当前位置:文档之家› 高中物理磁场知识点总结+例题

高中物理磁场知识点总结+例题

高中物理磁场知识点总结+例题
高中物理磁场知识点总结+例题

高中物理磁场知识点总

结+例题

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

磁场

一、基本概念

1.磁场的产生

⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。

安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。

⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质

磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。

3.磁感应强度

IL

F

B

(条件是L ⊥B ;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A ?m)=1kg/(A ?s 2) 4.磁感线

⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。

⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线:

地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。

⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力)

1.安培力方向的判定 ⑴用左手定则。

⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。

⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。

条形磁铁

通电环行导线周围磁场

通电长直螺线管内部磁场 通电直导线周围磁场

例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增大、减小还是不变)

。水平面对磁铁的摩擦力大小为______。

解:本题有多种分析方法。⑴画出通电导线中电流的磁场

中通过两极的那条磁感线(如图中下方的虚线所示),可看出两

极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条

(如图中上方的虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。

例2.电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?

解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线

圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相

吸引,反向电流互相排斥”,可判定电子流向左偏转。

2.安培力大小的计算

F =BLI sin α(α为B 、L 间的夹角)高中要求会计算α=0(不受安培力)和α=90o两种情况。

例3.如图所示,光滑导轨与水平面成α角,导轨宽L 。金属杆长也为L ,质量为m ,水平放在导轨上。匀强磁场磁感应强度为B ,方向与金属杆垂直。当回路总电流为I 时,金属杆正好能静止。求:B 至少多大?

这时B 的方向如何?

解:画出截面图如右。导轨的重力G 和安培力F 的合力与弹力平衡,

因此重力和安培力的合力方向必须垂直于导轨平面向下。由三角形定则可

知,只有当安培力方向沿导轨平面向上时需要的安培力F=BIL 才最小,B 也

最小。根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BIL =mg sin α,B =mg sin α/IL 。

解这类题时必须画出截面图,才能使所要研究的各力画在同一平面上,从而弄清各力的大小和方向间的关系。 例4.如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后落在水平面上,水平位移为s 。求闭合电

键后通过铜棒的电荷量Q 。 解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被

平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I Δt ,由平抛规律可算铜棒离开导线框时的初速度h

g s t

s v 20==,最终可得h

g BL

ms

Q 2=。

F 2

本题得出的一个重要方法是:利用安培力的冲量可以求电量:Ft =BIL ?t=BL ?Q 。即使通电过程电流不恒定,这个结论仍然是正确的。

练习1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?

解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相

反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。分析的关键是画出相关的磁感线。 三、洛伦兹力

1.洛伦兹力的大小

运动电荷在磁场中受到的磁场力叫洛伦兹力,它可以看做是安培力的微观表现。 计算公式的推导:如图所示,整个导线受到的磁场力(安培力)

为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为f ,则F 安=Nf 。由以上四式得f=qvB 。条件是v 与B 垂

直。(v 与B 平行时洛伦兹力为零。)

2.洛伦兹力的方向

在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。

例5.磁流体发电机原理图如右。等离子体高速从两板间由左向右喷射,两极板间有如图方向的匀强磁场。该发电机哪个极板为正极两板间最大电压为多少

解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。所以上极板为正。正、负极板间将产生电场。当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:qvB q d

U =?,

U=Bdv 。当外电路断开时,这就是电动势E 。当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子将继续发生偏转。这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。

本题的重要结论有:

⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反; ⑵在v 恒定的条件下,无论外电路是否接通,电动势Bdv 保持不变; ⑶带电粒子在磁场中偏转聚集在极板上后,将新产生的电场。

例6.半导体靠自由电子(带负电)和空穴(相当于带正电的粒子)导电,分为p 型和n 型两种。p 型半导体中空穴为多数载流子;n 型半导体中自由电子为多数载流子。用实验可以判定半导体材料的类型:如图将材料放在匀强磁场中,通以向右的电流I ,比较上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。试分析原理。

解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指

指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。因此可以判定半导体材料的类型。

本题的重要结论有:电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,偏转方向也相同。

3.洛伦兹力的应用

带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,因此有:

r

mv qvB 2=,由此可以推导出该圆周运动的半径公式和周期公式:Bq m

T Bq mv r π2,==。 例7.如图直线MN 上方有磁感应强度为B 的匀强磁场。正、负电子同时从同一点O 以与

MN 成30o角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远射出的时间差是多少(不考虑正、负电子间的相互作用)

解:正负电子的半径和周期是相同的。只是偏转方向相反。先确定

圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。

所以两个射出点相距2r ,由图还看出经历时间相差2T /3。

由r mv evB 2

=得轨道半径r 和周期T 分别为Be

m T Be mv r π2,==,

因此两个射出点相距Be

mv s 2=

,时间差为Bq

m

t 34π=

?

解题关键是画好示意图,特别注意找圆心、找半径和用对称。

4.带电粒子在匀强磁场中的偏转

⑴穿过矩形磁场区。要画好辅助线(半径、速度及延长线)。穿越过程的偏转角由sin θ=L /R 求出。侧移由R 2=L 2-(R-y )2解出。经历时间由Bq

m t θ=

得出。

注意:这里射出速度的反向延长线与初速度延长线的交点不是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!

⑵穿过圆形磁场区。画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏角可由R r =2tan θ

求出。经历时间由Bq

m t θ=得出。

注意:由对称性,正对圆心射入的例子必然背离圆心射出。

例8.一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60o的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。求匀强磁场的磁感应强度B 和射出点S 的坐标。

解:射出点对应的半径在y 轴上,因此其圆心一定在y 轴上,从几何关系

知半径是o 30cos a r =,由r mv qvB 2=得qB mv r =,因此aq mv B 23=。射出点S 到原点O 的距离是1.5r ,坐标为(0,a 3)。

四、带电粒子在混合场中的运动

1.空间同时存在正交的匀强电场和匀强磁场

正交的匀强磁场和匀强电场组成“速度选择器”。带电粒子(不计重力)

必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过

x

速度选择器。否则将发生偏转。这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,B

E v =。在本图中,速度方向必须向右。

⑴这个结论与带电粒子的电性、电量都无关。

⑵若入射速度小于该速度,电场力将大于洛伦兹力,粒子向电场力方向偏转,穿越混合场过程电场力做正功,动能增大,洛伦兹力也增大,粒子的轨迹是一条复杂曲线;若入射速度大于该速度,粒子将向洛伦兹力方向偏转,穿越混合场过程电场力将做负功,动能减小,洛伦兹力也减小,轨迹也是一条复杂曲线。

例9.某带电粒子从图中速度选择器左端由中点O 以垂直于电场和磁场的速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带______电;第二次射出时

的速度为_______。 解:B 增大后向上偏,说明洛伦兹力向上,所以为带正电。由于洛伦兹力总不做功,所以两次都是只有电场力做功,第一次为正功,第二次为负功,但功的绝对值相同,因此

21202222020212,2

1212121v v v mv mv mv mv -=∴-=- 2.带电粒子分别通过匀强电场和匀强磁场

例10.如图所示,一个带电粒子两次以同样的垂直于场线的

初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为

L ,偏转角均为α,求E ∶B

解:分别利用带电粒子的偏角公式。在电场中偏转:

2

0tan mv EqL =α,在磁场中偏转:0sin mv LBq =α,由以上两式可得α

cos 0v B E

=。可以证明:当偏转角相同时,侧移不同(电场中侧移大);当侧移相同时,偏转角不同(磁场中偏转角大)。

3.带电粒子依次在电场、磁场中做连续运动

例11.如图所示,在xOy 平面内的第Ⅲ象限中有沿-y 方向的匀强

电场,场强大小为E 。在第Ⅰ和第Ⅱ象限有匀强磁场,方向垂直于坐标

平面向里。有一个质量为m ,电荷量为e 的电子,从y 轴的P 点以初速

度v 0垂直于电场方向进入电场(不计重力),经电场偏转后,沿着与x

轴负方向成45o角进入磁场,并能返回到原出发点P 。⑴简要说明电子

的运动情况,并画出电子运动轨迹的示意图;⑵求P 点距坐标原点的距

离;⑶电子从P 点出发经多长时间再次返回P 点?

解:⑴设OP=x ,在电场中偏转45o,说明在M 点进入磁场时的速率是2v 0,由动能定理知

电场力做功Eex =2021mv ,因此eE

mv x 22

=;由于这段时间内水平、竖

直方向平均速度之比为2∶1,因此OM =2x 。根据电子在磁场中做圆周运动轨道的对称性,从N 点射出磁场时速度与x 轴也成45o,

2v

又恰好能回到P 点,因此ON =x 。可知在磁场中做圆周运动的半径R =1.52x 。轨迹如右图中虚线所示。

⑵P 点距坐标原点的距离为eE

mv x 220

=。

⑶电子在第Ⅲ象限的平抛运动时间eE

mv v x t 0

012==

,在第Ⅳ象限直线运动的时间eE mv v x t 222003==,在第Ⅰ、Ⅱ象限运动的时间是0

22243

v R t π?=,而eE mv x R 42322320=?=,带入得

eE mv t 8902π=

,因此t=t 1+ t 2+ t 3=()eE

mv 83340

π+。 4.带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)

⑴带电微粒在三个场共同作用下做匀速圆周运动。必然是电场力和重力平衡,而洛伦兹力充当向心力。

例12.一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。则该带电微粒必然带_____,旋转方向为_____。若已知圆半径

为r ,电场强度为E 磁感应强度为B ,则线速度为_____。

解:因为必须有电场力与重力平衡,所以必为负电;由左手定则得逆时针转动;再由E

Brg v Bq mv r mg Eq ==

=得和 ⑵带电微粒在三种场共存区域中做直线运动。当其速度始终平行于磁场时,不受洛伦兹

力,可能做匀速运动也可能做匀变速运动;当带其速度垂直于磁场时,只能做匀速直线运动。

例13.如图所示,空间某一区域内同时存在竖直向下的匀强电场、垂直纸面向里的匀强磁场。带电微粒a 、b 、c 所带电荷电性和电量都相同,以相同的速率在此空间分别向右、向左、向里做匀速运动。有以下判断:①它们都

带负电;②它们都带正电;③b 的质量最大;④a 的质量最大。以上判断正确的是

A .①③

B .②④

C .①④

D .②③

解:由c 知电性必须为负;在竖直方向它们所受合力都为零,其中电场力方向都向上,大小也相等,但a 受的洛伦兹力向下,b 受的洛伦兹力向上,c 不受洛伦兹力,而重力向下,因此b 的重力最大,质量最大。选A 。

练习2. 质量为m 带电量为q 的小球套在竖直放置的绝缘杆上,球与杆间的动摩擦因数为μ。匀强电场和匀强磁场的方向如图所示,电场强度为E ,磁感应强度为B 。小球由静止释放后沿杆下滑。设杆足够长,电场和磁场也足够大, 求运动过程中小球的最大加速度和最大速度。

解:不妨假设设小球带正电(带负电时电场力和洛伦兹力都将反向,结论相同)。刚释放时小球受重力、电场力、弹力、摩擦力作用,向下加速;开始运动后又受到洛伦兹力作用,弹力、摩擦力开始减小;当洛伦兹力等于电场力

时加速度最大为g 。随着v 的增大,洛伦兹力大于电场力,

弹力方向变为向右,且不断增大,摩擦力随着增大,加速度

减小,当摩擦力和重力大小相等时,小球速度达到最大B

E Bq

mg v +=μ。

若将磁场的方向反向,而其他因素都不变,则开始运动后洛伦兹力向右,弹力、摩擦力不断增大,加速度减小。所以开始的加速度最大为m

Eq g a μ-=;摩擦力等于重力时速度最大,为

B

E Bq mg v -=

μ。

五、质谱仪 加速器

1.质谱仪

右图的两种装置都可以用来测定带电粒子的荷质比。

⑴带电粒子质量m ,电荷量q ,由电压U 加速后垂直进入磁感应强度为B 的匀强磁场,测得在该磁场中做圆周运动的轨道半径为r ,则有:

221mv qU =,r mv qvB 2=,可得222r

B U

m q = ⑵带电粒子质量m ,电荷量q ,以某一速度恰好能沿直线穿过速度选择器(电场强度E ,磁感应强度B 1),垂直进入磁感应强度为B 2的匀强磁场。测得在该磁场中做圆周运动的轨道半径为r ,则有:qE=qvB 1,r

mv qvB 2

2=,可得:r B B E m q 21=

2.回旋加速器

例14.在高能物理研究中,粒子回旋加速器起着重要作用,下左图为它的示意图。它由两个铝制的D 形盒组成,两个D 形盒正中间开有一条狭缝。两个D 形盒处在匀强磁场中并接有高频交变电压。右图为俯视图,在D 形盒上半面中心S 处有已正离子源,它发出的正离子,经狭缝电压加速后,进入D 形盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 形盒的边缘,获得最大速度,由导出装置导出。已知正离子电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 形盒的半径为R 。每次加速的时间极短,可忽略不计。正离子从离子源出发时的初速度为零。⑴为了使正离子每经过狭缝都被加速,求交变电压的频率;⑵求离子能获得的最大

动能;⑶求离子第1次与第n 次在下半盒中运动的轨道半径之比。

解:⑴交变电压的周期跟离子在磁场中做圆周运动的周期相同:qB

m

T π2=,因此

m

qB

f π2=

; ⑵由半径公式qB

mv

r =知,半径越大,当半径为R 时动能最大:m R B q m p E km 222222==;

⑶从静止开始运动到第n 次在下半盒中运动,一定是经过(2n -1)次加速,因此第1次与第n 次

在下半盒中运动时动能之比为1∶(2n -1),因此半径之比为1

21

1-=n r r n 。

3.直线加速器。

如图所示,质子源和2、4、6……金属圆筒接交变电源上端,1、3、5……金属圆筒接交变电源下端。质子从质子源由静止出发,被源、1间的电场加速后进入1圆筒内(筒把电场屏蔽,质子在筒内做匀速运动)出1筒后交变电源极性恰好改变,于是质子在1、2筒间再次加速……。由于质子在金属圆筒内作匀速运动的速度越来越大,因此圆筒要求越来越长。

固体物理复习_简述题

《固体物理》基本概念和知识点 第一章基本概念和知识点 1) 什么是晶体、非晶体和多晶?() 晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。 2) 什么是原胞和晶胞?() 原胞是一个晶格最小的周期性单元,在有些情况下不能反应晶格的对称性; 为了反应晶格的对称性,选取的较大的周期单元,称为晶胞。 3) 晶体共有几种晶系和布拉伐格子?() 按结构划分,晶体可分为7大晶系, 共14布拉伐格子。 4) 立方晶系有几种布拉伐格子?画出相应的格子。() 立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。 5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。() 简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。碱金属具有体心立方晶格结构;Au、Ag和Cu具有面心立方晶格结构,它们均为简单晶格 复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成相同的简单晶格,复式格子由它们的子晶格相套而成。 一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是相同原子但几何位置不等价的原子构成的晶体,如:具有金刚石结构的C、Si、Ge等 6) 钛酸钡是由几个何种简单晶格穿套形成的?() BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。三组氧(OI,OII,3 OIII)周围的情况各不相同,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方结构子晶格(共5个)套构而成的。 7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?() 金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。金刚石结构由两套完全等价的面心立方格子穿套构成。金刚石属于面心立方格子,原胞中有2个C原子,单胞中有8个C原子。

高中物理磁场知识点总结+例题

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B ;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A m)=1kg/(A s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 + N S 地球磁场 条形磁铁 蹄形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增大、减小还是不变)。水平面对磁铁的摩擦力大小为______。 解:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中下方的虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩 擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中上方的虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。 例2.电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转 解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈 靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。 F 2

八年级下册物理力学知识点总结(人教版)

八年级下册物理知识点总结 知识点1:力的概念 1.力的作用效果 力能改变物体的运动状态;力能改变物体的形状(或说成“力能使物体发生形变”)。2.力的定义 力是物体对物体的作用。力不能单独存在。 (力发生在两个物体之间:一个是施力物体、一个是受力物体。) 3.力的物理量符号:F 。 4.力的单位 力的单位是牛顿,简称牛,符号是F。 托起两个鸡蛋的力大约为1N,托起一个苹果的力大约是1N——2N。 5.力的三要素(影响力的作用效果的因素) 大小、方向、作用点。 6.物体间力的作用是相互的。 知识点2:弹力 1.弹性和塑性 ①弹性:受力时物体会发生弹性形变,不受力时又恢复到原来的形状的性质。 如:弹簧、气球、钢尺、橡皮筋、球类等。 ②塑性:受力时物体会发生塑性形变,不受力时不能自动恢复原来的形状的性质。 如:橡皮泥、面团等。 2.弹力产生条件:①相互接触;②发生弹性形变。 3.常见弹力:拉力、推力、压力、支持力等。 4.测量工具:弹簧测力计(实验室中常用) (1)构造:主要由弹簧、指针、提环、挂钩和刻度板组成。 (2)工作原理:在弹性限度内,弹簧的伸长量与所受拉力大小成正比。 (3)正确使用: ①观察:测量前应该先观察量程和分度值; ②调试:用手拉动几次挂钩,避免摩擦或被卡壳;并确认指针对准零刻度线,若有偏差,必须校零;

③测量:测量过程中,要使弹簧测力计内弹簧轴线方向(伸长方向)跟所测力的方向在同一条直线上; ④读数:保持弹簧测力计处于静止或匀速直线运动状态时读数,视线应于刻度线相平。 知识点3:重力 1.地球附近的物体,由于地球的吸引而使物体受到的力叫重力,用符号G表示。 2.重力的大小可用弹簧测力计来测量。当物体静止时,弹簧测力计的读数即所受重力。物体所受的重力跟它的成正比,即G=mg,式中g= 9.8N/kg。 3.重力的方向总是竖直向下。应用:建筑工人在砌墙时常常用铅垂线来确定竖直的方向,以此来检查所砌的墙壁是否竖直。 4.重力在物体上的作用点叫做重心。 知识点4:牛顿第一定律 1. 一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。这就 是著名的牛顿第一定律,也叫惯性定律。 【注意】(1)定律是在大量实验的基础上,通过推理概括得出的,不能直接用实验验证。 (2)“不受外力”是定律成立的条件,这是一种理想情况。它也包含物体在某 一方向上不受外力的情况。牛顿第一定律是建立在实验的基础上,经过推 理得出的。 (3)“或”是指一个物体只能处于一种状态,到底处于哪种状态,由原来的状 态决定,原来静止就保持静止,原来运动就保持匀速直线运动状态。 2. 物体保持运动状态不变的性质叫做惯性。 【注意】(1)惯性是指物体总有保持自己原来状态(速度)的本性,不能克服和避免。惯 性是物体本身的固有性质,一切物体都具有惯性。 (2)惯性与物体所处的运动状态无关,对任何物体,无论它是运动还是静止,无 论是运动状态改变还是不变,物体都有惯性。 (3)惯性大小只与物体的质量有关,质量越大,惯性越大。与外界因素无关, 物体惯性大小就是指改变物体运动状态的难易程度。 (4)惯性不是力。惯性是物体具有的保持匀速直线运动或静止状态的性质,惯性 和力是两个不同的概念。不要说“受到惯性”“惯性作用”。 3.惯性现象解释步骤 (1)明确研究的是哪个物体,它原来处于怎样的运动状态; (2)当外力作用在该物体的某一部分(或外力作用在与该物体有关联的其他物体上)时,这一部分的运动状态的变化情况; (3)该物体另一部分由于惯性仍保持原来的运动状态; (4)最后会出现什么现象。 知识点5:摩擦力 1.定义:

材料科学基础知识点

材料科学基础 第零章材料概论 该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。 主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。 材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。 按基本组成分为:金属、陶瓷、高分子、复合材料 金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、

Cu、Ni等。原子之间的键合方式是金属键。陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。它可以是晶体、非晶体或混合晶体。原子之间的键合方式是离子键,共价键。 聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。它主要是非晶体或晶体与非晶体的混合物。原子的键合方式通常是共价键。 复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。其原子间的键合方式是混合键。 材料选择: 密度 弹性模量:材料抵抗变形的能力 强度:是指零件承受载荷后抵抗发生破坏的能力。 韧性:表征材料阻止裂纹扩展的能力功能成本

结构(Structure) 性质(Properties) 加工(Processing) 使用性能(Performance) 在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。 宏观结构←显微镜下的结构←晶体结构←原子、电子结构 重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。 第一章材料结构的基本知识 1.引言 材料的组成不同,性质就不同。 同种材料因制备方法不同,其性能也不同。这是与材料的内部结构有关:原子结构、原子键合、原子排列、显微组织。 原子结构 主量子数n

磁场知识点总结

(第三章)磁场 知识点1.了解磁现象和磁场:能说出电流的磁效应;能描述磁场和地磁场;知道我国古代在磁现象方面的研究成果及其对人类文明的影响;能举例说明磁现象在生产和生活中的应用. 用罗盘指引航向,探索航道,将船舶航向的变动与指南针指向变动的对应关系总结出来,画出的航线在古代称作“针路”或“针径”。利用“针路”,船能够靠指南针导航。 1.磁场的产生:磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,本质上讲磁场是由于电荷运动所产生的。变化的电场空间也产生磁场。 2.磁场的基本特性:磁场对处于其中的磁极、电流和运动电荷有力的作用;磁极与磁极、磁极与电流、电流与电流之间的相互作用都是通过磁场发生的。 3.磁场的方向:规定在磁场中任意一点小磁针北极的受力方向(小磁针静止时N极的指向)为该点处磁场方向。 4.磁现象的电本质:奥斯特发现电流磁效应(电生磁)后,安培提出分子电流假说:认为在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极;从而揭示了磁铁磁性的起源:磁铁的磁场和电流的磁场一样都是由电荷运动产生的;根据分子电流假说可以解释磁化、去磁等有关磁现象。 5地磁场(1)地球是一个巨大的磁体、地磁的N极在地理的南极附近,地磁的S极在地理的北极附近;(2)地磁场的分布和条形磁体磁场分布近似;(3)在地球赤道平面上,地磁场方向都是由北向南且方向水平(平行于地面);(4)近代物理研究表明地磁场相对于地球是在缓慢的运动和变化的;地磁场对于地球上的生命活动有着重要意义。 知识点2.理解磁感应强度:知道磁感应强度的概念,会运用磁感应强度的概念描述磁场. 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的安培力F跟电流I和导线长度L之乘积IL的比值叫做磁感应强度,定义式为B=F/IL。 2.对定义式的理解: (1)式中反映的F、B、I方向关系为:B⊥I,F⊥B,F⊥I,则F垂直于B和I所构成的平面。 (2)式子可用来量度磁场中某处磁感应强度,不决定该处磁场的强弱,该处磁感应强度大小由磁场自身性质来决定。 (3)磁感应强度是矢量,其矢量方向是小磁针在该处的北极受力方向,与安培力方向是垂直的。 (4)如果空间某处磁场是由几个磁场共同激发的,则该点处合磁场(实际磁场)是几个分磁场的矢量和;某处合磁场可以依据问题求解的需要分解为两个分磁场;磁场的分解与合成必须遵循矢量运算法则。 (5)在国际单位制中,磁感应强度的单位是特斯拉(T) 1T=1N/(A·m) 知识点3.能说出磁感线特点;识别几种常见磁场的磁感线分布;会用安培定则判断通电直导线和通电线圈周围磁场方向;会计算磁通量. 地磁场

中国科学院大学考研《固体物理》考试大纲知识分享

中国科学院大学考研《固体物理》考试大 纲

中国科学院大学考研《固体物理》考试大纲 本《固体物理》考试大纲适用于中国科学院凝聚态物理及相关专业的硕士研究生入学考试。固体物理学是研究固体的微观结构、物理性质,以及构成物质的各种粒子的运动规律的学科,是凝聚态物理的最大分支。本科目的考试内容包括晶体结构、晶格振动、能带理论和金属电子论等。要求考生深入理解其基本概念,有清楚的物理图象,熟练掌握基本的物理方法,并具有综合运用所学知识分析问题和解决问题的能力。 一、考试形式 (一)闭卷,笔试,考试时间180分钟,试卷总分150分 (二)试卷结构 第一部分:简答题,共50分 第二部分:计算题、证明题,共100分 二、考试内容 (一)晶体结构 1、单晶、准晶和非晶的结构上的差别 2、晶体中原子的排列特点、晶面、晶列、对称性 3、简单的晶体结构,二维和三维晶格的分类 4、倒易点阵和布里渊区 5、 X射线衍射条件、基元的几何结构因子及原子形状因子 (二) 固体的结合 1、固体结合的基本形式

2、共价晶体,金属晶体,分子晶体与离子晶体,范德瓦尔斯结合,氢键,马德隆常数 (三) 晶体中的缺陷和扩散 1、晶体缺陷:线缺陷、面缺陷、点缺陷 2、扩散及微观机理 3、位错的物理特性 4、离子晶体中的点缺陷和离子性导电 (四) 晶格振动与晶体的热学性质 1、一维链的振动:单原子链、双原子链、声学支、光学支、色散关系 2、格波、简正坐标、声子、声子振动态密度、长波近似 3、固体热容:爱因斯坦模型、德拜模型 4、非简谐效应:热膨胀、热传导 5、中子的非弹性散射测声子能谱 (五) 能带理论 1、布洛赫定理 2、近自由电子模型 3、紧束缚近似 4、费密面、能态密度和能带的特点 5、表面电子态 (六) 晶体中电子在电场和磁场中的运动 1、恒定电场作用下电子的运动 2、用能带论解释金属、半导体和绝缘体,以及空穴的概念

初中物理各章节知识点总结(八年级下)

初中物理各章节知识点总结 第七章力 1.什么是力:力是物体对物体的作用。 2.力的单位是:牛顿(简称:牛),符合是N。1牛顿大约是你拿起两个鸡蛋所用的力。 3.力的作用效果:力可以改变物体的运动状态,还可以改变物体的形状。(物体形状或体积的改变,叫做形变。) 4.力的三要素是:力的大小、方向、作用点,叫做力的三要素,它们都能影响力的作用效果。 5.力的示意图就是用一根带箭头的线段来表示力。具体的画法是: (1)用线段的起点表示力的作用点; (2)延力的方向画一条带箭头的线段,箭头的方向表示力的方向; (3)若在同一个图中有几个力,则力越大,线段应越长。有时也可以在力的示意图标出力的大小, 6.物体间力的作用是相互的。 (一个物体对别的物体施力时,也同时受到后者对它的力)。 7.实验室测力的工具是:弹簧测力计。 8.弹簧测力计的原理:在弹性限度内,弹簧的伸长量与受到的拉力成正比。 9.弹簧测力计的用法:(1)要检查指针是否指在零刻度,如果不是,则要调零; (2)认清最小刻度和测量范围(分度值和量程); (3)轻拉秤钩几次,看每次松手后,指针是否回到零刻度, (4)测量时弹簧测力计内弹簧的轴线与所测力的方向一致; (5)观察读数时,视线必须与刻度盘垂直。 (6)测量力时不能超过弹簧测力计的量程。 10.重力:地面附近物体由于地球吸引而受到的力叫重力。 重力的方向总是竖直向下的。 11. 重力的计算公式:G=mg,(式中g是重力与质量的比值:g=9.8 牛顿/千克,在粗略计算时也可取g=10牛顿/千克);重力跟质量成正比。 12.铅垂线是根据重力的方向总是竖直向下的原理制成。 13.重心:重力在物体上的作用点叫重心。(尤其注意:形状规则、质量分布均匀的物体,重心在它的几何中心上;比如一根均匀的木棒或一根均匀的铁棒都在它们的中点上) 第八章运动和力 1.牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。 2.惯性:物体保持运动状态不变的性质叫惯性。牛顿第一定律也叫做惯性定律。 3.物体平衡状态:物体受到几个力作用时,如果保持静止状态或匀速直线运动状态,我们就说这几个力平衡。当物体在两个力的作用下处于平衡状态时,就叫做二力平衡。 (故物体处于平衡状态只有两种情况:静止或匀速直线运动状态) 4.二力平衡的条件:作用在同一物体上的两个力,如果大小相等、方向相反、并且在同一直线上,则这两个力二力平衡时合力为零。 5.物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态(即平衡状态)。 6.摩擦力:两个互相接触的物体,当它们要发生或已经发生相对运动时,就会在接触面是产生一种阻碍相对运动的力,这种力就叫摩擦力。 15.滑动摩擦力的大小跟接触面的粗糙程度和压力大小有关系。压力越大、接触面越粗糙,滑动摩擦力越大。 16.增大有益摩擦的方法:增大压力和使接触面粗糙些。 减小有害摩擦的方法:(1)使接触面光滑和减小压力; (2)用滚动代替滑动; (3)加润滑油; (4)利用气垫。 (5)让物体之间脱离接触(如磁悬浮列车)。 第九章压强 1.压力:垂直作用在物体表面上的力叫压力。(水平放置的物体压力大小等于物体重力大小) 2.压强:物体单位面积上受到的压力叫压强。压强是表示压力作用效果的物理量。 3.压强公式:P=F/S ,式中P单位是:帕斯卡(Pa),1帕=1 N/m2,表示 S F p= F= Ps; P F S= 4.增大压强方法 :(1)S不变,F↑;(2)F不变,S↓ (3) 同时把F↑,S↓。而减小压强方法则相反。 菜刀用久了要磨一磨是为了增大压强,书包的背带要用而宽是为了减小压强铁路的钢轨不是直接铺在路基上而是铺在在枕木上是为了减小压强,钢丝钳的钳口有螺纹是为了增大摩擦。 5.液体压强产生的原因:是由于液体受到重力。 6.液体压强特点:(1)液体对容器底部和侧壁都有压强, (2)液体内部向各个方向都有压强; (3)液体的压强随深度增加而增加,在同一深度,液体向各个方向的压强相等; (4)不同液体的压强还跟液体密度有关系。 7.* 液体压强计算公式:P=ρgh,(ρ是液体密度,单位是千克/米3;g=9.8牛/千克;h是深度,指液体自由液面到液体内部某点的竖直距离,单位是米。) 8.根据液体压强公式可知:液体的压强与液体的密度和深度有关,而与物体的质量无关。 9.证明大气压强存在的实验是马德堡半球实验。 10.大气压强产生的原因:空气受到重力作用而产生的,大气压强随高度的增大而减小。 11.测定大气压强值的实验是:托里拆利实验。 12.测定大气压的仪器是:气压计,常见气压计有水银气压计和无液气压计(金属盒气压计)。飞机上使用的高度计实际上是用气压计改装成的。 13. 1标准大气压:1标准大气压= 1.013×105帕= 76 cm水银柱高=10.34米水柱。 14.沸点与气压关系:一切液体的沸点,都是气压减小时降低,气压增大时升高。 15. 流体压强大小与流速关系:在流体中流速越大地方,压强越小;流速越小的地方,

高中物理磁场知识点汇总

高中物理磁场知识点汇总 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在? ?奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。 3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

(完整版)高中选修磁场知识点总结(很详细)

第三章磁场知识点 1、磁场 ★★★磁场和电场一样,是客观存在的一种物质。 磁体周围空间存在磁场; 电流周围空间也存在磁场。电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场 与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。 如图所示为证明通电导线周围有磁场存在一一奥斯特实验,以及磁场对电流有力的作用实验。 ★★★地磁场 地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的S极在地球北极附近,地磁的N极在地球的南极附近。地磁场与条形磁铁周围的磁场分布情况相似。但实际上地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。 二、磁场的方向 规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。 确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N极的指向即为该点的磁场方向。 磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线 在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。 ★★★磁感线特点a.磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。b.磁感线上每一点的切线方向就是该点的磁场方向。 c.磁场中的任何一条磁感线都是闭合曲线,在磁体外 部由N极到S极,在磁体内部由S极到N极。D.磁感线是不存在的,人们为了方便研究假想出来(电场线一样) 以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场 ★★★①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实 曲线。②磁感线与电场线类似,在空间不能相交,不能相切也不能中断。③磁感线是闭合的曲线,而电场线不闭合 四、几种常见磁场 1通电直导线周围的磁场 奥斯特实验 磁场对电流的作爲 通电直导线的隔场 安培定则通电螺线菅的隘场环形电涼的磁场

八年级下册物理知识点总结人教版(2019)

八年级下册物理知识点总结人教版(2019) 第七章力 一、力 1、力的概念:力是物体对物体的作用。 2、力的单位:牛顿,简称牛,用N表示。力的感性理解:拿两个鸡蛋所用的力大约1N。 3、力的作用效果:力能够改变物体的形状,力能够改变物体的运动状态。 说明:物体的运动状态是否改变一般指:物体的运动快慢是否改变(速度大小的改变)和 物体的运动方向是否改变 4、力的三要素:力的大小、方向、和作用点;它们都能影响力的作用效果。 5、力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来, 如果没有大小,可不表示,在同一个图中,力越大,线段应越长 6、力产生的条件:①必须有两个或两个以上的物体。②物体间必须有相互作用(能够不接触)。 7、力的性质:物体间力的作用是相互的。 两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。 二、弹力 1、弹力

①弹性:物体受力时发生形变,不受力时又恢复到原来的形状的性质 叫弹性。 ②塑性:物体受力发生形变,形变后不能恢复原来形状的性质叫塑性。 ③弹力:物体因为发生弹性形变而受到的力叫弹力,弹力的大小与弹性 形变的大小相关 弹力产生的重要条件:发生弹性形变;两物体相互接触; 生活中的弹力:拉力,支持力,压力,推力; 2:弹簧测力计 ①结构:弹簧、挂钩、指针、刻度、外壳 ②作用:测量力的大小 ③原理:在弹性限度内,弹簧受到的拉力越大,它的伸长量就越长。 (在弹性限度内,弹簧的伸长跟受到的拉力成正比) ④对于弹簧测力计的使用 (1)认清量程和分度值;(2)要检查指针是否指在零刻度,如果不是,则 要调零; (3)轻拉秤钩几次,看每次松手后,指针是否回到零刻度; (4)使用时力要沿着弹簧的轴线方向,注意防止指针、弹簧与秤壳接触。测量力时不能超过 弹簧测力计的量程。(5)读数时视线与刻度面垂直 说明:物理实验中,有些物理量的大小是不宜直接观察的,但它变化时 引起其他物理量的变化却容易观察,用容易观察的量显示不宜观察的量,是制作测量仪器的一种思路。这种科学方法称做“转换法”。利 用这种方法制作的仪器有:温度计、弹簧测力计等。

高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

新人教版八年级下册物理知识点全面总结

12 简单机械 12.1 杠杆 知识点一、杠杆 1、什么是杠杆 一根硬棒,在力的作用下能绕着固定点转动,这根硬棒就是杠杆。 说明:①“硬棒”不一定是直棒,只要在外力作用下不变形的物体都可以看成杠杆,杠杆可以是直的也可以是任意形状的。 ②一根硬棒能成为杠杆,应具备两个条件:一是要有力的作用;二是能绕固定点转动。两个条件缺一不可。例如:撬棒在没有使用时就不能成为杠杆。杠杆的形状可以是直的,也可以是弯的,但必须是硬的,固定点可以在杠杆的一端,也可以在杠杆的其他位置。 2、杠杆的五要素: 五要素物理含义 支点杠杆可以绕其转动的点,用“O”表示 动力是杠杆转动的力,用“F1”表示 阻力阻碍杠杆转动的力,用“F2”表示 动力臂从支点O到动力F1作用线的距离,用“l1”表示 阻力臂从支点O到阻力F2作用线的距离,用“l2”表示 3、八点透析杠杆的五要素 ①杠杆的支点一定在杠杆上,可以在杠杆的一端,也可以在杠杆的其它位置。同一杠杆,使用方法不同,支点的位置也不可能不同。在杠杆转动时,支点是相对固定的。 ②动力和阻力是相对而言的,不论是动力还是阻力,杠杆都是受力物体,跟杠杆发生相互作用的物体都是施力物体。动力和阻力的作用效果正好相反。 ③动力作用点:动力在杠杆上的作用点。 ④阻力作用点:阻力在杠杆上的作用点。 ⑤力臂是支点到力的作用线的距离,不是支点到 力的作用点的距离。某个力作用在杠杆上,若作用点不 变,力的方向改变,力臂一般要改变。 ⑥力臂有时在杠杆上,有时不在杠杆上,如果力的作用线恰好通过支点,则力臂为零。 ⑦力臂的表示与画法:过支点做力的作用线的垂线

l l l ⑧ 力臂的三种表示方 式: 选择 哪种 方 式,根据个人习惯而定。 4、力臂的画法: 第一步:先确定支点,即杠杆绕着转动的固定点,用字母“O”表示。 第二步:确定动力和阻力。人的目的是将石头撬起,则人应向下用力,此力即为动力,用“F1”表示。这个力F1的作用效果是使杠杆逆时针转动,阻力的作用效果恰好与动力的作用效果相反,在阻力的作用下杠杆应沿着顺时针方向转动,则阻力的作用效果杠杆应沿着顺时针方向转动,则阻力是石头施加给杠杆的方向向下的压力,用“F2”表示。 第三步:画出动力臂和阻力臂。将力的作用线正向或反向延长,由支点向力的作用线作垂线,从支点到垂足的距离就是力臂,并标明动力臂与阻力臂的符号“l1”“l2”。 知识点二、杠杆的平衡条件 1、杠杆平衡:在力的作用下,如果杠杆处于静止状态或绕支点匀速转动时,我们就可以认为杠杆是平衡了。 2、实验探究:杠杆的平衡条件 实验器材:杠杆和支架、钩码、刻度尺、线。 实验步骤:①调节杠杆两端的螺母,使杠杆在不挂钩码时,保持水平并静止,达到平衡状态。在调节时,如果杠杆的左边下沉,则应将杠杆两端的平衡螺母向右调,如果杠杆的右边下沉,则应将杠杆两端的平衡螺母向左调,简称“左沉右调,右沉左调”。 ②如图所示,在杠杆两边挂上不同数量的钩码,调节钩码的位置,使杠杆重新在水平位置平衡。这时杠杆两边收到钩码的作用力的大小都等于钩码重力的大小。 把支点右方的钩码对杠杆施的力当成动力F1,支点左方的钩码对杠杆施的力当成阻力F2;用刻度尺测量出杠杆平衡时的动力臂l1和阻力臂l2;把F1、l1、F2、l2的数据填入实验表格中。 ③改变动力F1和动力臂l1的大小,相应调节阻力F2和阻力臂l2的大小,再做两次实验,将结果填入实验表格 实验序号动力F1/N 动力臂l1/cm 动力×动力臂 /N·cm 阻力F2/N 阻力臂l2/cm 阻力×阻力臂 /N·cm

《固体物理学》基础知识训练题及其参考答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将错误!未找到引用源。两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将错误!未找到引用源。组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

高中物理磁场知识点总结+例题

高中物理磁场知识点总 结+例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B ;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A ?m)=1kg/(A ?s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 ⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 条形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

初中物理知识点总结(八下)

初中物理知识点总结(八下) 第六章力和机械 6.1 怎样认识力 1、力(F):物体对物体的作用(施力物体和受力物体)。 2、力的作用效果: 力可以改变物体的形状, 力可以改变物体的运动状态(改变速度或者运动方向) 3、物体间力的作用是相互的(施力物体同时也是受力物体)。 4、力的三要素是:力的大小、方向、作用点,叫做力的三要素,它们都能影响力的作用效果。 5、力的单位是:牛顿(简称:牛),符号是N。 1N大约是拿起两个鸡蛋所用的力。 6.2 怎样测量和表示力 6、实验室测量力的大小工具是:弹簧测力计。 7、弹簧测力计的原理:在弹性限度内,弹簧的伸长与受到的拉力成正比。 8、弹簧测力计的用法: 第一步:校零 第二步:认清量程和分度值 第三步:使弹簧的伸长和力的方向在同一条直线上 第四步:读数 9、力的示意图就是用一根带箭头的线段来表示力。 画法:第一:找作用点,第二:画箭头(力越大线越长),第三:标出字母和大小 6.3 重力 10、重力(G):由于地球的吸引而使物体受到的力, 重力的施力物体是地球。 11、重力方向:竖直向下; 重垂线是根据重力的方向总是竖直向下的原理制成。 12、重力作用点叫重心。 13、重力大小叫物重。重力大小和物体质量成正比。 公式:G=mg (公式中G表示重力,单位是N,m表示质量,单位是Kg) g=9.8N/Kg,含义:质量为1Kg的物体受到的重力是9.8N(有时取10N/kg) 6.4 探究滑动摩擦力的大小 14、滑动摩擦:一个物体在另一个物体表面上滑动时产生的摩擦叫滑动摩擦。 15、滑动摩擦力(f):滑动摩擦中阻碍物体相对运动的力,叫滑动摩擦力。 16、摩擦力产生的条件:粗糙表面、物体要接触,物体间要有相对运动(滑动),或者物体间有相对运动的趋势。 17、滑动摩擦力方向:阻碍物体相对运动。 18、探究滑动摩擦力大小实验(1)实验方法:控制变量法 (2)实验要求:用弹簧测力计测摩擦力的大小 拉弹簧测力计要水平、匀速直线 用增加砝码来增大压力,在木板上铺毛巾改变接触面的粗糙程度 19、滑动摩擦力的大小和①压力大小有关:接触面的粗糙程度一定,压力越大,滑动摩擦力越大; ②接触面的粗糙程度有关:压力一定,接触面越粗糙,滑动摩擦力越大。 20、增大摩擦方法:①增大压力②使接触面更粗糙。 21、减小摩擦的方法:①减小压力②使接触面更光滑 ③使接触面分离,加润滑油④用滚动代替滑动。 6.5 探究杠杆的平衡条件 22、杠杆:能绕一固定点转动的硬棒叫杠杆。 23、支点(O):杠杆绕着转动的点。 24、力臂(L):从支点到力作用线的距离(从支点向力的作用线画垂线)。 25、杠杆上有二个力,分别是动力(F1)和阻力(F2) 二个力臂,分别是动力臂(L1)和阻力臂(L2)26、杠杆平衡:在动力和阻力作用下杠杆保持静止或者匀速转动叫杠杆的平衡。 27、杠杆的平衡条件:F1·L1=F2·L2(公式中:F 的单位是N,L的单位是m)。 杠杆的动力臂是阻力臂的几倍,杠杆的动力F1就是阻力F2的几分之一。 28、探究杠杆平衡条件时:杠杆要保持水平静止。 钩码的重作为作为动力(F1)或者阻力(F2)29、三种杠杆 (1)省力杠杆:动力臂长度大于阻力臂,动力小于阻力。(如:撬杠,起子,铡刀,手动抽水机) 特点:省力但是费距离 (2)费力杠杆:动力臂长度小于阻力臂,动力大于阻力。(如:钓鱼竿,筷子,手前臂) 特点:费力但是可以省距离 (3)等臂杠杆:动力臂长度等于阻力臂,动力等于阻力。(如:天平) 特点为:不省力也不费力,也不省距离 6.6 探究滑轮的作用 30、滑轮分类:定滑轮、动滑轮、滑轮组 31、定滑轮: (1)使用时滑轮轴位置固定 (2)特点:不省力,拉力F=G物,可改变拉力方向(3)定滑轮实质上是一个等臂杠杆 32、动滑轮: (1)使用时滑轮和重物一起移动 (2)特点:省一半的力,拉力F=(G物+G动)/2 但不能改变拉力方向 (3)使用动滑轮时,拉力要匀速竖直向上。

固体物理重要知识点总结

固体物理重要知识点总结 晶体:是由离子,原子或分子(统称为粒子)有规律的排列而成的,具有周期性和对称性非晶体:有序度仅限于几个原子,不具有长程有序性和对称性点阵:格点的总体称为点阵晶格:晶体中微粒重心,周期性的排列所组成的骨架,称为晶格格点:微粒重心所处的位置称为晶格的格点(或结点)晶体的周期性和对称性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质称为晶体结构的周期性。晶体的对称性指晶体经过某些对称操作后,仍能恢复原状的特性。(有轴对称,面对称,体心对称即点对称)密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的密勒指数配位数:可用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度固体物理学元胞:选取体积最小的晶胞,称为元胞:格点只在顶角,内部和面上都不包含其他格点,整个元胞只含有一个格点:元胞的三边的平移矢量称为基本平移矢量(或者基矢);突出反映晶体结构的周期性元胞:体积通常较固体物理学元胞大;格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数,点阵常数或晶胞常数;突出反映晶体的周期性和对称性。布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合而且每个格点周围的情况都一样复式格子:晶体由两种或者两种以上的原子构成,而且每种原子都各自构成一种相同的布拉菲格子,这些布拉菲格子相互错开一段距离,相互套购而形成的格子称为复式格子,复式格子是由若干相同的布拉菲格子相互位移套购而成的声子:晶格简谐振动的能量

化,以hv l来增减其能量,hv l就称为晶格振动能量的量子叫声子非简谐效应:在晶格振动势能中考虑了δ2以上δ高次项的影响,此时势能曲线能是非对称的,因此原子振动时会产生热膨胀与热传导点缺陷的分类:晶体点缺陷:①本征热缺陷:弗伦克尔缺陷,肖脱基缺陷②杂质缺陷:置换型,填隙型③色心④极化子布里渊区:在空间中倒格矢的中垂线把空间分成许多不同的区域,在同一区域中能量是连续的,在区域的边界上能量是不连续的,把这样的区域称为布里渊区 爱因斯坦模型在低温下与实验存在偏差的根源是什么? 答:按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为1013Hz,属于光学支频率,但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波,也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源。 陶瓷中晶界对材料性能有很大的影响,试举例说明晶界的作用 答:晶界是一种面缺陷,是周期性中断的区域,存在较高界面能和应力,且电荷不平衡,故晶界是缺陷富集区域,易吸附或产生各种热缺陷和杂质缺陷,与体内微观粒子(如电子)相比,晶界微观粒子所处的能量状态有明显差异,称为晶界态。 在半导体陶瓷,通常可以通过组成,制备工艺的控制,使晶界中产生不同起源的受主态能级,在晶界产生能级势垒,显著影响电子的输出行为,使陶瓷产生一系列的电功能特性(如PTC特性,压敏特性,大电容特性等)。这种晶界效应在半导体陶瓷的发展中得到了充分的体现和应用。 从能带理论的角度简述绝缘体,半导体,导体的导电或绝缘机制

相关主题
文本预览
相关文档 最新文档