当前位置:文档之家› 物理选修磁场知识点及习题大全(力荐)

物理选修磁场知识点及习题大全(力荐)

物理选修磁场知识点及习题大全(力荐)
物理选修磁场知识点及习题大全(力荐)

第一节我们周围的磁现象

知识点回顾:

1、地磁场

(1)地球磁体的北(N)极位于地理南极附近,地球磁体的南(S)极位于地理北极附近。(2)地球磁体的磁场分布与条形磁铁的磁场相似。

(3)地磁两极与地理两极并不完全重合,存在偏差。

2、磁性材料

(1)按去磁的难易程度划分可分为硬磁性材料和软磁性材料。

(2)按材料所含化学成分划分可分为和。

(3)硬磁性材料剩磁明显,常用来制造等。

(4)软磁性材料剩磁不明显,常用来制造等。

知识点1:磁现象

一切与磁有关的现象都可称为磁现象。磁在我们的生活、生产和科技中有着广泛的应用,归纳大致分为:

(1)利用磁体对铁、钴、镍等磁性物质的吸引力;

(2)利用磁体对通电线圈的作用力;

(3)利用磁化现象记录信息。

知识点2:地磁场(重点)

地球由于本身具有磁性而在其周围形成的磁场叫地磁场。关于地磁场的起源,目前还没有令人满意的答案。一种观点认为,地磁场是由于地核中熔融金属的运动产生的,而且熔融金属运动方向的变化会引起地磁场方向的变化。科学研究发现,从地球形成迄今的漫长年代里,地磁极曾多次发生极性倒转的现象。

地磁场具有这样的特点:

(1)地磁北极在地理南极附近,地磁南极在地理北极附近;

(2)地磁场与条形磁铁产生的磁场相似,但地磁场磁性很弱;

(3)地磁场对宇宙射线的作用,保护生命(极光、宇宙射线的伤害);地磁场对生物活动的影响(迁徙动物的走南闯北如信鸽,但候鸟南飞确是受气候的影响的,不是磁场)拓展:

地磁两极与地理两极并不重合,存在地磁偏角。这种现象最早是由我国北宋的学者沈括在《梦溪笔谈》中提出的,比西方早400多年。

并不是所有的天体都有和地球一样的磁性,如火星就没有磁性

知识点3:磁性材料

磁性材料一般指铁磁性物质。按去磁的难易程度,磁性材料可分为硬磁性材料和软磁性材料。硬磁性材料具有很强的剩磁,不易去磁,一般用于制造永磁体,如扬声器、计算机硬盘、信用卡、饭卡等;软磁性材料没有明显的剩磁,退磁快,常用于制造电磁铁、电动机、发电机、磁头等。

易忽略点:怎样区分磁性材料

如何判断给定的物体是采用硬磁性材料还是软磁性材料是学习中容易出错的地方。解决此类问题关键有两点:

(1)明确所给物体的功能和原理;

(2)熟悉这两种磁性材料的特点。

练习:

1、下列有关磁的应用中利用磁化现象记录信息的是()

A、门吸

B、磁带

C、磁石治病

D、磁悬浮

2、地球是一个大磁体,它的磁场分布情况与条形磁铁的磁场分布情况相似,以下说法正确的是()

A、地磁场的方向是沿地球上经线的方向的

B、地磁场的方向与地面平行的

C、地磁场的方向是从北向南的

D、在地磁南极上空,地磁场的方向是竖直向下的

3、在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知()

A、一定是小磁针正东方向有一条形磁铁的N极靠近磁针

B、一定是小磁针正东方向有一条形磁铁的S极靠近磁针

C、可能是小磁针正东方向有一条形磁铁的S极靠近磁针

D、可能是小磁针正西方向有一条形磁铁的N极靠近磁针

4、为了判断一根钢棒有无磁性,采取了下列几种办法,你认为哪种办法可以认定钢棒没有磁性()

A、将钢棒的一端接近磁针的北极,两者相互吸引,再将钢棒的另一端接近磁针的南极,两者相互排斥。

B、将钢棒的一端接近磁针的北极,两者相互排斥,将钢棒的另一端接近磁针的北极时,两者相互吸引。

C、将钢棒的一端接近磁针的北极时,两者相互吸引,将钢棒的另一端接近磁针的南极时,两者相互吸引。

D、将钢棒的一端接近磁针的北极时,两者相互吸引,将钢棒的另一端接近磁针的北极时,两者相互吸引。

第二节认识磁场

知识点1:磁场(重点)

实物和场是物质存在的两种不同形式,磁场和电场一样,都是客观存在的一种特殊物质。(1)磁场客观存在于磁体、电流周围,磁体和电流通过磁场传递相互作用。

(2)磁场的基本性质:对放入其中的磁体或电流产生力的作用。磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的

(3)磁场有强弱和方向,可以用磁感线形象地描述磁场的强弱和方向,也可以用小磁针受力方向来描述磁场的方向。物理学规定,磁场的方向即小磁针N极受力的方向,亦即小磁针静止时N极指向。

(4)磁场是媒介物:磁极间、电流间、磁极与电流间的相互作用是通过磁场发生的。

知识点2:磁感线(重点)

在磁场中每一点,磁场都有确定的大小和方向,物理学中用磁感线形象地描述磁场。所谓磁感线就是为了使人们更形象更直观地描述磁场,而引入的一系列有方向的曲线:(1)磁感线的定义

在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致,这样的曲线叫做磁感线。

(2)特点:

A、磁感线是闭合曲线,磁铁外部的磁感线是从北极出来,回到磁铁的南极,内部是从南极到北极.

B、每条磁感线都是闭合曲线,任意两条磁感线不相交。

C、磁感线上每一点的切线方向都表示该点的磁场方向。

D、磁感线的疏密程度表示磁感应强度的大小

注意:磁感线是为了形象地描述磁场而引入的数学工具,最早是由英国物理学家法拉第提出的,并不真实存在,实验时常用被磁化的铁屑来显示磁感线的分布,但绝不能认为磁感线是由细铁屑组成的。

磁感线是闭合的,磁场中未画磁感线的空间,磁场照样存在,磁感线不相交。

磁感线和电场线的区别

项目磁感线电场线

相似点意义形象地描述磁场方向和

相对强弱而遐想的线

形象地描述电场方向和相对强弱而

遐想的线

方向线上各点的切线方向即

为该点的磁场方向,是小

磁针N极的受力方向

线上各点的切线方向即为该点的磁

场方向,是正电荷受力方向

疏密表示磁场强弱表示电场强弱

特点在空间不相交、不中断除电荷外,在空间不相交、不中断

不同点不同点是闭合曲线静电场线始于正电荷或无穷远处,止

于负电荷或无穷远,是不闭合曲线

知识点3:安培定则(重点)

法国物理学家安培通过实验总结出了用于判断电流的磁场分布的法则——安培定则,又称为右手螺旋定则。可用于判断直线电流、环形电流和通电螺线管的磁感线分布。

直线电流的方向和磁感线方向之间的关系可用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向.

几种常见磁场的磁感线的分布

(1)条形磁铁和碲形磁铁的磁感线

条形磁铁和蹄形磁铁是两种最常见的磁体,如图所示的是这两种磁体在平面内的磁感线形状,其实它们的磁感线分布在整个空间内,而且磁感线是闭合的,它们的内部都有磁感线分布。

(2)通电直导线磁场的磁感线

通电直导线磁场的磁感线的形状与分布如图所示,通电直导线磁场的磁感线是一组组以导线上各点为圆心的同心圆。

需要指出的是,通电直导线产生的磁场是不均匀的,越靠近导线,磁场越强,磁感线越密。电流的方向与磁感线方向的关系可以用安培定则来判断,如图所示。用右手握住直导线,伸直的大拇指与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。

(3)环形电流磁场的磁感线

环形电流磁场的磁感线是一些围绕环形导线的闭合曲线,在环形的中心轴上,由对称性可知,磁感线是与环形导线的平面垂直的一条直线。如图甲所示,环形电流方向与磁感线方向的关系也可以用右手定则来判断,如图乙所示,让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是圆环轴线上磁感线的方向;如图丙所示,让右手握住部分环形导线,伸直的大拇指与电流方向一致,则四指所指的方向就是围绕环形导线的磁感线的方向。

(4)通电螺线管的磁感线

通电螺线管表现出来的磁性很像一根条形磁铁,一端相当于北极(N),另一端相当于南极(S),形成的磁感线在通电螺线管的外部从北极(N)出来进入南极(S),通电螺线管内部具有磁场,磁感线方向与管轴线平行,方向都是由S极指向N极,并与外部磁感线连接形成一些闭合曲线,其方向也可用安培定则判断,用右手握住螺线管,让弯曲的四指所指的方向跟电流的方向一致,那么大拇指所指的方向就是螺线管内部磁感线的方向,如图所示。

(5)地磁场的磁感线

地磁场的南北极与地理上的南北极刚好相反,所以磁感线从地理的南极出来进入地理的北极如图所示。

知识点4:分子电流假说

1.内容:法国物理学家安培受到通电螺线管外磁场与条形磁铁的磁场相似的启发,提出了著名的分子电流假说:任何物质的分子中都存在环形电流——分子电流,分子电流使每个物质分子都成为一个微小的磁体,如图。

2.解释:安培的分子电流假说对有关磁现象的解释:

(1)磁化现象:一软铁棒,在未被磁化时,内部各分子电流的取向杂乱无章,它们的磁场相互抵消,对外不显磁性。当软铁棒受到外界磁场的作用时,各分子电流取向变得大致相同,两端显示较强的磁作用,形成磁极,软铁棒就被磁化了。

(2)消磁:磁体在高温或猛烈敲击下,即在激烈的热运动或机械运动影响下,分子电流取向变得杂乱无章了,磁体磁性消失。

拓展:

(1)假说是一种常用的科学研究方法,在安培的时代,人们不知道物质内部为什么会有分子电流,20世纪后,随着电子的发现,人们认识到,原子内部带电粒子的不停运动即对应安培所说的分子电流,分子电流假说已经成为真理,揭示了磁现象的电本质。

(2)需要指出的是并非所有的磁场都是由电荷的运动产生的根据麦克斯韦的电磁场理论,变化的电场可以产生磁场。

(3)磁现象的电本质:磁铁和电流的磁场本质上都是运动电荷产生的.

易错点:磁体内部小磁针指向

在判断小磁针处于磁体内部N极指向问题时,有些同学往往套用初中的结论“同名磁极相互排斥,异名磁极相互吸引”而做出错误判断,错误原因是不了解结论的适用条件。对于小磁针处于磁体内部时,我们应该运用高中教材中的物理学规定:“小磁针在磁场中静止时,N 极所指的方向就是磁场的方向,也就是磁感线的方向。”所以,学习物理知识,切忌不加分析,盲目套用公式或结论。

易忽略点:磁场的方向

磁场的方向可用磁感线的切线方向来表示,也可用小磁针的N极指向来表示。在用小磁针描述时,容易忽略的是:小磁针的哪一极以及小磁针的状态(静止时)。

易混点:磁场和电场

磁场和电场虽然都是物质的一种特殊形态,都具有物质性,但并不是完全相同的物质,其不同点有:

(1)起源不同。电场存在于电荷周围,磁场存在于磁体、电流和运动电荷的周围。(2)场线不同。电场线不闭合,起始于正电荷终止于负电荷;磁感线闭合,外部从N极到S极,内部从S极到N极。

(3)(静)电场是保守力场,电场力做功与路径无关,只与初末位置的电势差有关。磁场是涡旋场,不能引入相应的“势能”概念来研究磁场的性质。

练习:

1、北京某高校一研究小组欲研究当地磁场方向问题,研究小组用一细线将一质量分布均匀的条形磁铁悬挂起来。今欲使磁铁平衡且保持水平状态,则细线系住条形磁铁的位置应是( )

A 、磁铁的重心处

B 、磁铁的某一磁极处

C 、磁铁重心的北侧

D 、磁铁重心的南侧

2、如图11-1-1所示,a 、b 、c 三枚小磁针分别放在通电螺线管的正上方、管内和右侧。当这些小磁针静止时,小磁针N 极的指向是( ) A.

a 、

b 、

c 均向左 B.a 、b 、c 均向右

C.a 向左,b 向右,c 向右

D.a 向右,b 向左,c 向右

变式训练1:如图11-1-2所示,带负电的金属环绕轴'OO 以角速度 匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是( ) A.N 极竖直向上 B.N 极竖直向下

C.N 极沿轴线向左 D.N 极沿轴线向右

3、如图所示,橡胶圆盘上带有大量负电荷,当圆盘在水平面上沿逆时针方向转动时,悬挂在圆盘边缘上方的小磁针可能转动的方向是( )

A 、N 极偏向圆心

B 、S 极偏向圆心

C 、无论小磁针在何位置,圆盘转动对小磁针均无影响

D 、A 、B 两种情况都有可能 4、根据安培假说的思想,认为磁场是由于运动电荷产生的,这种思想对地磁场也应是适用的,而目前在地球上并未发现相对地球定向移动的电荷,那么由此推断,地球应该( ) A 、负电荷 B 、带正电 C 、不带电 D 、无法确定

5、一个电子沿纸面做快速的顺时针方向的圆周运动,则这个电子的运动将( ) A 、不产生磁场

B 、产生只在圆周内侧存在的磁场

C 、产生相当于环形电流产生的磁场,在圆心处的磁场方向垂直纸面向里

D 、产生相当于环形电流产生的磁场,在圆心处的磁场方向垂直纸面向外

判断下图中导线A 所受磁场力的方向.

答案:

a

b c

N

S

O

'O 图11-1-2

知识点1:安培力(重点)

磁场对电流的作用力称为安培力,安培力是按性质命名的力,在对物体(通电导线)进行受力分析时,应该加以考虑。

(1) 安培力方向的判定方向——左手定则:伸开左手,使大拇指跟其余四指

垂直,并且都跟手掌在同一平面内,把手放入磁场中,让磁感线垂直穿过手心,使伸开的四指指向电流方向,那么大拇指所指的方向为安培力的方向。

(2) 安培力的大小:同一通电导线,按不同方式放在同一磁场中,如图所示,三种情况

下,通电导线与磁场垂直时受到的安培力最大,取为Fmax ;当通电导线与磁场方向平行时,不受安培力,F=0;其他情况下,0

① 当B 与I 垂直时,F=BIL 。

② 当B 与I 成θ角时,θsin BIL F =,θ是B 与I 的夹角。推导过程:如图所示,将B

分解为垂直电流方向的θsin 2B B =和沿电流方向的θcos 1B B =,B 对I 的作用可用

1B 、2B 对I 的作用等效替代,θsin ,0221BIL IL B F F ===,由平行四边形定则可知

磁场B 对电流I 的力θsin 22221BIL F F F F ==+=

(3) 安培力的性质:通电导线在磁场中与磁场方向非平行放置时,导线将受到安培力作

用,安培力对通电导线可做正功,也可做负功。安培力做功的过程,是电能与其他形式的能(机械能)相互转化的过程。

① 安培力F 的方向垂直于磁场B 和电流I 所确定的平面,与通电导线运动方向不一定垂直,

可以相同也可以相反。

② 安培力F 的方向总与磁场方向垂直,电场力F 的方向与电场方向平行。

③ 安培力的大小除与B 、I 、L 有关外,还跟磁场B 与电流I 方向的夹角θ有关,平行时

0,00==F θ。

知识点2:磁感应强度(重点)

磁感应强度是描述磁场强弱和方向的物理量。

(1) 定义:磁场中垂直于磁场方向的通电直流导线,受到的安培力F ,跟电流I 和导线

长度L 的乘积IL 的比值,叫做通电导线所在处的磁感应强度。 (2) 定义式:IL

F

B =

,单位:特斯拉,符号T ,)/(11m A N T ?=。 (3) 矢量:方向就是磁场方向,即小磁针N 极的受力方向。

(4) 磁感应强度大小、方向处处都不变的磁场称为匀强磁场。距离很近的两个异名磁极

之间的磁场,通电螺线管内中间部分的磁场都认为是匀强磁场。

注意:①磁感应强度是反映磁场力的性质的物理量,与静电场中的电场强度相似,只与场本身有关,与安培力F 、电流I 、导线长度L 和夹角θ均无关。

② 感应强度的方向是磁场的方向,即该点磁感线的切线方向,与安培力F 方向垂直。

知识点3:磁通量(难点)

在匀强磁场中有一个与磁场方向垂直的平面,设磁场的磁感应强度为B ,平面的面积为S ,我们将磁感应强度B 与面积S 的乘积,叫做穿过这个面的磁通量,用Φ表示。

(1)在磁感应强度为B 的匀强磁场中,穿过与磁场方向垂直、面积为S 的平面的磁通量Φ=BS (适用于B 与S 垂直)。 (2)单位:韦伯,符号Wb ,2

11m T Wb ?=。 (3)S

B φ

=

,磁感应强度B 又叫磁通密度,2

/11m Wb T =。

拓展:

① 公式Φ=BS 适用于匀强磁场且S 与B 垂直,若平面与磁场方向不垂直,应把面积S 投影

到与磁场垂直的方向上,求出投影面积⊥S ,代入得⊥=BS φ,如图所示

θφcos BS BS ==⊥。

当0

0=θ时,B 与S 垂直,Φ=BS , 当090=θ时,B 与S 平行,Φ=0.

② 磁通量变化有三种形式:

a 、 磁感应强度B 不变,有效面积S 变化。

S B S S B ??=-=Φ-Φ=?Φ)(1212,如图所示

b 、面积S 不变,磁感应强度B 变化。

B S B B S ??=-=Φ-Φ=?Φ)(1212

电场强度(E )

磁感应强度(B )

意义 描述电场的力的性质的物理量

描述磁场的力的性质的物理量 概 念 的 建 立

①电场对电荷q 有作用力;

②对电场中的不同点,E 的值一般不同

③E 由电场本身决定

①磁场对直线电流有作用力

②对磁场中的不同点,B 的值一般不同

③B 由磁场本身决定

公式

E=F q

B=

F IL

单位 1N/C=1V/m

1T=1N/A ·m

方向 正电荷受到电场力方向

静止小磁针N 极受到的磁场力方向

c 、面积S 和磁感应强度B 均不变,改变B 与S 的夹角θ,如图所示,转过0

180过程中BS BS BS 2)(=--=?Φ

③磁通量是标量,有正负之分,其正负是这样规定的:任何一个平面都有正反两面,若规定磁感线从正面穿入为正磁通量,则磁通量为负值即表示磁感线从反面穿入。

若磁感线沿相反方向穿过同一平面,且正向磁感线条数为1Φ,反向磁感线条数为2Φ,则磁通量等于穿过该平面的磁感线的净条数(磁通量的代数和),即21Φ-Φ=Φ。 易错点:IL

F

B =

与BIL F = IL

F

B =

是磁感应强度的定义式,BIL F =是安培力的关系式。所谓定义式是被定义的物理量与定义它的物理量之间没有函数关系 ,磁感应强度B 只与磁场本身的性质有关,与F 、I 、L 无关。以前学过的物理量的定义式如I

U

R U Q C q F E ===

,,等都有这种性质。关系式中物理量与其他量有函数关系,安培力F 与B 、I 、L 都有关系。 需要指出的是,上述的IL

F

B =

和BIL F =只适用于磁场B 与电流I 方向垂直的情形。 易混点:磁感应强度与电场强度

磁感应强度与电场强度都是描述场的性质的物理量,二者既有相似之处,也有区别,电场和磁场的区别搞不清楚,是导致出错的主要原因。 区别:(1)方向规定适用不同。磁感应强度的方向规定为小磁针N 极的受力方向。电场强度的方向规定为正电荷所受力的方向。电场强度的方向一定跟静电力的方向在一条直线上。磁感应强度的方向一定跟电流所受磁场力的方向垂直。 (2)定义式适用条件不同。IL

F

B =

只适用于B 方向与电流方向垂直的情况,q F E =普遍

适用。

(3)受力条件不同。电荷在静电场中一定受到静电力作用,电流在磁场中不一定受磁场力作用,必须非平行放置。

(4)单位不同。磁感应强度的单位:特斯拉,2

/1)/(11m Wb m A N T =?=。电场强度的单位:牛顿每库伦或伏特每米(N/C 或V/m )。

(5)物理意义不同。磁感应强度B ,在数值上等于垂直于磁场方向放置长为1m ,电流为1A 的导线所受安培力的大小。电场强度E ,在数值上等于电场强度对单位电荷作用力的大小。 易忽略点:磁通量是标量,正、负表示穿入和穿出两个相反的状态。忽略磁通量的正、负,是易犯的错误,在分析磁通量及其变化时,若过程前后状态不同,一般选取正方向,以避免计算过程出现错误。

练习

1、关于磁感应强度,下列说法正确的是( ) A 、由IL

F

B =

可知,B 与F 成正比,与IL 成反比 B 、通电导线放在磁场中的某点,那点就有磁感应强度,如果将通电导线拿走,那点的磁感应强度就为零

C 、通电导线受安培力不为零的地方一定存在磁场,通电导线不受安培力的地方不一定存在磁场(B=0)

D 、磁场中某一点的磁感应强度是由磁场本身的性质决定的,其大小和方向是唯一确定的,与通电导线无关

2、下列关于电场和磁场的说法中正确的是( )

A 、电荷在某处不受到电场力的作用,则该处的电场强度为零

B 、一小段通电导体在某处不受到电场力作用,则该处磁感应强度一定为零

C 、把一个试探电荷放在电场中的某点,它受到的电场力与所带电荷量的比值表示该点电场的强弱

D 、把一小段通电导线放在磁场中某处,它受到的磁场力与该小段通电导线的长度和电流的乘积的比值,表示该处磁场的强弱

3、如图所示,两同心圆环A 和B 处在同一平面内,B 的半径小于A 的半径,一块条形磁铁的轴线与圆环平面垂直,则穿过两圆环的磁通量A Φ与B Φ的大小关系是( ) A 、A Φ>B Φ B 、A Φ=B Φ C 、A Φ

4、在赤道上空,水平放置一根通以由西向东电流的直导线,则此导线( ) A 、受到竖直向上的安培力 B 、受到竖直向下的安培力 C 、受到由南向北的安培力 D 、受到由西向东的安培力

5、通电电流为I 的直导线与通电闭合线圈abcd 在同一平面内,如图所示,不计重力,若直导线固定,那么闭合线圈将( )

A 、在纸面内向上运动

B 、在纸面内向下运动

C 、在纸面内远离导线

D 、在纸面内靠近导线

6、如图所示,在磁感应强度B=1.0T 、方向竖直向下的匀强磁场中,有一个与水平面成0

37

=θ角的通电滑轨,滑轨上放置一个可自由移动的金属杆ab ,已知接在滑轨中的电源的电动势E=12V ,内阻不计,ab 杆长L=0.5m ,杆的质量m=0.2kg ,杆与平行滑轨间的动摩擦因数μ=0.1,滑轨与ab 杆的电阻忽略不计,求要使ab 杆在滑轨上保持静止,变阻器R 的阻值应在什么范围变化?(g 取2

/10s m ,6.037sin 0

=,可认为最大静摩擦力与滑动摩擦力相等)

a b

N S

7、如图所示,两平行光滑导轨相距为20cm ,金属棒MN 的质量为10g ,电阻R=8Ω,匀强磁场的磁感应强度B=0.8T ,方向竖直向下,电源电动势E=10V ,内阻r=1Ω。当开关K 闭合时,MN 恰好平衡,求变阻器R1的取值为多少?设45=θ°

8、在原子反应堆中驱动液态金属导电液,由于不允许传动机械部分与这些液体相接触,常使用一种电磁泵来完成,如图所示是这种电磁泵的结构,将导管置于磁场中,当电流I 穿过导电液体时,场中导电液体即被驱动,若导管的内截面积h a ?,磁场区域的宽度为L ,磁感应强度为B ,液态金属穿过磁场区域的电流为I ,方向如图所示,求驱动所产生的压强是多大?

9、如图所示为电流天平,可以用来测量匀强磁场的磁感应强度,它的右臂挂着矩形线圈,匝数为n ,线圈的水平边长为L ,处于匀强磁场内,磁感应强度B 的方向与线圈平面垂直。当线圈中通过电流I 时,调节砝码使两臂达到平衡。然后使电流反向,大小不变,这时需要在左盘中增加质量为m 的砝码,才能使两臂重新平衡。 (1)导出用已知量和可测量n 、m 、L 、I 计算B 的表达式

(2)当n=9,L=10.0cm ,I=0.10A ,m=8.82g 时,磁感应强度是多大?

第四节安培力的应用

必记知识

1、直流电动机

(1)构造:、、、。

(2)原理:直流电流经电刷流过电杻上的线圈,在磁场中受到作用,产生电磁力矩而转动。

(3)优点:易调速。

2、磁电式电表

(1)构造:、、、。

(2)用途:测量的电学仪器。

(3)优点:,缺点。

(4)原理:线圈受安培力矩转动,当与螺旋弹簧力矩平衡时停下。

知识点1:直流电动机(重点)

在磁场中,如果给线圈通以方向合适的电流,就可以使线圈转动起来,电动机就是利用安培力工作的。世界上第一台有实用价值的电动机,是在1834年由俄国的雅可比发明的。现在,电动机广泛应用于工厂、办公室和家庭里。

(1)构造:电动机主要有一对磁极(N、S)、线圈(电杻)、两绝缘的铜质滑环即换向器和一对石墨电刷A、B组成,如图所示

(2)原理:多匝线圈(电杻)镶嵌在硅钢片的槽中,固定在铁质圆柱体外表面上,可随圆柱体一起转动,称为转子,磁极一般固定不动,称为定子。

线圈通入直流电后,线圈两边ab、cd受到安培力作用,产生电磁力矩而转动,如图180使ab、cd位置互换后,由左手定则知线圈所受电磁力矩反向,阻当线圈转过0

碍线圈继续转动。

怎样才能使电动机连续转动:必须加装一个“换向器”。

知识点2:磁电式电表

(1)电流表的构造:如图所示,在磁性很强的蹄形磁铁的两极间有一个固定的圆柱形铁芯,铁芯外面套有一个可以绕轴转动的铝框,铝框上绕有线圈,铝框的转轴上装有两个螺旋弹簧和一个指针,线圈的两端分别接在这两个螺旋弹簧上,被测电流经过这两个螺旋弹簧流入线圈。

(2)电流表的工作原理:如图所示,蹄形磁铁和铁芯间的磁场是均匀辐射分布的磁场。放入其中的通电线圈不管转到什么角度,它的平面都跟磁感线平行,线框两边所受的安培力方向始终跟线框面垂直。所以线框所受电磁力矩在任何位置均为NBIS M =。 当N 、S 、B 一定时,线框所受安培力矩与通入的电流强度成正比。

线圈转动时,螺旋弹簧变形,反抗线圈的转动,电流越大,电磁力矩越大,与它平衡的反抗力矩也越大,两力矩平衡时,线圈停在一定的位置上,反抗力矩θk M =',k 是恒量,是螺旋弹簧的扭转系数。由M M '=知,θk NBIS =,即I k

NBS

?=

θ,对某一电流表,N 、B 、S 、k 是确定的,因此线圈的偏转角度θ与电流I 的大小成正比,即线圈上的指针偏转角度跟电流大小成正比,根据指针偏转角度的大小就可测出电流的数值。 电流方向改变时,安培力方向随着改变,指针的偏转方向也随着改变,根据指针的偏转方向,就可知道电流的方向。

因此,电流表是测定电流强弱和方向的电学仪器,优点是灵敏度高,可以测很弱的电流。 缺点是由于绕制线圈的导线很细,允许通过的电流(满偏电流g I )很弱,过载能力弱,易烧坏。

① 蹄形磁铁的铁芯间的磁铁是均匀分布的,不管通电线圈转到什么角度,它的平面都

跟磁感线平行,通电线圈所受的磁力矩恒为NBIS M =。由M M '=,θ

k NBIS =知I k

NBS

?=

θ,即I ∝θ,因此电流表刻度是均匀的。 ② 磁场并非匀强磁场。 实验: 实验目的:(1)探究直流电动机工作原理; (2)分析改变电动机转速的方法; (3)了解玩具电动机。 实验步骤:

(1) 组装电动机模型,按电路图连接电路,调节滑动变阻器阻值,以免开关闭合后,

烧坏电流表;

(2) 闭合开关,观察电动机启动过程和正常运转时电流的变化,了解换向器的功能;

(3) 与同学讨论线圈持续转动的原因;

(4) 调节滑动变阻器阻值,改变负载电阻的大小,观察电动机的转速变化; (5) 分析电动机的能量转化;

(6) 观察玩具电动机,了解其构造及特点。 注意:(1)实验时注意变阻器的阻值,避免烧坏电表;

(2)在线圈平面与磁场分析平行时,闭合开关; (3)防止电动机过载;

(4)电动机线圈在磁场中旋转,产生反电动势,故电动机正常工作时不遵守欧姆定律,是非纯电阻元件。 练习:

1、磁电式电流表的蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,目的是( )

A 、使磁场成圆柱形,以便线圈转动。

B 、使线圈平面在水平位置时与磁感线平行

C 、使线圈平面始终与磁感线平行

D 、为了使磁场分布规则 2、关于磁电式电流表,下列说法中正确的是( )

A 、电流表的线圈处于匀强磁场中

B 、电流表的线圈处于均匀辐射磁场中

C 、电流表的线圈转动时,安培力矩始终大小不变

D 、电流表指针的偏转角与所加电流大小成正比

第五节 研究洛伦兹力

必记知识 1、(1)定义:磁场对 的作用力。

(2)大小: ,适用于 (3)方向:总与速度v 和磁感应强度B 的方向 ,用 定则判定。 (4)洛伦兹力不做功。 知识点1:洛伦兹力的方向

磁场对运动电荷的作用力称为洛伦兹力,由于电流是由电荷的定向移动形成的,故左手定则仍适用于洛伦兹力方向的判定,具体方法:

伸出左手,使大拇指与其余四指垂直且在同一平面内,让磁感线垂直穿过手心,四指指向正电荷的运动方向,则大拇指所指的方向就是正电荷所受洛伦兹力的方向,若研究的是负电荷的受力,则四指应指向负电荷的反方向。 注意:

(1) 电荷有“正、负”之分,用左手定则判断电荷受力方向时应先判明电性,以免

出现错误;

(2) 运动电荷速度方向与磁场方向平行时,电荷不受洛伦兹力。 (3) 由左手定则知洛伦兹力始终与速度方向垂直,不做功。 知识点2:洛伦兹力的大小

(1)当带电粒子的速度方向与磁场方向平行时粒子所受洛伦兹力0=f 。

(2)当带电粒子的速度方向与磁场方向垂直时粒子所受洛伦兹力最大,为Bqv f =。 (3)若题目给出的条件是单位长度上的电荷数为n ,可推出结论nL N =。 (4)推导思路:

洛伦兹力是安培力的微观实质,安培力安F 是导体内所有运动电荷所受洛伦兹力f 的宏观表现。

易混点:洛伦兹力和电场力

洛伦兹力与静电场力性质相似,由于区分不清,很多同学往往在这方面出现错误,搞清二者的区别是避免出错的关键。

(1) 电荷在电场中一定会受到电场力的作用,而电荷在磁场中不一定受到磁场力的

作用,只有相对于磁场运动,且运动方向与磁场方向不平行的电荷,才受到磁场力作用,相对磁场静止的电荷或虽运动但运动方向与磁场方向平行的电荷不受磁场力的作用。

(2) 电场对电荷作用力的大小仅决定于电场强度E 和电荷量q ,即qE F =,而磁场

对电荷的作用力大小不仅与磁感应强度B 和电荷量q 有关,还与电荷运动速度

v 的大小及速度方向与磁场方向的夹角有关,随夹角的不同,洛伦兹力在0和

qvB 间变化。

(3) 电荷所受电场力的方向,总是沿着电场线的切线方向(与电场力方向相同或相

反),而电荷所受磁场力的方向总是既垂直于磁场方向,又垂直于电荷运动方向(即垂直于磁场方向和电荷方向所决定的平面)。

(4) 在匀强电场中,电荷受的电场力是一个恒力;在匀强磁场中,如果运动电荷的

速度大小或方向发生改变,则洛伦兹力是一个变力。

(5) 电荷在电场中运动时,电场力要对电荷做功(电荷在等势面上运动除外),而电

荷在磁场中运动时,因洛伦兹力始终与电荷运动方向垂直,因此洛伦兹力永不做功。

练习:

1、 一个质量m=0.1g 的小滑块,带有c q 4

105-?=的电荷放置在倾角0

30=θ的光滑斜面上

(绝缘),斜面置于B=0.5T 的匀强磁场中,磁场方向垂直纸面向里,如图所示,小滑块由静止开始沿斜面滑下,其斜面足够长,小滑块滑至某一位置时,要离开斜面,求: (1)小滑块带何种电荷?

(2)小滑块离开斜面的瞬时速度多大? (3)该斜面的长度至少多长?

2、在垂直纸面水平向里,磁感应强度为B的匀强磁场中,有一固定在水平地面上的光滑圆

槽,一个带电荷量为+q,质量为m的小球,在如图所示位置由静止滚下,小球滚到槽底时对槽底的压力等于mg,求圆槽轨道的半径R。

3、如图所示为一电磁流量计的示意图,横截面为一正方形的非磁性管,其边长为d,内有

导电液流动的方向加一指向纸里的匀强磁场,磁感应强度为B。现测得液体上下表面上

a、b两点间电势差为U,求管内导电液体的流量Q。

第六节 洛伦兹力与现代技术

必记知识

1、 带电粒子在磁场中的运动

(1)平行磁感线进入,粒子做 运动。 (2)垂直进入匀强磁场,粒子做 运动。

(3)速度v 与磁感线成夹角θ,粒子做 运动。 2、带电粒子垂直进入匀强磁场

(1)由于所受洛伦兹力大小 ,方向始终与速度方向 ,故将做 。

(2)由 推知=r ,T= 。 3、质谱仪

(1)质谱仪是由 发明,用于测量 分析 的仪器。

(2)电荷量相同,质量不同的粒子经电场加速后,进入磁场将沿 做圆周运动,打在底片上形成若干条细线,称为 ,每一条谱线对应一定的质量,根据圆周的 ,如果再已知带电粒子的电荷量,就可算出它的质量。 4、回旋加速器

(1)1930年美国的 制成世界上第一台回旋加速器。

(2)原理:回旋加速器利用了带电粒子在磁场中做匀速圆周运动的规律,用 实现对带电粒子多次加速的原理制成的。其体积相对较小。由于带电粒子在D 形盒缝隙处被电场加速,其速度增大,半径 ,但粒子运动周期qB

m

T π2=

与速度和半径 ,所以,当交变电场也以周期T 变化时,就能使粒子每经过缝隙处就加速一次,从而获得很大的速度和动能。

(3)局限性: 。 知识点1:带电粒子在磁场中的运动(重点) (1)运动的类型

①匀速直线运动条件:带电粒子的垂直方向与磁感线平行,所受洛伦兹力为零。

②匀速圆周运动条件:带电粒子垂直进入匀强磁场,由于洛伦兹力大小不变,方向始终与运动方向垂直,洛伦兹力不变速度的大小,只改变速度方向,故洛伦兹力提供向心力,做匀速圆周运动。

③ 等距螺旋线运动条件:带电粒子速度方向与磁感线成某一夹角θ。将速度v 按磁场方向和垂直方向分解为θcos v v x =,θsin v v y =。沿磁场方向上做匀速直线运动θcos v v x =,同时在垂直磁场方向上做匀速圆周运动。故做等距螺旋线运动。 螺距(一个周期内沿着磁场方向位移)qB

m

v T v L x πθ

2cos ==,螺径 (圆周运动的直径)qB

mv r d θ

sin 22==。

(2)粒子做匀速运动的轨道半径和周期

如图所示,电子以速度v 垂直磁场方向入射,在磁场中做匀速圆周运动,设电子质量为m ,

电荷量为q ,由于洛伦兹力提供向心力,则有r

v m qvB 2

=

,得到轨道半径qB mv r =。由轨道

半径与周期的关系,得

qB m v

qB

mv v

r

T πππ222=

?==

,周期qB

m

T π2=。 (3)处理匀速圆周运动的一般思路:

①确定圆心。方法:利用洛伦兹力提供向心力,在运动轨迹上找到两点,由左手定则判断受力方向,两条直线交点即圆心位置。 具体可分为两种情况:

情景一、已知入射点、入射方向和出射点、出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1所示,图中P 为入射点,M 为出射点)。

图8-2-1

情景二、已知入射点、入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如9-2图所示,P 为入射点,M 为出射点)。 ②作直角三角形。

③寻找圆心角,确定时间。

粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应圆心角为θ时,其运动时间

qB

m T t θπθ==

2(θ单位是弧度)。 拓展:对于带电粒子做匀速圆周运动问题主要是求速度v 和时间t ,转化为数学知识即求圆心角和半径。用到相关的数学知识,如一段圆弧所对应的圆心角是其弦切角的2倍等。

带电粒子在有界匀强磁场中运动的问题

有界匀强磁场是指在局部空间内存在着匀强磁场。对磁场边界约束时,可以使磁场有着多种多样的边界形状,如:单直线边界、平行直线边界、矩形边界、圆形边界、三角形边界等。这类问题中一般设计为:带电粒子在磁场外以垂直磁场方向的速度进入磁场,在磁场内经历一段匀速圆周运动后离开磁场。粒子进入磁场时速度方向与磁场边界夹角不同,使粒子运动轨迹不同,导致粒子轨迹与磁场边界的关系不同,由此带来很多临界问题。 1、基本轨迹。

(1)单直线边界磁场(如图1所示)。

2

带电粒子垂直磁场进入磁场时。

①如果垂直磁场边界进入,粒子作半圆运动后垂直原边界飞出;

②如果与磁场边界成夹角θ进入,仍以与磁场边界夹角θ飞出(有两种轨迹,图1中若两轨迹共弦,则θ1=θ2)

(2)平行直线边界磁场(如图2所示)。

带电粒子垂直磁场边界并垂直磁场进入磁场时, ①速度较小时,作半圆运动后从原边界飞出;

②速度增加为某临界值时,粒子作部分圆周运动其轨迹与另一边界相切;③速度较大时粒子作部分圆周运动后从另一边界飞出。 (3)矩形边界磁场(如图3所示)。

材料科学概论考点总结

材料科学概论考点总结

1·材料: 材料是人类社会所能接受的、可经济地制造有用物品的物质(Materials is the stuff from which a thing is made for using.) 2·材料的分类及类型: 按服役领域分类:结构材料 (受力,承载),功能材料 (半导体,超导体以及光、电、声、磁等) 按化学组成分:金属材料,无机非金属材料,高分子材料,复合材料 按材料尺寸分:零维材料,一维材料,二维材料,三维材料 按结晶状态分:晶态材料,非晶态材料,准晶态材料 3·材料科学:是一门以实体材料为研究对象,以固体物理,热力学,动力学,量子力学,冶金,化工为理论基础的交叉型应用基础学科。4·材料的发展要素:材料的成分、组织结构、合成加工、性质与使用性能5·材料的力学性能:弹性模量,强度,塑性,断裂韧性,硬度 6·塑性变形:材料在外力作用下产生去除外力后不能恢复原状的永久性变形称为塑性变形。塑性变形具有不可逆性 7·能带:满带,空带,价带,禁带 8·磁性的分类: 磁滞回线: H c :矫顽力 H m :饱和磁场强度 B r :剩余磁感应强度 B s :饱和磁感应强度 9·不同材料的热导率特性:金属材料有很高的热导率,无机陶瓷或其它绝缘材料热导率较低,半导体材料的热传导,高分子材料热导率很 低 10·固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体. 11·断裂韧度:是衡量材料在裂纹存在的情况下抵抗断裂的能力 12·影响断裂失效的因素: (1)材料机械性能的影响 (2)零件几何形状的影响 (3)零件应力状态的影响 (4)加工缺陷的影响 (5)装配、检验产生缺陷的影响 13·穿晶断裂:裂纹在晶粒内部扩展,并穿过晶界进入相邻晶粒继续扩展直至断裂

高中物理磁场知识点总结+例题

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B ;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A m)=1kg/(A s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 + N S 地球磁场 条形磁铁 蹄形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增大、减小还是不变)。水平面对磁铁的摩擦力大小为______。 解:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中下方的虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩 擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中上方的虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。 例2.电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转 解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈 靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。 F 2

高二物理磁场相关知识点归纳

高二物理磁场相关知识点归纳 为了方便高二的同学们更好地学习掌握物理知识,小编在这里整理了高二物理磁场相关知识点归纳,供大家参考学习,希望能对大家有帮助! 第十章磁场 一、磁场: 1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用; 2、磁铁、电流都能能产生磁场; 3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用; 4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向; 二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向; 1、磁感线是人们为了描述磁场而人为假设的线; 2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极; 3、磁感线是封闭曲线; 三、安培定则: 1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向; 3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向; 四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极); 五、磁感应强度:磁感应强度是描述磁场强弱的物理量。 1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL 2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向) 3、磁感应强度的国际单位:特斯拉 T, 1T=1N/A。m 六、安培力:磁场对电流的作用力; 1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。2、定义式 F=BIL(适用于匀强电场、导线很短时) 3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高中物理磁场知识点汇总

高中物理磁场知识点汇总 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在? ?奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。 3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线

高二物理磁场重要知识点整理有答案(精品文档)

物理重要知识点整理——磁场 一.基本概念: 1.磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。 磁场的方向:规定磁场中任意一点小磁针N 极受力的方向(或者小磁针静止时N 极的指向)就是那一点的磁场方向。 2.磁感线:磁感线不是真实存在的,是人为画上去的。曲线的疏密能代表磁场的强弱,磁感线越密的地方磁场越强,磁感线从N 极进来,S 极进去,磁感线都是闭合曲线且磁感线不相交。 .几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。 b.其磁感线是内密外疏的同心圆。 (3)环形电流磁场 a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。 b.所有磁感线都通过内部,内密外疏 (4)通电螺线管 a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向。 b. 通电螺线管的磁场相当于条形磁铁的磁场。 例1下列说法正确的是( ) A .通过某平面的磁感线条数为零,则此平面处的磁感应强度一定为零 B .空间各点磁感应强度的方向就是该点磁场方向 C .两平行放置的异名磁极间的磁场为匀强磁场 D .磁感应强度为零,则通过该处的某面积的磁感线条数不一定为零 【解析】 磁感应强度反映磁场的强弱和方向,它的方向就是该处磁场的方向,故B 正确.通过某平面的磁感线条数为零,可能是因为平面与磁感线平行,而磁感应强度可能不为零,故A 错误.只有近距离的两异名磁极间才是匀强磁场,故C 错误.若某处磁感应强度为零,说明该处无磁场,通过该处的某面积的磁感线条数一定为零,故D 错.【答案】 B 3.磁通量:磁感应强度B 与面积S 的乘积,叫做穿过这个面的磁通量。 物理意义:表示穿过一个面的磁感线条数。 定义:BS =Φ θcos BS =Φ(θ为B 与S 间的夹角) 例1关于磁通量,下列说法正确的是( ) A .磁通量不仅有大小而且有方向,是矢量 B .在匀强磁场中,a 线圈面积比b 线圈面积大,则穿过a 线圈的磁通量一定比穿过b 线圈的大

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

热统知识点总结

第一类知识点 1. 大量微观粒子的无规则运动称作物质的热运动. 2. 宏观物理量是微观物理量的统计平均值. 3. 熵增加原理可表述为:系统经绝热过程由初态变到终态,它的熵永不减小.系统经可逆绝热过程后熵不变. 系统经不可逆绝热过程后熵增加. 孤立系中所发生的不可逆过程总是朝着熵增加的方向进行. 4. 在某一过程中,系统内能的增量等于外界对系统所做的功与系统从外界吸收的热量之和. 5. 在等温等容条件下,系统的自由能永不增加. 在等温等压条件下,系统的吉布斯函数永不增加. 6. 理想气体的内能只是温度的函数,与体积无关,这个结论称为焦耳定律. 7. V S S p V T ??? ????-=??? ???? 8. V T T p V S ??? ????=??? ???? 9. p S S V P T ??? ????=??? ???? 10. p T T V P S ??? ????-=??? ???? 11. pdV TdS dU -= 12. Vdp TdS dH += 13. pdV SdT dF --= 14. Vdp SdT dG +-= 15. 由pdV TdS dU -=可得,V S U T ??? ????= 16. 由Vdp TdS dH +=可得,S p H V ???? ????= 17. 单元复相系达到平衡所要满足的热平衡条件为各相温度相等. 18. 单元复相系达到平衡所要满足的力学平衡条件为各相压强相等. 19. 单元复相系达到平衡所要满足的相变平衡条件为各相化学势相等. 20. 对于一级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数不相等. 21. 对于二级相变,在相变点两相的化学势相等.在相变点两相化学势的一阶偏导数相等.在相变点两相化学势的二阶偏导数不相等.

高中物理磁场知识点

高中物理磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空间产生磁场,小磁针在 该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。电流和电流之 间的相互作用也是通过磁场产生的。 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在 自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流, 分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示 磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外 不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成 磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷电流产生磁场,磁场对运动电荷电流有磁场力的作用,所有的磁现象都可 以归结为运动电荷电流通过磁场而发生相互作用。 三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就 是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方 向都跟该点磁场方向一致。 2.磁感线的特点:

1在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 2磁感线是闭合曲线。 3磁感线不相交。 4磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线: 1条形磁铁。 2通电直导线。①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方 向一致,弯曲的四指所指的方向就是磁感线环绕的方向;②其磁感线是内密外疏的同心圆。 3环形电流磁场:①安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大 拇指的方向就是环形导线中心轴线的磁感线方向。②所有磁感线都通过内部,内密外疏。 4通电螺线管:①安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直 的大拇指的方向就是螺线管内部磁场的磁感线方向;②通电螺线管的磁场相当于条形磁铁 的磁场。 五、磁感应强度 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度 l的乘积Il的比值叫做通电导线处的磁感应强度。 2.定义式: 3.单位:特斯拉T,1T=1N/A.m 4.磁感应强度是矢量,其方向就是对应处磁场方向。 5.物理意义:磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电 流强度的大小、导线的长短等因素无关。 6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2 面积上的磁感线条数跟那里的磁感应强度一致。 7.匀强磁场: 1磁感应强度的大小和方向处处相等的磁场叫匀强磁场。 2匀强磁场的磁感线是均匀且平行的一组直线。

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式:qB mv R = ③周期:qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 图9-1 图9-2 图9-3

高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

(完整版)高二物理磁场知识点(经典)

一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感应强度 1、 表示磁场强弱的物理量.是矢量. 2、 大小:B=F/Il (电流方向与磁感线垂直时的公式). 3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. 4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T . 5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. 6、 匀强磁场的磁感应强度处处相等. 7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强 度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则. 三、几种常见的磁场 (一)、 磁感线 ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 ⒉磁感线是闭合曲线???→→极极磁体的内部极 极磁体的外部N S S N ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。 ⒋任何两条磁感线都不会相交,也不能相切。 5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 6.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向· 7、 *熟记常用的几种磁场的磁感线: (二)、匀强磁场 1、 磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。 2、 磁感应强度的大小和方向处处相同的区域,叫匀强磁场。其磁感线平行且等距。 例:长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场。 3、 如用B=F/(I ·L)测定非匀强磁场的磁感应强度时,所取导线应足够短,以能反映该位 置的磁场为匀强。 (三)、磁通量(Φ) 1.磁通量Φ:穿过某一面积磁力线条数,是标量.

固体物理重要知识点总结

固体物理重要知识点总结 晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点:微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量

化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 爱因斯坦模型在低温下与实验存在偏差的根源是什么? 答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。 陶瓷中晶界对材料性能有很大的影响,试举例说明晶界的作用 答:晶界是一种面缺陷,是周期性中断的区域,存在较高界面能和应力,且电荷不平衡,故晶界是缺陷富集区域,易吸附或产生各种热缺陷和杂质缺陷,与体内微观粒子(如电子)相比,晶界微观粒子所处的能量状态有明显差异,称为晶界态。 在半导体陶瓷,通常可以通过组成,制备工艺的控制,使晶界中产生不同起源的受主态能级,在晶界产生能级势垒,显著影响电子的输出行为,使陶瓷产生一系列的电功能特性(如PTC特性,压敏特性,大电容特性等)。这种晶界效应在半导体陶瓷的发展中得到了充分的体现和应用。 从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制

高中物理磁场专题

磁场 一.知识点梳理 考试要点 基本概念 一、磁场和磁感线(三合一) 1、磁场的来源:磁铁和电流、变化的电场 2、磁场的基本性质:对放入其中的磁铁和电流有力的作用 3、磁场的方向(矢量) 方向的规定:磁针北极的受力方向,磁针静止时N极指向。

4、磁感线:切线~~磁针北极~~磁场方向 5、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则)) 6、磁感线特点: ① 客观不存在、② 外部N 极出发到S ,部S 极到N 极③ 闭合、不相交、④ 描述磁场的方向和强弱 二.磁通量(Φ 韦伯 Wb 标量) 通过磁场中某一面积的磁感线的条数,称为磁通量,或磁通 二.磁通密度(磁感应强度B 特斯拉T 矢量) 大小:通过垂直于磁感线方向的单位面积的磁感线的条数叫磁通密度。 S B Φ = 1 T = 1 Wb / m 2 方向:B 的方向即为磁感线的切线方向 地球磁场 通电直导线周围磁场 通电环行导N S

意义:1、描述磁场的方向和强弱 2、由场的本身性质决定 三.匀强磁场 1、定义:B 2、来源:①距离很近的异名磁极之间 ② 通电螺线管或条形磁铁的部,边缘除外 四.了解一些磁场的强弱 永磁铁―10 - 3 T ,电机和变压器的铁芯中― 0.8~1.4 T 超导材料的电流产生的磁场―1000T ,地球表面附近―3×10 -5~7× 10-5 T 比较两个面的磁通的大小关系。如果将底面绕轴L 旋转,则磁通量如何变化? Ⅱ 磁场对电流的作用——安培力 一.安培力的方向 ——(左手定则)伸开左手,使大拇指与四指在同一个平面,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。(向里和向外的表示方法(类比射箭)) I

高二物理磁场的知识点总结

高二物理磁场的知识点总结 磁场部分是高二物理知识的重点,经常会与电学或者力学挂 钩出大题。以下是高二物理磁场的知识点总结,希望对大家 有帮助。 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形 态的物质,磁极或电流在自己的周围空间产生磁场,而磁场 的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说 明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生 偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一 种环形电流-分子电流,分子电流使每个物质微粒都成为微 小的磁体,它的两侧相当于两个磁极。安培是最早揭示磁现 象的电本质的。

一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷 4.物理意义:表示穿过磁场中某个面的磁感线条数。 5.B=/S,所以磁感应强度也叫磁通密度 七、安培力 1.磁场对电流的作用力叫安培力 2.安培力大小 安培力的大小等于电流I、导线长度L、磁感应强度B以及I 和B间的夹角的正弦sin的乘积,即 F=BIlsin。 注意:公式只适用于匀强磁场。 3.安培力的方向 安培力的方向可利用左手定则判断 左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开的四指指向电流方向,那么拇指方向就是通电导线在磁场中的受力方向。安培力方向一定垂直于B、I所确定的平面,即F一定和B、I垂直,但B、I不一定垂直。

高中物理知识点总结:电场_磁场

一. 教学内容:电场、磁场

二. 具体过程 (一)电场的性质 1. 电场力的性质 (1)库仑定律的应用 ①真空中两点电荷间库仑力的大小由公式 计算,方向由 同种电荷相斥,异种电荷相吸判断。 在介质中,公式为: 。 ②两个带电体间的库仑力 均匀分布的绝缘带电球体间的库仑力仍用公式< style='height:30pt' > 计算,公式中r 为两球心之间的距离。 两导体球间库仑力可定性比较:用r 表示两球球心间距离,则当两球带同种电荷时, ;反之当两球带异种电荷时, 。 ③两带电体间的库仑力是一对作用力与反作用力。 (2)对电场强度的三个公式的理解 ① 是电场强度的定义式,适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷q 无关。试探电荷q 充当“测量工具”的作用。

②是真空点电荷所形成的电场的决定式。E由场源电荷Q和场源电荷到某点的距离r决定。 ③ 2. 电场能的性质 (1)电场力做功与电势能改变的关系 电场力对电荷做正功,电势能减少,电场力对电荷做负功,电势能增加,且 电势能的改变量等于电场力做功的多少,即,正电荷沿电场线移动或负电荷逆电场线移动,电场力均做正功,故电势能减少,而正电荷逆电场线移动或负电荷沿电场线移动,电势能均增大。 (2)等势面与电场线的关系 ①电场线总是与等势面垂直,且从高电势等势面指向低电势等势面。 ②电场线越密的地方,等差等势面也越密。 ③沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。 ④电场线和等势面都是人们虚拟出来的描述电场的工具。 ⑤实际中测量等电势点较容易,所以往往通过描绘等势线来确定电场线。 (3)等势面(线)的特点 ①等势面上各点电势相等,在等势面上移动电荷电场力不做功。 ②等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面。 ③规定:画等势面(线)时,相邻两等势面(或线)间的电势差相等,这样,在等势面(线)密处场强大,等势面(线)疏处场强小。 (4)电势能是电荷与所在电场所共有的;电势、电势差是由电场本身因素决定的,与试探电荷无关。 (5)电势能、电势具有相对性,与零电势点选取有关;电势能的改变、电势差具有绝对性,与零电势点的选取无关。

固体物理知识点

1.稻草、石墨烯和金刚石是一种元素组成的吗?为何存在外型和性能方面存在很大差异? 同为碳元素,从微观角度来说碳元素的排列不同决定了宏观上性质及外型不同 2.固体分为晶体、非晶体和准晶体,它们在微观上分别觉有什么特点? 晶体的宏观特性有哪些?晶体有哪些分类? 晶体长程有序,非晶体短程有序,准晶体具有长程取向性,没有长程的平移对称性;晶体宏观特性:自限性,解理性,晶面角守恒,晶体各向异性,均匀性,对称性,以及固定的熔点;晶体主要可以按晶胞、对称性、功能以及结合方式进行分类。 原胞是一个晶格中最小的重复单元,体积最小,格点只在顶角上,面上和内部不含格点。晶胞体积不一定最小,格点不仅在顶角上,还可以在内部或面心上。 3.简单晶格与复式晶格的区别? 简单晶格的晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同; 复式晶格的晶体由两种或两种以上原子组成,同种原子各构成和格点相同的网格,这些网格的相对位移形成复式晶格。 4.假设体心立方边长是a,格点上的小球半径为R ,求体心立方致密度。 1=81=28N ?+ 单胞中原子所占体积为33148=33 V N R R ππ?= 4R = 体心立方体体积为32V a = 致密度为33 12423=8V V a πρ?????== 5.晶面的密勒指数为什么可用晶面的截距的倒数值的比值来表征(把基矢看做单位矢量),提示:晶面一般用面的法线来表示,法线又可以用法线与轴的夹角的余弦来表示。 晶面的法线方向与三个坐标轴的夹角的余弦之比,等于晶面在三个轴上的截距的倒数之比。 晶面的法线与三个基矢的夹角余弦之比等于三个整数之比。 6.简立方[110]等效晶向有几个,表示成什么? 110随机排列,任意取负,共12种,表示为<110>。 7.倒格子矢量Kh=h1b1+h2b2+h3b3 的大小,方向和意义(矢量Kh 这里h 为下标,h1, b1, h2, b2, h3, b3里的数字均为下标,b1, b2, b3 为倒格子原胞基矢),提示:从倒格子性质中找答案。 大小为2π/晶面间距 方向为晶面法线方向 意义是与真实空间相联系的傅立叶空间的周期性排列 8.倒格子和正格子之间的关系有哪些? 1.正格子基矢与倒格子基矢点乘 2.正格矢与倒格矢的点乘为定值 3.倒格子原胞体积反比于正格子原胞体积 4.倒格矢与正格中晶面族正交 5.正格子与倒格子互为对方的倒格子 9.证明面心立方晶体的倒格子是体心立方晶体 面心立方正格基矢

相关主题
文本预览
相关文档 最新文档