案; ?多行业电缆与连接器电磁兼容解决方案; ?多行业、近百个产品实际电磁兼容设计验证与经验总结;

4、EMC设计平台介绍 利用计算机技术,整合人工智能、数据库、互联网等开发手段,对于现有的电磁兼容技术资源(包括各种设计规则,解决方案等)以及企业产品研发积累的技术检验等进行全面的管理和应用,实现现阶段对于企业电磁兼容的研发流程规范化和研发工程师电磁兼容设计的技术支持和辅助开发;未来电磁兼容专家系统一提供智能化技术支持(包括产品开发电磁兼容风险评估功能,自动检查和纠正电磁兼容设计功能、产品设计系统仿真和功能电路仿真等)为主要目标和发展方向。 电磁兼容设计平台:主要包括PCB设计、原理图设计、结构设计、电缆设计等四部分组成;系统依据用户设计要求和EMC设计要素,智能化输出相应的产品PCB设计方案、产品原理图设计方案、产品结构设计方案、产品电缆设计方案,然后用户依据产品信息保存方案(方案为标准技术设计模板,内容依据设计内容自动生成格式化的文件)。 使用电磁兼容设计(EDP)软件,会让我们很轻松的完成这些复杂困难的工作,用户输入产品产品设计的相关要素,软件就能够智能化输出产品EMC设计方案。 不管企业之前是否有电磁兼容设计经验?是否有电磁兼容设计规范?是否有电磁兼容标准化设计流程?是否有电磁兼容技术专家?企业在应用EDP软件后,EDP软件能够快速帮助企业解决以下方面问题: 1、快速提升企业产品电磁兼容性能:系统一旦使用上就能够快速地指导企业产品进行电磁兼容有效的设计工作,迅速提升企业产品的电磁兼容性能; 2、能够解决企业多型号产品同时开发,技术专家资源不够使用的情况:智能化的软件可以同时多款多个型号产品,不用设计阶段并行进行开发;能够在很短的时间内给出相应的设计方案,结合产品设计要求指导设计人员进行设计,不耽误产品由于专家资源不足而造成正常设计进度延误; 3、提高产品研发人员EMC技术设计水平:由于有规范化、标准化的方案输出,设计人员在进行新产品开发的时候,能够参考、学习标准化的技术方案;提升自身EMC设计知识水平,减少后期类似设计问题; EDP软件在手,EMC设计得心应手!

DDR3信号完整性与电源完整性设计

DesignCon 2011 Signal and Power Integrity for a 1600 Mbps DDR3 PHY in Wirebond Package June Feng, Rambus Inc. [Email: jfeng@https://www.doczj.com/doc/b38032040.html,] Ralf Schmitt, Rambus Inc. Hai Lan, Rambus Inc. Yi Lu, Rambus Inc.

Abstract A DDR3 interface for a data rate of 1600MHz using a wirebond package and a low-cost system environment typical for consumer electronics products was implemented. In this environment crosstalk and supply noise are serious challenges and have to be carefully optimized to meet the data rate target. We are presenting the signal and power integrity analysis used to optimize the interface design and guarantee reliable system operation at the performance target under high-volume manufacturing conditions. The resulting DDR3 PHY was implemented in a test chip and achieves reliable memory operations at 1600MHz and beyond. Authors Biography June Feng received her MS from University of California at Davis, and BS from Beijing University in China. From 1998 to 2000, she was with Amkor Technology, Chandler, AZ. She was responsible for BGA package substrate modeling and design and PCB characterization. In 2000, she joined Rambus Inc and is currently a senior member of technical staff. She is in charge of performing detailed analysis, modeling, design and characterization in a variety of areas including high-speed, low cost PCB layout and device packaging. Her interests include high-speed interconnects modeling, channel VT budget simulation, power delivery network modeling and high-frequency measurements. Ralf Schmitt received his Ph.D. in Electrical Engineering from the Technical University of Berlin, Germany. Since 2002, he is with Rambus Inc, Los Altos, California, where he is a Senior Manager leading the SI/PI group, responsible for designing, modeling, and implementing Rambus multi-gigahertz signaling technologies. His professional interests include signal integrity, power integrity, clock distribution, and high-speed signaling technologies. Hai Lan is a Senior Member of Technical Staff at Rambus Inc., where he has been working on on-chip power integrity and jitter analysis for multi-gigabit interfaces. He received his Ph.D. in Electrical Engineering from Stanford University, M.S. in Electrical and Computer Engineering from Oregon State University, and B.S. in Electronic Engineering from Tsinghua University in 2006, 2001, and 1999, respectively. His professional interests include design, modeling, and simulation for mixed-signal integrated circuits, substrate noise coupling, power and signal integrity, and high-speed interconnects. Yi Lu is a senior systems engineer at Rambus Inc. He received the B.S. degree in electrical engineer and computer science from U.C. Berkeley in 2002 with honors. In 2004, he received the M.S. degree in electrical engineering from UCLA, where he designed and fabricated a 3D MEMS microdisk optical switch. Since joining Rambus in 2006, he has been a systems engineer designing various memory interfaces including XDR1/2 and DDR2/3.

相关主题
文本预览
相关文档 最新文档