当前位置:文档之家› 大学有机化学

大学有机化学

大学有机化学
大学有机化学

《有机化学》(第六版)讲稿

人民卫生出版社

主编吕以仙

副主编陆阳

第一章绪论(Introduction )

教学要求:

掌握:碳原子的三种杂化轨道(sp3 sp2 sp)的特点;分子极性与偶极矩的关系;分子轨道与原子轨道的关系; 成键轨道与反键轨道的差异;共振式与共振杂化体的区别;

熟悉:有机化合物和有机化学的含义;键长、键角、键能和共价键的极性的含义;官能团的含义和圭要官能团;有机反应中共价键断裂的主要方式; 实验式、分子式和结构式的含义。了解:

有机化合物分子中,原子间主要以共价键相结合。掌握共价键的本质是学习和理解有机化合物结构与性质关系和反应机制以及化合物稳定性的基础。因此本章对路易斯结构和现代价键理论作一简要回顾;有些化合物的结构用单一路易斯结构式不能准确表达,然而运用共振结构却有它的独到之处,为此对共振结构作一简介;掌握路易斯酸碱概念对理解有机反应十分有用,故将其作为一个知识点加以阐述。了解有机化合物分类和反应类型及确定结构式的步骤与方法对提高学习有机化学的综合分析能力也是十分必要的,本章对此方面内容作一扼要介绍。

第一节有机化合物和有机化学

一、有机化合物和有机化学

下面是一些简单而熟悉的有机化合物,他们在化学组成上有什么共同点?

◆有机化合物

含碳的化合物或碳氢化合物及其衍生物。

◆有机化学:

有机化学的现代定义是指研究含碳化合物的化学。

第二节共价键

一、现代共价键理论

路易斯的共价键理论虽然揭示了共价键与离子键的区别,但未能说明共价键是怎样形成的,也不能解释共价键为什么具有饱和性和方向性等诸多问题。现代共价键理论指出:当两个原子互相接近到一定距离时,自旋方向相反的单电子相互配对(即两原子轨道重叠)。使电子云密集于两核之间,降低了两核间正电荷的排斥,增加了两核对电子云密集区域的吸引。因此使体系能量降低,形成稳定的共价键;共价键有以下特点:

第一、每个原子所形成共价键的数目取决于该原子中的单电子数目,这就是共价键具有饱和性。

第二、当形成共价键时,原子轨道重叠越多,核间电子云越密集,形成的键就越强,这种关系称为最大重叠原理。

第三、共价键的形成必须尽可能沿着原子轨道最大程度重叠的方向进行,这就是共价键具有方向性

三、杂化轨道

在形成共价键过程中,由于原子间的相互影响,同一个原子中参与成键的几个能量相近的原子轨道可以重新组合,重新分配能量和空间方向,组成数目相等的,成键能力更强的新的原子轨道,称为杂化轨道。在有机化合物中,碳原子的杂化形式有三种: sp3、sp2和sp杂化轨道。它们的杂化过程是怎样的呢?让我们看看杂化过程动态图:(点击图片下的链接出现杂化动画)

sp sp2sp3

碳原子经sp3、sp2和sp杂化之后,碳原子核周围的杂化轨道是怎样排列的呢?

◆sp3杂化轨道

碳原子在基态时的电子构型为。按理只有2p x和2p y可以形成共价键,

键角应为90°。但实际在甲烷分子中,是四个完全等同的键,键角均为109°28′。这是因为在成键过程中,碳的2s轨道有一个电子激发到2P z轨道,成为。然

后3个p轨道与一个s轨道重新组合杂化,形成4个完全相同的sp3杂化轨道。其形状一头大一头小。每个轨道是由s/4与3P/4轨道杂化组成。这四个sp3轨道的方向都指向正四面体的四个顶点,sp3轨道间的夹角是109°28′

(见下图)。烷经和其他化合物分子中的饱和碳原子均为sp3杂化。

◆sp2杂化轨道

碳原子在成键过程中,首先是碳的基态2s轨道中的一个电子激发到2P z空轨道,然后碳的激发态中一个2s轨道和二个2P轨道重新组合杂化,形成三个相同的sp2杂化轨道。每一个sp2杂化轨道均由s/3与2p/3轨道杂化组成,这三个sp2杂化轨道在同一平面,夹角为120°。未参与杂化的2P z轨道,垂直于三个sp2杂化轨道所处的平面(见下图)。烯烃分子中构成双键的碳原子和其他不饱和化合物分子中构成双键的碳原子均为sp2杂化。

◆sp杂化轨道

sp杂化轨道是碳原子在成键过程中,碳的激发态的一个2s轨道与一个2P轨道重新组合杂化形成两个相同的sp杂化轨道。这两个轨道夹角为180°,呈直线形。未参

与杂化的两个互相垂直的P轨道又都垂直于sp杂化轨道(见下图)。炔烃分子中碳碳三键的碳原子和其他化合物中含有三键的碳原子均为sp2杂化。

问题1-2 试写出碳原子sp杂化过程示意图。

四、共价键的属性

键的属性指键长、键角、键能和键的极性等物理量。共价键的属性是阐述有机化合物结构和性质的基础。

键长:键长通常指成键两原子核间距离,键长单位以pm表示。键长主要取决于两个原子的成键类型:C—C单键比C=C双键长,后者又比C≡C三键长。C—H键的键长还与成键碳原子的杂化方式有关:

键长受与其相连的其他原子或基团的影响较小。通常可根据键长判断两原子间的成键类型。表1-1列出几种共价键的键长

键角分子中一个原子与另外两个原子形成的两个共价键在空间所夹的角称为键角。在有机分子中饱和碳的四个键的键角为109°28′,或接近109°28′分子方才稳定。在分子内,键角可受其他原子影响而变化,若改变过大就会影响分子的稳定性。(见第一章环烷烃)键能以共价键结合的双原子分子裂解成原子时所吸收的能量称为该种共价键的键能,又可称为离解能。也就是说双原子分子的键能等于其离解能。然而对于多原子分子,键能不同于其离解能。离解能是裂解分子中某一个共价键时所需的能量,而键能则是指分子中同种类型共价键离解能的平均值。例如,甲烷有四个碳—氢键,其离解能分别如下:

甲烷分子中C—H键的键能则为上述四个C—H键离解能的平均值(415.3kJ?mol-1)。从键能的大小可以知道键的稳定性,键能越大,键越稳定。

共价键的极性:

由两个相同原子组成的分子,如氢分子(H—H)或氯分子,成键的一对电子均等地分配在两个原子之间,这种键称为非极性共价键;不同原子形成的共价键。由于电负性的差异,成

键电子云总是靠近电负性较大的原子,使其带部分负电荷,通常以δ-表示,电负性较小的原子则带部分正电荷,以δ+表示。例如一氯甲烷分子中的碳-氯键:

这种成键电子云不是平均分配在成键两个原子核之间的共价键称为极性共价键。

共价键的极性取决于成键的两个原子的电负性之差,差值越大,键的极性越大。一般两元素的电负性差值等于或大于1.7为离子键;小于1.7为共价键,其中电负性差值在0.7~1.6为极性共价键。部分元素的电负性相对值见表1-2。

问题1-3什么叫元素的电负性?

第二节分子的极性

一、分子的偶极矩

由于分子中不同原子的电负性不同,电荷分布就可能不均匀,正电荷中心与负电荷中心不能重合,其各在空间集中一点,即在空间具有两个大小相等、符号相反的电荷,构成一个偶极。分子中正电荷或负电荷中心上的电荷值e乘以正负电荷中心之间的距离d,称为分子的偶极矩(dipole moment),用μ表示。

偶极矩的大小标志着不同分子的相对极性。具有偶极矩的分子为极性分子。μ=0为非极性分子。典型的极性有机分子的偶极矩(μ)一般在1-3D范围内。一些分子的偶极矩见表1-3。

二、分子的相对极性

两个原子组成的分子,键的极性就是分子的极性。在两个以上原子组成的分子中,分的极性是分子中每个键的极性的向量和。因此分子的极性不仅取决于各个键的极性,也取决于键的方向,取即决于分子的形状。有的分子虽然各化学键有极性,但整个分子并没有极性。

例如:二氧化碳虽然有两个极性的C=O键,但是由于它是线性对称的分子,键的极性互相抵消了,偶极矩为零,分子没有极性,;四氯化碳分子,碳氯键都是极性键,但是它的偶极矩为零,这也是由于完全对称的正四面体排列,使其极性正好彼此抵消;在氯甲烷中,主要是碳-氯键的极性决定分子的极性,其分子偶极矩为1 .94D。

分子极性越大,分子间相互作用力就越大。因此分子极性的大小影响化合物的沸点、溶解度等物理性质。

第四节有机化合物的官能团和反应类型

一、官能团

一种是根据分子中碳原子的连接方式(即按碳的骨架)可分成开链化合物和环状化合物。开链化合物,是指碳原子相互结合成链状化合物,由于脂肪类化合物具有这种开链的骨架,因此开链化合物习惯称为脂肪族化合物。此类化合物的实例可见第二章烷烃和第三章的烯烃和炔烃等化合物。环状化合物,可根据成环的原子种类分成碳环化合物和杂环化合物。碳环化合物完全由碳原子组成的碳环,此类化合物中含有苯环的化合物称为芳香族化合物(见第五章芳香烃),不含苯环的碳环化合物称为脂环化合物(见第二章环烷烃)。杂环化合物是指成环的原子除了碳原子外,还有其他杂原子,如氧、硫或氮等原子,此类化合物的结构可见第十四章杂环化合物。

另一种分类方法是按官能团分类。在有机化合物分子中能体现一类化合物性质的原子或原子团通常称为官能团或功能基。例如CH3OH、C2H5OH、CH3CH2CH2OH等醇类化合物中都含有羟基(-OH),羟基就是醇类化合物的官能团。由于它们含有相同的官能团,因此醇类化合物有雷同的理化性质。有机化合物按官能团分类,便于认识含相同官能团的一类化合物的共性。可以起到举一反三的作用。本书就是按照官能团分类展现有机化学的基础内容。一些常见官能团见表1-4。

二、有机化合物反应类型

有机反应不同于无机的正负离子反应,能在瞬间即可将反应物转化成产物。大多数有机反应时间比较长,往往要经过好几步中间过程,形成不稳定的中间体或过渡态。就某一个反应来说,须经过几步?每步反应又是如何进行的?其中哪一步是决定反应速率的一步?这些总称为反应机制。有关具体反应机制,在以后的有关章节中阐述。这儿只简单介绍共价键在有机反应中断裂的主要方式。

有机反应涉及反应物的旧键的断裂和新键的形成。键的断裂主要有两种方式:均裂和异裂。均裂:均裂是指在有机反应中,键均等地分裂成两个中性碎片过程。原来成键的两个原子,均裂之后各带有一个未配对的电子。如下式所示:

带有单电子的原子或原子团称为自由基或游离基。上述带有单电子的碳为碳自由基。这种经过均裂生成自由基的反应叫作自由基反应。反应一般在光、热或过氧化物(R—O—O—R)存在下进行。自由基只是在反应中作为活泼中间体出现,它只能在瞬间存在

异裂:异裂是指在有机反应中键非均等地分裂成两个带相反电荷的碎片过程。即原来成键的两个原子,异裂之后,一个带正电荷,另一个带负电荷。

这种异裂后生成带正电荷和带负电荷的原子或原子基团过程的反应,称为离子型反应。带正电荷的碳原子称为正碳离子,带负电荷的碳原子称为负碳离子。无论是正碳离子还是负碳离子都是非常不稳定的中间体。都只能在瞬间存在。但它对反应的发生却起着不可替代的作用。有机的离子型反应一般发生在极性分子之间,通过共价键的异裂,首先形成正碳离子或负碳离子中间体而逐步完成反应。

总结

有机化合物一般指含碳的化合物。不过CO 、CO2 、H2CO3和碳酸盐等要除外,因为这些化合物的性质与无机化合物相同。有机化学的现代定义是指研究含碳化合物的化学。有机化合物分子主要是以共价键相结合。共价键有三个特点:第一、具有饱和性、具有方向性。在形成共价键过程中,由于原子间的相互影响,同一个原子中参与成键的几个能量相近的原子轨道可以重新组合,重新分配能量和空间方向,组成数目相等的,成键能力更强的新的原子轨道,称为杂化轨道。在有机化合物中,碳原子的杂化形式有三种: sp3、sp2和sp杂化轨道。分子的极性是分子中每个键的极性的向量和。因此分子的极性不仅取决于各个键的极性,也取决于键的方向。即取决于分子的形状。有的分子虽然各化学键有极性,但整个分子并没有极性。偶极矩的大小标志着不同分子的相对极性。具有偶极矩的分子为极性分子。μ=0为非极性分子。分子极性越大,分子间相互作用力就越大。因此分子极性的大小影响化合物的沸点、溶解度等物理性质。

有机化合物分类通常有两种方法:一种是根据分子中碳原子的连接方式(即按碳的骨架)可分成开链化合物和环状化合物。开链化合物习惯称为脂肪族化合物。环状化合物中含有苯环的化合物称为芳香族化合物。另一种分类方法是按官能团分类。在有机化合物分子中能体现一类化合物性质的原子或原子团通常称为官能团或功能基。有机化合物按官能团分类,便于认识含相同官能团的一类化合物的共性。可以起到举一反三的作用。

有机反应涉及反应物的旧键的断裂和新键的形成。键的断裂主要有两种方式:均裂和异裂。均裂:均裂是指在有机反应中,键均等地分裂成两个中性碎片过程。原来成键的两个原子,均裂之后各带有一个未配对的电子。

异裂:异裂是指在有机反应中键非均等地分裂成两个带相反电荷的碎片过程。即原来成键的两个原子,异裂之后,一个带正电荷,另一个带负电荷。带正电荷的碳原子称为正碳离子,带负电荷的碳原子称为负碳离子。无论是正碳离子还是负碳离子都是非常不稳定的中间体。都只能在瞬间存在。但它对反应的发生却起着不可替代的作用。

分子轨道是原子轨道的线性组合。其数目与原子轨道数相等,也就是说有几个原子轨道就有几个分子轨道。两个原子轨道组合成两个分子轨道;一个是成键轨道,比组成它的原子轨道

能量低,稳定。另一个为反键轨道,比组成它的原子轨道能量高、不稳定。在一般情况下,分子的反键轨道内没有电子,只有当分子呈激发状态时才有电子。由原子轨道组成分子轨道,成键的原子轨道必须满足三个原则:①能量相近。②电子云最大重叠原则。③对称性匹配原则。

第二章烷烃和环烷(lkane and Cycloalkane)

教学要求:

掌握:烷烃、环烷烃的结构;烷烃构造异构、环烷烃几何异构的概念及命名;烷烃、环烷烃、螺环烃、桥环烃的命名;烷烃、环烷烃的构象异构及其写法;取代环己烷的优势构象;烷烃的自由基取代反应及小环烷烃的特殊性。

熟悉:烃的分类;烷烃、环烷烃的物理性质;自由基的构型及其稳定性。

了解:烃的来源及其在日常生活、医学上的用途。

第一节烷烃(Alkane )

仅由碳和氢两种元素组成的化合物称为碳氢化合物,简称为烃(hydrocarbon)。

烃的分类:

一.烷烃的结构

烷烃属于饱和烃,其分子中所有碳原子均为SP3杂化,分子内的键均为 键,成键轨道沿键轴“头对头”重叠,重叠程度较大,键较稳定,可沿键轴自由旋转而不影响成键。)

甲烷是烷烃中最简单的分子,其成键方式如下:

碳原子sp3杂化, 4个sp3杂化轨道分别与4个氢原子的S轨道重叠,形成4个C—Hσ键,4个C—Hσ键间的键角109°28′,空间呈正四面体排布,相互间距离最远,排斥力最小,能量最低,体系最稳定,C-H键长110pm。乙烷是含有两个碳的烷烃,其结构如下:

图2-2乙烷的结构

两个碳原子各以sp3杂化轨道重叠形成C—Cσ键,余下的杂化轨道分别和6个氢原子的s 轨道重叠形成六个C—Hσ键。C-C键长154pm,C-H键长110pm 。

★其他烷烃的成键方式同乙烷相似。

★烷烃的通式、同系列

烷烃的分子组成可用通式C n H2n+2表示。

具有相同分子通式和结构特征的一系列化合物称为同系列(homologous series)。如:CH4CH3CH3 CH3CH2CH3 ;同系列中的各化合物互称为同系物(homolog);相邻两个同系物在组成上的不变差数CH2称为同系列差。如:乙烷较甲烷多CH2,丙烷较乙烷多CH2 …;同系物的结构相似,化学性质也相似,物理性质则随着碳原子数的增加而呈现规律性的变化,同系列中的第一个化合物常具有特殊的性质。

★烷烃中碳原子的类型

烷烃中的各个碳原子均为饱和碳原子,按照与它直接相连的其他碳原子的个数,可分为伯、仲、叔、季碳原子。

伯碳原子又称一级碳原子(primary carbon),以1°表示,是只与1 个其他碳原子直接相连的碳原子。

仲碳原子又称二级碳原子(secondary carbon),以2°表示,是与2个其他碳原子直接相连的碳原子。

叔碳原子又称三级碳原子(tertiary carbon),以3°表示,是与3个其他碳原子直接相连的碳原子。

季碳原子又称四级碳原子(quaternary carbon),以4°表示,是与4个其他碳原子直接相连的碳原子。

例如:

该化合物有五个1°碳、一个2°碳、一个3°碳、一个4°碳。

★伯、仲、叔碳原子上的氢原子(季碳原子上无氢原子),分别称为伯氢原子(1°氢原子)、仲氢原子(2°氢原子)、叔氢原子(3°氢原子)。不同类型氢原子的相对反应活性不相同。小结:烷烃分子中的碳原子均为sp3杂化,各原子之间都以单键相连。烷烃分子中的键角接近109°28′,C—H键和C—C键的键长分别为110pm和154pm或与此相近。由于σ键电子云沿键轴呈圆柱形对称分布,两个成键原子可绕键轴“自由”旋转。

问题2-1写出只有伯氢原子,分子式为C8H18烷烃的结构式

问题2-2写出分子式为C9H20,含有8个2°氢原子和12个1°氢原子的烷烃结构式二.烷烃的构造异构和命名

(一)烷烃的碳链异构

分子式相同,碳原子连接方式不同而产生的同分异构现象,称为碳链异构,其异构体称为碳链异构体,它是构造异构的一种。

甲烷、乙烷和丙烷分子中的碳原子,只有一种连接方式,所以无碳链异构体。

丁烷(C4H10)有两种不同的异构体;戊烷(C5H12)有三种异构体。

随着烷烃分子中碳原子数的增多,同分异构体的数目也随之增加。如:己烷C6H14有5个异构体,庚烷C7H16有9个异构体,十二烷C12H26有355个异构体…。

(二)烷烃的命名

烷烃的命名原则是各类有机化合物命名的基础。烷烃的命名采用两种命名法:普通命名法、系统命名法。

1、普通命名法

1~10个碳原子的直链烷烃,分别用词头甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示碳原子的个数,词尾加上“烷”。如CH4(甲烷)、C2H6(乙烷)、C3H8(丙烷)、C10H22(癸烷)。10个碳原子以上的烷烃用中文数字命名。如C11H24(十一烷)、C12H26(十二烷)、C20H42(二十烷)。

烷烃的英文名称是在meth-,eth-,prop-,but- 等表示碳原子数的词头后,加上词尾-ane。部分烷烃的英文名称

烷烃异构体可用词头“正(normal或n-)、异(iso或i-)、新(neo)”来区分。

“正”表示直链烷烃,常常可以省略。

“异”表示末端为,此外别无支链的烷烃。

“新”表示末端为,此外别无支链的烷烃。

★普通命名法只适用于一些直链或含碳原子数较少的烷烃异构体的命名。对于结构比较复杂的烷烃,就必须采用系统命名法。

2、系统命名法(IUPAC命名法)

1892年,日内瓦国际化学会议首次拟定了有机化合物系统命名原则,此后经IUPAC

(I nternational U nion of P ure and A pllied C hemisty)多次修订,所以也称为IUPAC 命名法。我国根据这个命名原则,结合汉字特点,制定出我国的有机化合物系统命名法,即有机化合物命名规则。

烷烃系统命名法是将带有侧链的烷烃看作是直链烷烃的烷基取代衍生物,所以在学习系统命名法之前先学习取代基的命名。

★烃分子中去掉一个氢原子,所剩下的基团,称为烃基;脂肪烃基用R—表示;烷基的通式为C n H2n+1。烷基的中文命名是把相应的烷烃命名中的“烷”字改为“基”字。其英文命名是将烷烃词尾的-ane改为-y1,常见的烷基结构和名称如下:

此外,两价的烷基称为亚基,三价的烷基称为次基。

★烷烃系统命名法规则

⑴.选主链:选择含有取代基最多的、连续的最长碳链为主链,根据主链所含碳原子数命名为“某烷”。

⑵.编号:主链上若有取代基,则从靠近取代基的一端开始,给主链上的碳原子编号。当两个相同取代基位于相同位次时,应使第三个取代基的位次最小,依次类推;当两个不同取代基位于相同位次时,应使小的取代基编号较小。

⑶.命名:主链连有相同的取代基时,合并取代基,并在取代基名称前,用二(di)、三(tri)、四(tetra)……数字表明取代基的个数。并在最前面标明取代基的编号,各编号间用“,”隔开。

主链上若连有不同的取代基,应按“次序规则”将取代基先后列出,较优基团应后列出。主要烷基的优先顺序是:异丙基>丙基>乙基>甲基;在英文命名中,取代基是按字首的字母排列顺序先后列出。

3、烷烃系统命名法与普通命名法的区别

问题2-3按IUPAC命名法,写出化合物的中、英文名称。并以此总结出系统命名法的命名规则。

问题2-4写出5-甲基-3,3-二乙基-6-异丙基壬烷的结构式,并指出各碳原子的类型。

小结:烷烃的命名是其他有机化合物命名的基础,有机化合物即可以用普通命名法命名、也可以用系统命名法命名,只是适用的范围不同,普通命名法只适用于部分较简单的化合物,系统命名法适用于绝大部分的有机化合物,另外有些化合物还具有俗名。

三.烷烃的构象异构

烷烃分子中C—Cσ键旋转或扭曲时,两个碳原子上的氢原子在空间上的相对位置发生改变,其中每一种排列方式称为一种构象,不同构象之间互称为构象异构体。由于C—Cσ键可以旋转任意角度,所以烷烃有无数构象异构体。构象异构体(conformational isomer)的分子构造相同,但其空间排列不同,它是立体异构体的一种。

(一)乙烷的构象(conformation)

乙烷没有碳链异构,但乙烷分子中的两个碳原子可以围绕C—Cσ键旋转,乙烷有无数构象异构体,其中有两种典型的构象:重叠式(eclipsed)和交叉式(staggered)。

重叠式交叉式

图2-3 乙烷的两种典型的构象

有机化合物的构象常用两种三维式表示,即锯架式(sawhorse formula)和Newman投影式(Newman projection formula )。锯架式是从分子的侧面观察分子,较直观地反映了碳原子和氢原子在空间的排列情况。Newman投影式是沿着C—C键轴观察分子,从圆心伸出的三

条线,表示离观察者近的碳原子上的价键,而从圆周向外伸出的三条线,表示离观察者远的碳原子上的价键。

图2-4 乙烷球棍模型C -C 键的旋转(动画)

重叠式两个碳原子上的氢原子相距最近,相互间的排斥力最大,分子的能量最高,是最不稳定的构象;交叉式两个碳原子上的氢原子相距最远,相互间斥力最小,分子的能量最低,是最稳定的构象。见下图:

图2-5 乙烷构象能量图

交叉式构象的能量比重叠式构象低12.6kJ 2mol -1,交叉式是乙烷稳定的优势构象。室温下,分子间的碰撞可产生83.8kJ 2mol -1的能量,足以使C —C 键“自由”旋转,各构象间迅速转换,无法分离出其中某一构象异构体,但大多数乙烷分子是以最稳定的交叉式构象存在。

(二)正丁烷的构象

正丁烷分子在围绕C 2-C 3σ键旋转时,有4种典型的构象异构体,即对位交叉式、邻位交叉式、部分重叠式和全重叠式。见下图:

图2-6 正丁烷绕C 2-C 3σ键旋转的构象

对位交叉式:两个体积较大的甲基处于对位,相距最远,此种构象的能量最低。

邻位交叉式:两个甲基处于邻位,靠得比对位交叉式近,两个甲基之间的Van der Waals 斥力(或空间斥力)使这种构象的能量较对位交叉式高,因而较不稳定。

全重叠式:两个甲基及氢原子都各处于重叠位置,相互间斥力最大,分子的能量最高,是最不稳定的构象。

部分重叠式:甲基和氢原子的重叠使其能量较高,但比全重叠式的能量低。

正丁烷C 2—C 3 键旋转能量图如下:

图2-7 正丁烷C 2—C 3 键旋转时的能量曲线图

从正丁烷C 2—C 3 键旋转时的能量曲线图可见,4种构象的稳定性次序是:

正丁烷各种构象之间的能量差别不太大。在室温下分子碰撞的能量足可引起各构象间的迅速转化,因此正丁烷实际上是各构象异构体的混合物,主要是以对位交叉式和邻位交叉式的构象存在,前者约占63%,后者约占37%,其他两种构象所占的比例很小。

随着正烷烃碳原子数的增加,它们的构象也随之而复杂,但其优势构象都类似正丁烷,是能量最低的对位交叉式。因此,直链烷烃碳链在空间的排列,绝大多数是锯齿形,而不是直链,只是为了书写方便,才将其结构式写成直链。

图2-8 正己烷分子的球棍模型

分子的构象,不仅影响化合物的物理和化学性质,而且影响蛋白质、酶、核酸等生物大分子的结构与功能以及药物的构效关系。许多药物分子的构象异构与其生物活性的发挥密切相关。药物受体一般只与药物多种构象中的一种结合,这种构象称为药效构象。不具有药效构象的药物很难与药物的受体结合,此种药物生物活性很低或根本无活性。例如,抗震颤麻痹药物多巴胺作用于受体的药效构象是对位交叉式。

问题2-5多巴胺的结构式为 ,画出其对位交叉式的药效构象(考虑围绕C 1—C 2键的旋转)。

问题2-6 画出己烷围绕C 3—C 4化学键旋转时的最稳定构象和最不稳定的构象。

小结:烷烃的C -C 键可以绕键轴旋转,烷烃具有无数个构象异构体;室温下,各构象异构体不能分离;烷烃是各构象异构体的混合物,其中较稳定构象异构体的比例较高。

四.烷烃的物理性质

有机化合物的物理性质,一般是指物态、沸点、熔点、密度、溶解度、折光率、旋光度和光谱性质等。烷烃同系物的物理性质常随碳原子数的增加,而呈现规律性的变化。 在室温和常压下,C 1~C 4的正烷烃(甲烷至丁烷)是气体,C 5~C 17 的正烷烃(戊烷至十

七烷)是液体,C18和更高级的正烷烃是固体。烷烃分子间的作用力只有范德华力,是非极性或弱极性的化合物。根据“极性相似者相溶”的经验规律,烷烃易溶于非极性或极性较小的苯、氯仿、四氯化碳、乙醚等有机溶剂,而难溶于水和其他强极性溶剂。液态烷烃作为溶剂时,可溶解弱极性化合物。烷烃的沸点、熔点、密度的变化规律见下图

沸点

密度

熔点

图2-9烷烃沸点、熔点、密度随碳数变化规律(鼠标移至图上有答案出现)

沸点:正烷烃的沸点随着碳原子的增多而有规律的升高。一般每增加1个碳原子,沸点升高20~30℃。同分异构体,取代基越多,沸点越低。这是由于烷烃的碳原子数越多,分子间作用力越大;取代基越多,分子间有效接触的程度越低,使分子间的作用力变弱。

熔点:正烷烃的熔点随着碳原子数的增多而升高,含偶数碳原子正烷烃的熔点高于相邻的两个含奇数碳原子正烷烃的熔点。在烷烃异构体中,对称性较好的烷烃比直链烷烃的熔点高,这是由于对称性较好的烷烃分子,晶格排列较紧密,致使链间的作用力增大而熔点升高。密度:正烷烃的密度随着碳原子数的增多而增大,但在0.8g2cm-3左右时趋于稳定。所有烷烃的密度都小于1g2cm-3,烷烃是所有有机化合物中密度最小的一类化合物。

五.烷烃的化学性质

烷烃是饱和烃,分子中只有牢固的C—C σ键和C—H σ键,所以烷烃具有高度的化学稳定性。在室温下,烷烃与强酸(如硫酸、盐酸)、强碱(如氢氧化钠)、强氧化剂(如重铬酸钾、高锰酸钾)、强还原剂(如锌加盐酸、金属钠加乙醇)都不发生反应。但在适宜的反应条件下,如光照、高温或在催化剂的作用下,烷烃也能发生共价键均裂的自由基( free radical )反应。例如:烷烃的卤代反应

1.甲烷的卤代

在紫外光照射或高温250~400℃的条件下,甲烷和氯气混合可剧烈地发生氯代反应,得到一氯甲烷、二氯甲烷、三氯甲烷(氯仿)、四氯甲烷(四氯化碳)和氯化氢的混合物。

甲烷与氯气作用,产生一氯甲烷;随着反应的进行,过量的氯气继续与一氯甲烷作用,生成二氯甲烷;二氯甲烷进一步与氯气作用,生成三氯甲烷;三氯甲烷继续反应生成四氯甲烷,所以反应的产物是4种氯代甲烷的混合物。若用超过量的甲烷与氯气反应,反应就几乎限止在一氯代反应阶段,生成一氯甲烷。可用此方法制备一卤代烃。

★卤素与甲烷的反应活性顺序为:F2>Cl2>Br2>I2。氟代反应十分剧烈,难以控制,强烈的放热反应所产生的热量可破坏大多数的化学键,以致发生爆炸。碘最不活泼,碘代反应难以进行。因此,卤代反应一般是指氯代反应和溴代反应。

2.卤代反应的反应机制(reaction mechanism)

(1)自由基的链反应

自由基的链反应可分为链引发、链增长和链终止3个阶段。

☆链引发(chain-initiating step):形成自由基

氯分子从光或热中获得能量,Cl—Cl键均裂,生成高能量的氯自由基Cl2。自由基的反应活性很高,一旦形成就有获取一个电子的倾向,以形成稳定的八偶体结构。

☆链增长(chain-propagating step):延续自由基、形成产物

氯自由基使甲烷分子中的C—H键均裂,并与氢原子生成氯化氢分子和新的甲基自由基

CH32。

活泼的甲基自由基使氯分子的Cl—Cl键均裂,生成一氯甲烷。此反应是放热反应,所放出的能量足以补偿反应②所需吸收的能量,因而可以不断地进行反应,将甲烷转变为一氯甲烷。当一氯甲烷达到一定浓度时,氯原子除了与甲烷作用外,也可与一氯甲烷作用生成2CH2Cl 自由基,它再与氯分子作用生成二氯甲烷CH2Cl2和新的Cl2。反应就这样继续下去,直至生成三氯甲烷和四氯甲烷。

★甲烷的氯代反应,每一步都消耗一个活泼的自由基,同时又为下一步反应产生另一个活泼的自由基,这是自由基的链增长反应。

☆链终止(chain-terminating step):清除自由基

两个活泼的自由基相互结合,生成稳定的分子或加入少量能抑制自由基生成或降低自由基活性的抑制剂,使反应速率减慢或终止反应。

★甲烷氯代反应的机制不仅适用于甲烷的溴代反应,而且也适用于其他烷烃的卤代反应,甚至还适用于分子中含有类似烷烃结构的许多非烷烃化合物。

问题2-7用图示的方式说明活化能、过渡态的概念,并说明甲烷氯代反应是吸热反应还是放热反应?答案:

活化能:反应发生所必须的最低限度的能量,用Ea 表示,它是从反应物转化为产物过程中,必须达到的一个能量高峰。过渡态:反应物生成产物过程中中间状态的结构。此反应为放热反应。

(2)烷烃卤代反应的取向

碳链较长的烷烃氯代时,可生成各种异构体的混合物。例如:

丙烷分子中有6个1°氢原子和2个2°氢原子,理论上两种氢原子被卤代的几率之比为3:1,但在室温条件下,这两种产物得率之比为43:57 ,说明2°氢原子比1°氢原子的反应活性高。2°氢原子与1°氢原子的相对反应活性为:

大量氯代反应的实验结果表明:室温下3°、2°、1°氢原子的相对活性之比为5:4:1,并与烷烃的结构基本无关。根据各级氢的相对活性,可预测烷烃各氯代产物异构体的收率。问题2-8预测2,3-二甲基丁烷在室温下进行氯代反应时,所得各种一氯代产物的得率之比。

★烷烃的溴代反应生成相应的溴代物。例如:

实验结果表明,卤代反应所用的卤素不同或反应条件不同,各种异构体产物的相对数量有着显著的差异。氯代反应产物中,各种异构体间的比例相差不大;而溴代反应中,各异构体比

例相差较大,溴代反应3°、2°、1°氢原子的相对反应活性比为 1600:82:1。这是因为溴原子比氯原子的反应活性低,烷烃的溴代比氯代活化能高,溴代反应过渡态[R……H…Br]的结构较接近产物自由基。能稳定自由基的因素在过渡态中影响较大,因此3°、 2°、1°氢的活性差别较大,反应的选择性强。相反,氯代过渡态[R…H……Cl] 的结构较接近反应物,能稳定自由基的因素在过渡态中影响较小,所以3°、2°、1°氢的活性差别较小。

图2-10丙烷1o、2o氢氯代能量图

氯与1°氢和2°氢反应的活化能只相差4.2kJ2mol-1,而溴与1°氢和2°氢反应的活化能相差12.6kJ2mol-1。溴代反应时,两种氢原子的反应活性差别比氯代时大得多,因而溴代反应的选择性高于氯代反应。

(3)烷基自由基的构型与稳定性

★烷基自由基的构型

烷基自由基是烷烃去掉一个氢,剩下的带有一个单电子的基团。甲基自由基是最简单的有机烷基自由基。

波谱研究证实其结构如下:

★碳原子为sp2杂化,3个sp2杂化轨道与3个氢原子的S轨道所形成的3条C-H 键处于同一平面内,未成对的单电子位于未参与杂化的、垂直于杂化平面的p轨道中。

★自由基的稳定性

通过比较不同类型的氢原子与各基团之间的键离解能数据可知:

形成自由基所需要的能量顺序为CH32>1°>2°>3°,形成自由基所需的能量越低,自由基就越容易形成,也越稳定。所以自由基相对稳定性的次序为:

★烷烃卤代取向的解释

在丙烷的氯代反应中,当氯原子进攻丙烷分子中的1°H时,生成1°自由基CH3CH2CH32,而进攻2°H时,则生成2°自由基。由于(CH3)2CH2比CH3CH2CH32稳定,内能较低,生成的速度较快。因此在反应中2°H 比1°H的活性高,同理3o H比2o H的活性高。用此也可以解释烷烃溴代的反应取向。

小结:烷烃分子中只有σ键,化学性质很稳定,常用作溶剂及化妆品、眼药膏的基质,但在特殊条件(光照或高温)下,也可发生自由基的取代反应。含有不同种氢的烷烃的卤代,生

成多种卤代烃异构体的混合物,各异构体的比例取决于烷烃分子中各种氢的数目以及反应条件,不同种氢的反应活性顺序为3o氢>2o氢>1o氢。自由基的构型为sp2杂化的平面构型。

第二节环烷烃(Cycloalkane)

一.环烷烃的分类和命名

(一)环烷烃(cycloalkane)的分类

根据环烷烃分子中所含的碳环数目,可分为单环、双环和多环环烷烃。单环烷烃的通式为C n H2n。

根据成环的碳原子数目,单环环烷烃又可分为小环(三元环、四元环烷烃)、常见环(五元环、六元环烷烃)、中环(七元环~十二元环)及大环(十二元环以上的环烷烃)环烷烃。(二)环烷烃的命名

1、单环环烷烃的命名

单环环烷烃的命名与烷烃相似,只是在同数碳原子的链状烷烃的名称前加“环”字。英文命名则加词头“cyclo”。环碳原子的编号,应使环上取代基的位次最小。例如:

当环上有复杂取代基时,可将环作为取代基命名。例如:

2、螺环烃的命名

螺环烃(spiro hydrocarbon):两个碳环共用一个碳原子的脂环烃,分子中共用的碳原子称为螺原子。

双环螺环烷烃的命名是在成环碳原子总数的烷烃名称前加上“螺”字。螺环的编号是从螺原子的邻位碳开始,由小环经螺原子至大环,并使环上取代基的位次最小。将连接在螺原子上的两个环的碳原子数,按由少到多的次序写在方括号中,数字之间用圆点隔开,标在“螺”字与烷烃名称之间。例如:

3、桥环烃的命名

桥环烃(bridged hydrocarbon):两个碳环共用两个或多个碳原子的化合物。环与环间相互连接的两个碳原子,称为“桥头”碳原子;连接在桥头碳原子之间的碳链则称为“桥路”。

命名双桥环烷烃时,以碳环数“二环”为词头。然后在方括号内按桥路所含碳原子的数目由多到少的次序列出,数字之间用圆点隔开。方括号后写出分子中全部碳原子总数的烷烃名称。编号的顺序是从一个桥头开始,沿最长桥路到第二桥头,再沿次长桥路回到第一桥头,最后给最短桥路编号,并使取代基位次最小。例如:

问题2—9命名:

(三)环烷烃的顺反异构(由于环烷烃成环的键不能自由转动,导致分子中的原子或原子团在空间的排列方式不同,而产生的两种构型不同的异构体。顺反异构属于构型异构,是立体异构中的一种。顺反异构体物理、化学性质均不同,可以分离。)

环烷烃除具有构造异构外,由于碳环上的C—C 单键不能自由旋转,所以当环上的两个碳原子各连有一个取代基时,还存在顺、反两种异构体。两个取代基位于环平面同侧的,称为顺式异构体(cis-isomer);位于环平面异侧的,则称为反式异构体(trans- isomer)。例如1,2-二甲基环丙烷,具有顺式和反式两种异构体。

问题2-10写出1-甲基-3-乙基环己烷的顺式和反式构型的两种异构体

二.环烷烃的性质

(一)环烷烃的物理性质

环烷烃的物理性质与烷烃相似,在常温下,小环环烷烃是气体,常见环环烷烃是液体,大环环烷烃呈固态。环烷烃和烷烃都不溶于水。由于环烷烃分子中单键旋转受到一定的限止,分子运动幅度较小,具有一定的对称性和刚性。因此,环烷烃的沸点、熔点和比重都比同碳数烷烃高。

(二)环烷烃的化学性质

常见环、中环和大环环烷烃较稳定,化学性质与链状烷烃相似,与强酸(如硫酸)、强碱(如氢氧化钠)、强氧化剂(如高锰酸钾)等试剂都不发生反应,在高温或光照下能发生自由基取代反应;小环环烷烃环丙烷和环丁烷不稳定,除可以发生自由基取代反应,易开环发生加成反应(addition reaction)。

1.自由基取代反应

环烷烃与烷烃相似,在光照或高温条件下,可发生自由基取代反应。例如:

2.加成反应

(1) 加氢

在催化剂Ni的作用下,环烷烃可进行催化加氢反应,加氢时环烷烃开环,碳链两端的碳原子与氢原子结合生成烷烃。

大学本科有机化学试题答案

大学本科有机化学试题 答案 Document number:PBGCG-0857-BTDO-0089-PTT1998

有机化学复习题 一、选择题: 下列各题只有一个正确答案,请选出。 1. CH 3-CH-CH 2-C-CH 2CH 33CH 3 CH 3 分子中伯、仲、叔、季碳原子的比例是 A. 5:2:1;1 B. 2:4:2:1 C. 5:1:2:1 D. 4:3:1:1 2.烷烃系统命名中的2-甲基丁烷在普通命名法中又称为: A. 异戊烷 B. 异丁烷 C. 新戊烷 D. 叔丁烷 3.下列化合物不属于脂环烃的是 A. 甲苯 B. 2-甲基环己烯 C. 环己炔 D. 二甲基环己烷 4 烯烃中碳原子的杂化状态是 A. SP 3 B. SP 2 C. SP D. SP 3和SP 2 5. 炔烃中碳原子的杂化状态是 A. SP 3和SP B. SP C. SP 2 D SP 3 6.在下列脂环烃中,最不稳定的是 A. 环戊烷 B. 环丁烷 C. 环己烷 D. 环丙烷 7.马尔科夫尼科夫规律适用于 A. 烯烃与溴的加成反应 B. 烷烃的卤代反应 C. 不对称烯烃与不对称试剂的加成 D. 烯烃的氧化反应 8.下列化合物用KMnO 4/H +氧化只得到一种产物的是 A. (CH 3)2C=CHCH 3 B. CH 3CH=CHCH 2CH 2CH 3 C. CH 3CH=CH 2 D. (CH 3)2C=C(CH 3)2

9.经催化加氢可得2-甲基丁烷的化合物是 A. B.3 CH 3-C=CH 2 CH 3-CH=CH-CH 3C. 3 CH 3-CH-C CH D.3CH 3-CH C=CH 2 3 10. 化合物C=C H 3C CH 3 H 5C 2COOH 属于 A. E 型或顺式 B. E 型或反式 C. Z 型或顺式 D. Z 型或反式 11. 1-戊炔和2-戊炔属于 A. 碳链异构 B. 顺反异构 C. 位置异构 D. 构象异构 12. 可鉴别2-丁炔与1-丁炔的试剂为 A. 溴水 B. Cu(OH)2 C. HIO 4 D. Ag(NH 3)2NO 3 13. 下列基团中,属于间位定位基的是 A. –OH B. –CH 2CH 3 C. –NO 2 D. –Cl 14. 下列基团中,属于邻、对位定位基的是 A. –COOH B. –NH 2 C. –CN D. –CHO 15. 下列化合物氧化后可生成苯甲酸的是 A. C(CH 3)3 B. CH(CH 3)2 C. CH 3CH 3 D. CH 3 16. 下列化合物中,属于叔卤代烷结构的是 A. Cl B. Cl CH 3 C. Cl D. CH 2Cl 17. 下列化合物不能发生消除反应的是

大学有机化学总结

有机化学总结 一、有机化合物的命名 (1)、几何异构体的命名烯烃几何异构体的命名包括顺、反和Z、E两种方法。 简单的化合物可以用顺反表示,也可以用Z、E表示。用顺反表示时,相同的原子或基团在双键碳原子同侧的为顺式,反之为反式。如果双键碳原子上所连四个基团都不相同时,不能用顺反表示,只能用Z、E表示。按照“次序规则”比较两对基团的优先顺序,较优基团在双键碳原子同侧的为Z型,反之为E型。必须注意,顺、反和Z、E是两种不同的表示方法,不存在必然的内在联系。有的化合物可以用顺反表示,也可以用Z、E表示,顺式的不一定是Z型,反式的不一定是E型。例如:CH3-CH2Br C=C (反式,Z型) H CH2-CH3 CH3-CH2 CH3 C=C (反式,E型) H CH2-CH3 脂环化合物也存在顺反异构体,两个取代基在环平面的同侧为顺式,反之为反式。(2)、光学异构体的命名光学异构体的构型有两种表示方法D、L和R、S, D 、L标记法以甘油醛为标准,有一定的局限性,有些化合物很难确定它与甘油醛结构的对应关系,因此,更多的是应用R、S标记法,它是根据手性碳原子所连四个不同原子或基团在空间的排列顺序标记的。光学异构体一般用投影式表示,要掌握费歇尔投影式的投影原则及构型的判断方法。例如: COOH 根据投影式判断构型,首先要明确, H NH2 在投影式中,横线所连基团向前, CH2-CH3竖线所连基团向后;再根据“次序 规则”排列手性碳原子所连四个基团的优先顺序,在上式中: -NH2>-COOH>-CH2-CH3>-H ;将最小基团氢原子作为以碳原子为中心的正四面体顶端,其余三个基团为正四面体底部三角形的角顶,从四面体底部向顶端方向看三个基团,从大到小,顺时针为R,逆时针为S 。在上式中,从-NH2-COOH -CH2-CH3为顺时针方向,因此投影式所代表的化合物为R构型,命名为R-2-氨基丁酸。 (3)、双官能团化合物的命名双官能团和多官能团化合物的命名关键是确定母体。 常见的有以下几种情况: ①当卤素和硝基与其它官能团并存时,把卤素和硝基作为取代基,其它官能团为母体。 ②当双键与羟基、羰基、羧基并存时,不以烯烃为母体,而是以醇、醛、酮、羧酸为母体。 ③当羟基与羰基并存时,以醛、酮为母体。 ④当羰基与羧基并存时,以羧酸为母体。 ⑤当双键与三键并存时,应选择既含有双键又含有三键的最长碳链为主链,编号时给双键或三键以尽可能低的数字,如果双键与三键的位次数相同,则应给双键以最低编号。 (4).杂环化合物的命名由于大部分杂环母核是由外文名称音译而来,所以,一般采用音译法。要注意取代基的编号。 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),

大学有机化学总结习题及答案

有机化学总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1 )伞形式:COOH OH 3 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: 4)菲舍尔投影式:COOH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠 式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象 是全重叠式。

(3)环己烷构象:最稳定构象是椅式构象。一取代环己烷最 稳定构象是e取代的椅式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e键上的椅式构象。 立体结构的标记方法 1.Z/E标记法:在表示烯烃的构型时,如果在次序规则中两个 优先的基团在同一侧,为Z构型,在相反侧,为E构型。 CH3 C C H C2H5CH3 C C H 2 H5 Cl (Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯 2、顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。 CH3 C C H CH3 H CH3 C C H H CH3 顺-2-丁烯反-2-丁烯 33 3 顺-1,4-二甲基环己烷反-1,4-二甲基环己烷 3、R/S标记法:在标记手性分子时,先把及手性碳相连的四个 基团按次序规则排序。然后将最不优先的基团放在远离观察者,再以次观察其它三个基团,如果优先顺序是顺时针,则为R构型,如果是逆时针,则为S构型。 a R型S型 注:将伞状透视式及菲舍尔投影式互换的方法是:先按要求书写其透视式或投影式,然后分别标出其R/S构型,如果两者构型相同,则为

(完整word版)大学有机化学实验

西北大学化学系 有机化学实验教学课件 讲义 (非化学专业学生使用) 王少康李剑利

前言 有机化学实验教学课件融合了西北大学化学系有机化学实验课教学组几十年的教学经验,采用了先进的计算机多媒体手段,将传统的教学方式与现代科技相结合,展现了一个全新的教学方式。通过生动的实验操作演示,极大的提高了学生对有机化学实验课的学习兴趣。促进了实验手段的现代化,实验教学内容的系统化,实验操作的规范化。 本系统以各个实验为中心,将涉及实验的各个方面的实验内容集于一体,内容丰富全面。既减轻了教师的负担,又激发了学生的学习主动性,使学生可以随时查阅。对提高教学效果和质量起到了积极的作用。 本系统现以外系有机化学七个实验为基础,每个实验制一张光盘,时间约为30分钟左右,以后将陆续增加新的实验内容。

目录 实验一、试验须知,实验室安全教育,实验预习,实验报告书写格式。 实验二、1 普通蒸馏及沸点测定。 2 液体折光率测定。 实验三、1 重结晶---苯甲酸。 2 熔点测定。 实验四、醛酮的化学性质。 实验五、乙醛水杨酸的合成。 实验六、薄层色谱。 实验七、从茶叶中提取咖啡碱。

有机化学实验 (非化学专业学生使用) 有机化学实验教学的目的是训练学生进行有机化学实验的基本技能和基础知识,验证有机化学中所学的理论,培养学生正确选择有机化合物的合成、分离和鉴定的方法,以及分析和解决实验中所遇到问题的能力,同时也是培养学生理论联系实际的作风,实事求是,严格认真的科学态度与良好的工作习惯的一个重要环节。 实验一实验须知,安全知识,实验预习,记录和实 验报告 一、实验须知和安全教育。 1.遵守实验室的一切规章制度,按时上课。 2.安全实验是有机实验的基本要求,在实验前,学生必须阅读有机化学实验教材第一部分有机化学实验的一般知识及附录IX危险化学药品的使用与保存,了解实验室的安全及一些常用仪器设备,在进行每个实验前还必须认真预习有关实验内容,明确试验的目的和要求,了解实验的基本原理、内容和方法,写好实验预习报告,了解所用药品和试剂的毒性和其他性质,牢记操作中的注意事项,安排好当天的实验。 3.在实验过程中应养成细心观察和及时纪录的良好习惯,凡实验所用物料的质量,体积以及观察到的现象和温度等有关数据,都应立即如实的填写在记录本中。实验结束后,记录本须经教师签字。 4.实验中应保持安静和遵守秩序,思想要集中,操作认真,不得擅自离开,尤其是在实验进行中,注意安全,严格按照操作规程和实验步骤进行实验,发生意外事故时,要镇静,及时采取应急措施,并立即报告指导教师。5.爱护公物,公用仪器及药品,用后立即归还原处,以免影响别的同学使用。加完试剂后,应盖好瓶盖,以免试剂被污染或挥发,严格控制药品的用量。产品要回收。 如有异味或有毒物质是必须在通风橱中进行。

有机化学课后习题答案(徐寿昌版)

烷烃 1.用系统命名法命名下列化合物: 1.(CH 3)2CHC(CH 3)2 CHCH 3 CH 32. CH 3CH 2CH CHCH 2CH 2CH 3 CH 3CH(CH 3)2 2,3,3,4-四甲基戊烷 2,4-二甲基-3-乙基己烷 3. CH 3CH 2C(CH 3)2CH 2CH 3 4.CH 3CH 3CH 2CHCH 2CH 2CCH 2CH 3 CHCH 3CH 3 CH 2CH 3 1 2 3 4 5 6 7 8 3,3-二甲基戊烷 2,6-二甲基-3,6-二乙基辛烷 5.1 2 3 4 5 6 7 6 . 2,5-二甲基庚烷 2-甲基-3-乙基己烷 7 . 8. 1 2 3 4 5 67 2,4,4-三甲基戊烷 2-甲基-3-乙基庚烷 2.写出下列各化合物的结构式: 1.2,2,3,3-四甲基戊烷 2,2,3-二甲基庚烷 CH 3 C C CH 2CH 3 CH 3 CH 3CH 3 CH 3CH 3 CH 3CHCHCH 2CH 2CH 2CH 3 CH 3 3、 2,2,4-三甲基戊烷 4、2,4-二甲基-4-乙基庚烷 CH 3 C CHCH 3CH 3CH 3 CH 3 CH 3CHCH 2CCH 2CH 2CH 3 3 CH 3CH 3 5、 2-甲基-3-乙基己烷 6、三乙基甲烷 CH 3 CH 3CHCHCH 2CH 2CH 3 2CH 3 CH 3CH 2CHCH 2CH 3 2CH 3 7、甲基乙基异丙基甲烷 8、乙基异丁基叔丁基甲烷

CH 3CHCH(CH 3)2 2CH 3 CH 3CH 2CH C(CH 3)3 CH 2CHCH 3 CH 3 3.用不同符号表示下列化合物中伯、仲、叔、季碳原子 3 CH 2 C CH 3 2CH 3C CH 3CH 3 1. 1 1 1 1 1 1 2CH 3 4 02. 4 03 1 1 323)33 4. 2. 3. 4. 5. 6. 1. 5.不要查表试将下列烃类化合物按沸点降低的次序排列: (1) 2,3-二甲基戊烷 (2) 正庚烷 (3) 2-甲基庚烷 (4) 正戊烷 (5) 2-甲基己烷 解:2-甲基庚烷>正庚烷> 2-甲基己烷>2,3-二甲基戊烷> 正戊烷 (注:随着烷烃相对分子量的增加,分子间的作用力亦增加,其沸点也相应增加;同数碳原子的构造异构体中,分子的支链愈多,则沸点愈低。)

大学有机化学实验(全12个有机实验完整版)

大学有机化学实验(全12个有机实验完整版) 试验一蒸馏和沸点的测定 一、试验目的 1、熟悉蒸馏法分离混合物方法 2、掌握测定化合物沸点的方法 二、试验原理 1、微量法测定物质沸点原理。 2、蒸馏原理。 三、试验仪器及药品 圆底烧瓶、温度计、蒸馏头、冷凝器、尾接管、锥形瓶、电炉、加热套、量筒、烧杯、毛细管、橡皮圈、铁架台、沸石、氯仿、工业酒精 ' 四.试验步骤 1、酒精的蒸馏 (1)加料取一干燥圆底烧瓶加入约50ml的工业酒精,并提前加入几颗沸石。 (2)加热加热前,先向冷却管中缓缓通入冷水,在打开电热套进行加热,慢慢增大火力使之沸腾,再调节火力,使温度恒定,收集馏分,量出乙醇的体积。 蒸馏装置图微量法测沸点 2、微量法测沸点 在一小试管中加入8-10滴氯仿,将毛细管开口端朝下,将试管贴于温度计的水银球旁,用橡皮圈束紧并浸入水中,缓缓加热,当温度达到沸点时,毛细管口处连续出泡,此时停止加热,注意观察温度,至最后一个气泡欲从开口处冒出而退回内管时即为沸点。 五、试验数据处理 ' 六、思考题 1、蒸馏时,放入沸石为什么能防止暴沸若加热后才发觉未加沸石,应怎样处理 沸石表面不平整,可以产生气化中心,使溶液气化,沸腾时产生的气体比较均匀不易发生暴沸,如果忘记加入沸石,应该先停止加热,没有气泡产生时再补加沸石。 2、向冷凝管通水是由下而上,反过来效果会怎样把橡皮管套进冷凝管侧管时,怎样才能防止折断其侧管 冷凝管通水是由下而上,反过来不行。因为这样冷凝管不能充满水,由此可能带来两个后果:

其一,气体的冷凝效果不好。 其二,冷凝管的内管可能炸裂。橡皮管套进冷凝管侧管时,可以先用水润滑,防止侧管被折断。 3、用微量法测定沸点,把最后一个气泡刚欲缩回管内的瞬间温度作为该化合物的沸点,为什么沸点:液体的饱和蒸气压与外界压强相等时的温度。 最后一个气泡将要缩回内管的瞬间,此时管内的压强和外界相等,所以此时的温度即为该化合物的沸点。 七、装置问题: 1)选择合适容量的仪器:液体量应与仪器配套,瓶内液体的体积量应不少于瓶体积的1/3, 不多于2/3。 2)} 3)温度计的位置:温度计水银球上线应与蒸馏头侧管下线对齐。 4)接受器:接收器两个,一个接收低馏分,另一个接收产品的馏分。可用锥形瓶或圆底烧 瓶。蒸馏易燃液体时(如乙醚),应在接引管的支管处接一根橡皮管将尾气导至水槽或室外。 5)安装仪器步骤:一般是从下→上、从左(头)→右(尾),先难后易逐个的装配,蒸馏 装置严禁安装成封闭体系;拆仪器时则相反,从尾→头,从上→下。 6)蒸馏可将沸点不同的液体分开,但各组分沸点至少相差30℃以上。 7)液体的沸点高于140℃用空气冷凝管。 8)进行简单蒸馏时,安装好装置以后,应先通冷凝水,再进行加热。 9)毛细管口向下。 10)微量法测定应注意: 第一,加热不能过快,被测液体不宜太少,以防液体全部气化; 第二,沸点内管里的空气要尽量赶干净。正式测定前,让沸点内管里有大量气泡冒出,以此带出空气; 第三,、 第四,观察要仔细及时。重复几次,要求几次的误差不超过1℃。 试验二重结晶及过滤 一、试验目的 1、学习重结晶提纯固态有机物的原理和方法 2、学习抽滤和热过滤的操作 二、试验原理 利用混合物中各组分在某种溶液中的溶解度不同,或在同一溶液中不同温度时溶解度不同而使它们分离 三、试验仪器和药品 循环水真空泵、抽滤瓶、布氏漏斗、烧杯、电炉、石棉网、玻璃棒、滤纸、苯甲酸、活性炭、天平 四、试验步骤 1、【 2、称取3g乙酰苯胺,放入250ml烧杯中,加入80ml水,加热至沸腾,若还未溶解可适 量加入热水,搅拌,加热至沸腾。 3、稍冷后,加入适量(-1g)活性炭于溶液中,煮沸5-10min,趁热抽滤。 4、将滤液放入冰水中结晶,将所得结晶压平。再次抽滤,称量结晶质量m。

有机化学习题与答案(厦门大学)

有机化学习题与答案(厦门大学) 第一章绪论习题 一、根据下列电负性数据: 判断下列键中哪个极性最强为什么 答案<请点击> 二、(a) F2、HF、BrCl、CH4、CHCl3、CH3OH诸分子中哪些具有极性键 (b) 哪些是极性分子答案<请点击> 三、下列各化合物有无偶极矩指出其方向。 答案<请点击> 四、根据O和S的电负性差别,H2O和H2S相比,哪个的偶极-偶极吸引力较强,哪个的氢键较强答案<请点击> 五、写出下列化合物的路易斯电子式。 答案<请点击> 六、把下列化合物由键线式改写成结构简式。

七、下面记录了化合物的元素定量分析和相对分子质量测定的结果,请计算它们的化学式。 (1) C:%,H:%,相对分子质量110 (2) C:%,H:%,相对分子质量188 (3) C:%,H:%,N:%,相对分子质量230 (4) C:%,H:%,N:%,相对分子质量131 (5) C:%,H:%,Cl:%,相对分子质量 (6) C:%,H:%,N:%,Cl:%,相对分子质量答案<请点击> 八、写出下列化学式的所有的构造异构式。 答案<请点击>

第一章绪论习题(1) 1、什么是烃、饱和烃和不饱和烃点击这里看结果 2、什么是烷基写出常见的烷基及相应的名称。 点击这里看结果 3、给下列直链烷烃用系统命名法命名 点击这里看结果 4、什么是伯、仲、叔、季碳原子,什么是伯、仲、叔氢原子点击这里看结果 5、写出己烷的所有异构体,并用系统命名法命名。点击这里看结果 6、写出符合下列条件的烷烃构造式,并用系统命名法命名: 1.只含有伯氢原子的戊烷 2.含有一个叔氢原子的戊烷 3.只含有伯氢和仲氢原子的已烷

大学有机化学反应方程式总结(较全)

大学有机化学反应方程式总 结(较全) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH -

【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 2 C H 33H 32 3H 32 CH CH 2C H 3H BH 2 CH CH=CH (CH 3CH 2CH 2)3 - H 3CH 2CH 2C 22CH 3 CH 2O CH 2CH 2CH 3 H 3CH 2CH 2C 2CH 2CH 3 + O H - O H B - OC H 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2B OC H 2CH 2CH 3 CH 2CH 2CH 3H 2CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH 3NaOH 3HOC H 2CH 2CH 33 + Na 3BO 3 2 【例】 CH 3 1)BH 32)H 2O 2/OH -CH 3H H OH 3、X 2加成 C C Br /CCl C C Br Br 【机理】

有机化学__习题答案___陈宏博

《有机化学》习 题 解 答 ——陈宏博主编. 大连理工大学出版社. 2005.1第二版 第一章 1-1 有机化合物一般具有什么特点? 答:(1)有机化合物分子中,原子之间是以共价键相连; (2)在有机化合物中,碳原子之间以及碳原子和其他非金属原子之间可形成不同类型共价键;两碳原子间可以单键、双键或叁键相连,碳原子间可以是链状,也可以是环状,且分子骨架中可以掺杂其他元素的原子; (3)大多数有机物不易溶于水,易燃烧;液体易挥发;固体熔点低; (4)有机化合物的化学反应速率一般较小;有机反应常伴有副反应。 1-2 根据键能数据,判断乙烷分子CH 3CH 3在受热裂解时,哪种共价键易发生平均断裂? 答:在乙烷分子中,C –C 间键能为347.3 kJ /mol, 而C –H 间键能为414.2 kJ /mol. 由于C –C 间键能小于C –H 间键能,所以乙烷受热裂解时,C -C 键易发生平均断裂。 1-3根据电负性数据,以δ+或δ-标注形成下列极性共价键的原子上所带的部分正电荷或负电荷。 O -H , N -H , H 3C -Br , O ═C ═O ,C ─O , H 2C ═O 答: + - -δδH O + --δδH N - + -δδBr C H 3 - +-==δδδO C O - +=δδO C H 2 1-4 指出下列化合物的偶极矩大小次序。 CH 3CH 2Cl, CH 3CH 2Br, CH 3CH 2CH 3, CH 3C ≡N, CH 3CH ≡CH 2 答: CH 3 C ≡N > CH 3CH 2Cl > CH 3CH 2Br > CH 3CH=CH 2 > CH 3CH 2CH 3 1-5 解释下列术语。 键能,键的离解能, 共价键,σ键,π键,键长,键角,电负性,极性共价键,诱导效应,路易斯酸(碱), 共价键均裂,共价键异裂,碳正离子,碳负离子,碳自由基,离子型反应,自由基型反应 答案略,见教材相关内容 1-6 下列各物种,哪个是路易斯酸?哪个是路易斯碱? (C 2H 5)2O ,NO 2 ,+CH 3CH 2 ,NH 3BF 3 ,,..CH 3CH 2 +AlCl 3 , I - ,H 2O .. .. : CH 3CH 2OH .. .. H 3+O , , NH 4+,, NC -HC C -Br + , Br - HO - , SO 3 ,CH 3SCH 3.... , C 6H 5NH 2 ,..(C 6H 5)3P . . 答: 路易斯酸: BF 3 ,NO 2 ,CH 3CH 2 ,AlCl 3 , H 3O , NH 4 , SO 3 , Br ++ + + +

华东理工大学有机化学课后答案

华东理工大学有机化学 课后答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

部分习题参考答案 2-1 (5) 顺-1,2-二溴环己烷 (6) (7) 5-甲基螺[]辛烷 2-4 (3)>(2)>(5)>(1)>(4) 2-6 (1) 正丙基(n-Pr-) (2)异丙基(i-Pr-) (3) 异丁基(i-Bu-) (4)叔丁基(t-Bu-) (5)甲基(Me-) (6) 乙基(Et-) 2-7 (3) CH3CH2CH(CH3) 2 (4) (CH3)4C 2-8(3)、(6)等同;(2)、(5)构造异构;(1)、(4) 构象异构 2-9(1) 用Br2。因氢原子活性有差异,溴原子活性适中,反应选择性强,主要得到 CH3 Br。 (2) 用Cl2。只有一种氢,氯原子反应活性高。 2-10 CH3CH2·的稳定性大于CH3·,易于生成。 2-112,3-二甲基丁烷有四个典型构象式,2,2,3,3-四甲基丁烷有二个;前者最稳定的构象 式为 3 H3 。 2-16(4)>(2)>(3)>(1) 4-4 4-5(1) (2) 2,3-二甲基-2-丁烯>2-甲基-2-戊烯>反-3-己烯>顺-3-己烯>1-己烯 (3)2-甲基-1-丙烯快(形成叔碳正离子) 4-6(1)亲电加成反应,中间体为碳正离子,有重排 (2)甲醇与碳正离子结合;直接失去质子而形成醚 5-9 (1)Br2/CCl4;Ag(NH3)2NO3,(2)顺丁稀二酸酐; Ag(NH3)2NO3, 5-11 5-12 6-1 (a) C3H7NO (b) C2H3OCl

大学有机化学反应方程式总结(较全)

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】

2 C H3 3 H3 2 3 H3 2 CH CH2 C H3 2 CH CH=CH (CH3CH2CH2)3 - H3CH2CH2C 22 CH3 CH2 B O CH2CH2CH3 3 CH2CH2C 2 CH2CH3 +O H- O H B-OCH2CH2CH3 CH2CH2CH3 H3CH2CH2 B OCH2CH2CH3 CH2CH2CH3 2 CH2CH3 HOO- B(OCH2CH2CH3)3 B(OCH2CH2CH3)3+3NaOH3NaOH3HOCH2CH2CH33+Na3BO3 2 【例】 CH3 1)BH 3 2)H 2 O 2 /OH- CH3 H H OH 3、X2加成 C C Br 2 /CCl 4 C C Br Br 【机理】 C C C C Br Br C Br +C C Br O H2+ -H+ C C Br O H

大学有机化学反应方程式总结较全

大学有机化学反应方程 式总结较全 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 X +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】

CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH - 【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 2 C H 33H 32 3H 32 CH CH 2C H 3 2 CH CH=CH (CH 3CH 2CH 2)3 - H 3CH 2CH 2C 22CH 3 CH 2B O CH 2CH 2CH 3 H 3CH 2CH 2C 2CH 2CH 3 + O H - O H B - OCH 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2C B OCH 2CH 2CH 3 CH 2CH 2CH 32CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH 3NaOH 3HOCH 2CH 2CH 33 + Na 3BO 3 2 【例】

大学有机化学总结习题及答案-最全

有机化学总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COO H>-S O3H>-CO OR>-C OX>-CN>-C HO>>C =O>-OH(醇)>-OH(酚)>-SH >-N H2>-OR >C=C >-C ≡C->(-R >-X >-NO 2),并能够判断出Z/E构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fis ch er 投影式)。 立体结构的表示方法: 1 )伞形式:COOH OH 3 2)锯架式:CH 3 H H OH 2H 5 3) 纽曼投影式 : 4)菲舍尔投影 式:COOH 3 OH H 5)构象(c onforma tion)

(1)乙烷构象:最稳定构象是交叉式,最不稳定构象 是重叠式。 (2)正丁烷构象:最稳定构象是对位交叉式,最不稳 定构象是全重叠式。 (3)环己烷构象:最稳定构象是椅式构象。一取代环 己烷最稳定构象是e取代的椅式构象。多取代环己烷最稳定构象是e取代最多或大基团处于e键上的椅式构象。立体结构的标记方法 1.Z/E标记法:在表示烯烃的构型时,如果在次序规则 中两个优先的基团在同一侧,为Z构型,在相反侧, 为E构型。 CH3 C C H C2H5CH3 C C H 2 H5 Cl (Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯 2、顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。 CH3 C C H CH3 H CH3 C C H H CH3 顺-2-丁烯反-2-丁烯 33 3 顺-1,4-二甲基环己烷反-1,4-二甲基环己烷 3、R/S标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。然后将最不优先的基团放在远离观察者,再以次观察其它三个基团,如果优先顺序是顺时针,则为R构型,如果是逆时针,则为S构型。

最新大学有机化学实验(全12个有机实验完整版)

大学有机化学实验(全12个有机实验完整版)

大学有机化学实验(全12个有机实验完整版) 试验一蒸馏和沸点的测定 一、试验目的 1、熟悉蒸馏法分离混合物方法 2、掌握测定化合物沸点的方法 二、试验原理 1、微量法测定物质沸点原理。 2、蒸馏原理。 三、试验仪器及药品 圆底烧瓶、温度计、蒸馏头、冷凝器、尾接管、锥形瓶、电炉、加热套、量筒、烧杯、毛细管、橡皮圈、铁架台、沸石、氯仿、工业酒精 四.试验步骤 1、酒精的蒸馏 (1)加料取一干燥圆底烧瓶加入约50ml的工业酒精,并提前加入几颗沸石。 (2)加热加热前,先向冷却管中缓缓通入冷水,在打开电热套进行加热,慢慢增大火力使之沸腾,再调节火力,使温度恒定,收集馏分,量出乙醇的体积。

蒸馏装置图微量法测沸点 2、微量法测沸点 在一小试管中加入8-10滴氯仿,将毛细管开口端朝下,将试管贴于温度计的水银球旁,用橡皮圈束紧并浸入水中,缓缓加热,当温度达到沸点时,毛细管口处连续出泡,此时停止加热,注意观察温度,至最后一个气泡欲从开口处冒出而退回内管时即为沸点。 五、试验数据处理 六、思考题 1、蒸馏时,放入沸石为什么能防止暴沸?若加热后才发觉未加沸石,应怎样处理? 沸石表面不平整,可以产生气化中心,使溶液气化,沸腾时产生的气体比较均匀不易发生暴沸,如果忘记加入沸石,应该先停止加热,没有气泡产生时再补加沸石。 2、向冷凝管通水是由下而上,反过来效果会怎样?把橡皮管套进冷凝管侧管时,怎样才能防止折断其侧管? 冷凝管通水是由下而上,反过来不行。因为这样冷凝管不能充满水,由此可能带来两个后果:其一,气体的冷凝效果不好。

大学有机化学试题答案

简单题目 1.用括号的试剂和方法除去下列各物质的少量杂质,不正确的是() A、苯中含有苯酚(浓溴水,过滤) B、乙酸钠中含有碳酸钠(乙酸、蒸发) C、乙酸乙酯中含有乙酸(饱和碳酸钠溶液、分液) D、溴乙烷中含有醇(水、分液) 2.下列物质不能使酸性KMnO4溶液褪色的是() A、B、C2H2C、CH3 D、CH3COOH 3.(CH3CH2)2CHCH3的正确命名是( ) A、3-甲基戊烷 B、2-甲基戊烷 C、2-乙基丁烷 D、3-乙基丁烷 4.手性分子是指在分子结构中,当a、b、x、y为彼此互不相同的原子或原子团时,称此分子为手性分子,中心碳原子为手性碳原子。下列分子中指定的碳原子(用*标记)不属于手性碳原子的是() A、苹果酸 B、丙氨酸C H3CH COOH NH2 C、葡萄糖 D、甘油醛CH CH2 CHO OH OH 5.某烷烃发生氯代反应后,只能生成三种沸点不同的一氯代烃,此烷烃是() A、(CH3)2CHCH2CH2CH3 B、(CH3CH2)2CHCH3 C、(CH3)2CHCH(CH3)2 D、(CH3)3CCH2CH3 6.有—CH3,— OH,—COOH,—C6H5四种基团,两两结合而成的有机化合物中,水溶液具有酸性的有() A、3种 B、4种 C、5种 D、6种 7.下列说法错误的是() A、C2H6和C4H10一定是同系物 B、C2H4和C4H8一定都能使溴水退色

C 、C 3H 6不只表示一种物质 D 、单烯烃各同系物中碳的质量分数相同 8.常见有机反应类型有:①取代反应 ②加成反应 ③消去反应 ④酯化反应 ⑤加聚反应 ⑥缩聚反应 ⑦氧化反应 ⑧还原反应,其中可能在有机分子中新产生羟基的反应类型是 ( ) A 、①②③④ B、⑤⑥⑦⑧ C、①②⑦⑧ D、③④⑤⑥ 9.乙醛和新制的Cu (OH ) 2 反应的实验中,关键的操作是 ( ) A 、Cu (OH )2要过量 B 、NaOH 溶液要过量 C 、CuSO 4要过量 D 、使溶液pH 值小于7 10.PHB 塑料是一种可在微生物作用下降解的环保型塑料,其结构简式为: n O CH C 2H 5C O 。下面有关PHB 说法不正确的是 ( ) A 、PH B 是一种聚酯 B 、PHB 的单体是CH 3CH 2CH(OH)COOH C 、PHB 的降解产物可能有CO 2和H 2O D 、PHB 通过加聚反应制得 11. 能与银氨溶液发生银镜反应,且其水解产物也能发生银镜反应的糖类是 ( ) A 、葡萄糖 B 、麦芽糖 C 、蔗糖 D 、淀粉 12. “茶倍健”牙膏中含有茶多酚,但茶多酚是目前尚不能人工合成的纯天然、多功能、高效能的抗氧化剂和自由基净化剂。其中没食子儿茶素(EGC )的结构如下图所示。关于EGC 的下列叙述中正确的是 ( ) A 、分子中所有的原子共面 B 、1molEG C 与4molNaOH 恰好完全反应 C 、易发生加成反应,难发生氧化反应和取代反应 D 、遇FeCl 3溶液发生显色反应 13.化合物丙可由如下反应得到: 丙的结构简式不可能是 ( ) A 、CH 3CH (CH 2Br )2 B 、(CH 3)2C Br CH 2 Br O —OH OH OH OH

大学有机化学知识点总结

有机化学 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1)伞形式:C COOH OH H 3C H 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: H H H H H H H H H H H H 4)菲舍尔投影式:COOH CH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一 侧,为Z 构型,在相反侧,为E 构型。 CH 3 C C H Cl C 2H 5CH 3C C H C 2H 5Cl (Z)-3-氯-2-戊烯 (E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧, 则为顺式;在相反侧,则为反式。 CH 3C C H CH 3H CH 3C C H H CH 3顺-2-丁烯 反-2-丁烯CH 3 H CH 3 H CH 3 H H CH 3顺-1,4-二甲基环己烷反-1,4-二甲基环己烷 3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排

(完整版)大学有机化学试题及答案

简单题目 1.用括号内的试剂和方法除去下列各物质的少量杂质,不正确的是 A、苯中含有苯酚(浓溴水,过滤) B、乙酸钠中含有碳酸钠(乙酸、蒸发) C、乙酸乙酯中含有乙酸(饱和碳酸钠溶液、分液) D、溴乙烷中含有醇(水、分液) 2.下列物质不能使酸性KMnO4溶液褪色的是 A、B、C2H2C、CH3 D、CH3COOH 3.(CH3CH2)2CHCH3的正确命名是 A、3-甲基戊烷 B、2-甲基戊烷 C、2-乙基丁烷 D、3-乙基丁烷 4.手性分子是指在分子结构中,当a、b、x、y为彼此互不相同的原子或原子团时,称此分子为手性分子,中心碳原子为手性碳原子。下列分子中指定的碳原子(用*标记)不属于手性碳原子的是 A、苹果酸 B、丙氨酸C H3CH COOH NH2 C、葡萄糖D CH CH2 CHO OH OH 5.某烷烃发生氯代反应后,只能生成三种沸点不同的一氯代烃,此烷烃是 A、(CH3)2CHCH2CH2CH3 B、(CH3CH2)2CHCH3 C、(CH3)2CHCH(CH3)2 D、(CH3)3CCH2CH3 6.有—CH3,— OH,—COOH,—C6H5四种基团,两两结合而成的有机化合物中,水溶液具有酸性的有() A、3种 B、4种 C、5种 D、6种 7.下列说法错误的是() A、C2H6和C4H10一定是同系物 B、C2H4和C4H8一定都能使溴水退色 C、C3H6不只表示一种物质 D、单烯烃各同系物中碳的质量分数相同 8.常见有机反应类型有:①取代反应②加成反应③消去反应④酯化反应⑤加聚反

应 ⑥缩聚反应 ⑦氧化反应 ⑧还原反应,其中可能在有机分子中新产生羟基的反应类型是 ( ) A 、①②③④ B 、⑤⑥⑦⑧ C 、①②⑦⑧ D 、③④⑤⑥ 9.乙醛和新制的Cu (OH )2反应的实验中, 关键的操作是 ( ) A 、Cu (OH )2要过量 B 、NaOH 溶液要过量 C 、CuSO 4要过量 D 、使溶液pH 值小于7 10.PHB 塑料是一种可在微生物作用下降解的环保型塑料,其结构简式为: n O CH C 2H 5C O 。下面有关PHB 说法不正确的是 ( ) A 、PH B 是一种聚酯 B 、PHB 的单体是CH 3CH 2CH(OH)COOH C 、PHB 的降解产物可能有CO 2和H 2O D 、PHB 通过加聚反应制得 11. 能与银氨溶液发生银镜反应,且其水解产物也能发生银镜反应的糖类是 ( ) A 、葡萄糖 B 、麦芽糖 C 、蔗糖 D 、淀粉 12. “茶倍健”牙膏中含有茶多酚,但茶多酚是目前尚不能人工合成的纯天然、多功能、高效能的抗氧化剂和自由基净化剂。其中没食子儿茶素(EGC )的结构如下图所示。关于EGC 的下列叙述中正确的是 ( ) A 、分子中所有的原子共面 B 、1molEG C 与4molNaOH 恰好完全反应 C 、易发生加成反应,难发生氧化反应和取代反应 D 、遇FeCl 3溶液发生显色反应 13.化合物丙可由如下反应得到: 丙的结构简式不可能是 ( ) A 、CH 3CH (CH 2Br )2 B 、(CH 3)2C Br CH 2 Br C 、C 2H 5CH Br CH 2 Br D 、CH 3(CH Br )2CH 3 14.某有机物甲经氧化后得乙(分子式为C 2H 3O 2Cl );而甲经水解可得丙,1mol 丙和2mol 乙反应的一种含氯的酯(C 6H 8O 4Cl 2)。由此推断甲的结构简式为 ( ) O —OH OH OH OH

大学有机化学知识点总结

大学有机化学知识点总结 一、有机化合物的命名 命名是学习有机化学的“语言”,因此,要求学习者必须掌握。有机合物的命名包括俗名、习惯命名、系统命名等方法,要求能对常见有机化合物写出正确的名称或根据名称写出结构式或构型式。 1、俗名及缩写:要求掌握一些常用俗名所代表的化合物的结构式,如:木醇、甘醇、甘油、石炭酸、蚁酸、水杨醛、水杨酸、氯仿、草酸、苦味酸、肉桂酸、苯酐、甘氨酸、丙氨酸、谷氨酸、巴豆醛、葡萄糖、果糖等。还应熟悉一些常见的缩写及商品名称所代表的化合物,如:RNA、DNA、阿司匹林、福尔马林、尼古丁等。 2、习惯命名法:要求掌握“正、异、新”、“伯、仲、叔、季”等字头的含义及用法,掌握常见烃基的结构,如:烯丙基、丙烯基、正丙基、异丙基、异丁基、叔丁基、苄基等。 3、系统命名法:系统命名法是有机化合物命名的重点,必须熟练掌握各类化合物的命名原则。其中烃类的命名是基础,几何异构体、光学异构体和多官能团化合物的命名是难点,应引起重视。要牢记命名中所遵循的“次序规则”。 4、次序规则:次序规则是各种取代基按照优先顺序排列的规则 (1)原子:原子序数大的排在前面,同位素质量数大的优先。几种常见原子的优先次序为:I>Br>Cl>S>P>O>N>C>H (2)饱和基团:如果第一个原子序数相同,则比较第二个原子的原子序数,依次类推。常见的烃基优先次序为:(CH3)3C->(CH3)2CH->CH3CH2->CH3- (3)不饱和基团:可看作是与两个或三个相同的原子相连。不饱和烃基的优先次序为: -C≡CH>-CH=CH2>(CH3)2CH- 次序规则主要应用于烷烃的系统命名和烯烃中几何异构体的命名 烷烃的系统命名:如果在主链上连有几个不同的取代基,则取代基按照“次序规则”一次列出,优先基团后列出。 按照次序规则,烷基的优先次序为:叔丁基>异丁基>异丙基 >丁基>丙基>乙基>甲基。 (1)、几何异构体的命名:烯烃几何异构体的命名包括顺、反和Z、E两种方法。简单的化合物可以用顺反表示,也可以用Z、E表示。用顺反表示时,相同的原子或基团在双键碳原子同侧的为顺式,反之为反式。如果双键碳原子上所连四个基团都不相同时,不能用顺反表示,只能用Z、E表示。按照“次序规则”比较两对基团的优先顺序,较优基团在双键碳原子同侧的为Z型,反之为E型。必须注意,顺、反和Z、E是两种不同的表示方法,不存在必然的内在联系。有的化合物可以用顺反表示,也可以用Z、E表示,顺式的不一定是Z型,反式的不一定是E型。例如: CH3-CH2 Br C=C (反式,Z型) H CH2-CH3 CH3-CH2 CH3 C=C (反式,E型) H CH2-CH3

相关主题
文本预览
相关文档 最新文档