当前位置:文档之家› 超低浓度瓦斯(泛风)发电

超低浓度瓦斯(泛风)发电

超低浓度瓦斯(泛风)发电
超低浓度瓦斯(泛风)发电

超低浓度瓦斯(矿井乏气)合同能源管理发电项目

2010-06-29 07:54:46 浏览次数:235 文字大小:默认中大特大

一、项目背景

中国埋深在2000米以内的煤层中含煤层气资源量达30-35

万亿立方米,是世界上第三大煤层气储量国,煤层气开发前景非常可观。然而,2004年全国井下开发煤层气约16亿立方米,国有高瓦斯突出矿井平均煤层气的开发率仅为10%左右。 2006年以来,国家出台了一系列加快煤层气抽采利用的政策和意见,充分体现了国家对煤矿瓦斯综合利用的高度重视及指导方向。

从世界范围看,煤矿瓦斯利用主要集中在民用、发电、工业燃料及化工原料等方面。煤矿瓦斯利用最合理的方式就是发电,而瓦斯发电是利用目前成熟的内燃机技术,仅对内燃机的进气系统和燃料供给系统加以改造,技术较为可靠。投资少,见效快,一般3-5年内可收回全部投资。在发电基础上实现“冷、热、电”三联供,改善煤矿职工和当地居民生产、生活条件,节能减排,保持可持续发展、实现优化产业结构、安全环保生产。

煤矿通风排出的煤矿瓦斯,CH4含量一般低于1%,称之为风排瓦斯(俗称“乏风”)。全世界因煤矿开采每年排入大气中的甲烷总量为250 0万吨,随着煤炭产量的增加,预计到2010年甲烷排放量将增至28 00万吨,其中70%来自甲烷浓度低于1%的风排瓦斯中。这部分煤矿瓦斯由于CH4浓度太低,利用技术难度较大。目前,世界上几乎所有

煤矿的风排瓦斯都未进行回收处理,直接排放到大气中。将甲烷直接排放到大气中,一方面造成了有限的不可再生资源的严重浪费,仅每年从煤矿风排瓦斯中释放的瓦斯其低位发热量相当于3370万吨标准煤的低位发热量;另一方面造成了大气污染,加剧了温室效应,单位质量的CH4对大气温室效应影响GWP(GlobalWarm-ingPotential)是C O2的21倍。因此,合理回收利用乏风中瓦斯具有节能和环保双重意义。

二、低浓度瓦斯利用技术与CDM项目开发

清洁发展机制,简称CDM(Clean Development Mechanism),是《京都议定书》中引入的三个灵活履约机制之一。2005年2月16日《京都议定书》正式生效后,根据“共同但有区别的责任”原则,《京都议定书》只给工业化国家制定了减排任务,但没有对发展中国家作这个要求。发达国家通过在发展中国家实施具有温室气体减排效果的项目,把项目所产生的温室气体减少的排放量作为履行京都议定书所规定的一部分义务。一个年交易值高达150亿美元左右的国际温室气体贸易市场已经启动。

2004年12月,晋城煤业集团12万千瓦煤层气电厂项目所产生的经核证的温室气体减排量被世行托管的碳化基金(PCF)收购,价值达19 00万美元。这是我国执行《京都议定书》第一个环保减排购买协议指标项目。积极参与CDM项目的运作,也将给本项目带来非常可观的收益。

中国政府已确定三个清洁发展机制优先领域,其中之一是鼓励在煤矿瓦斯项目中应用环境机制,以减少中国煤矿甲烷排放。

从技术成熟度、适用性、产品需求以及经济性考虑,低浓度瓦斯发电技术将是未来的主流发展趋势,国家已经从政策激励、制定标准等方面予以支持。将低浓度瓦斯利用技术与CDM项目开发相结合,以提高低浓度瓦斯利用的经济性。对实施“节能减排”工作有重大的现实意义,

三、项目概述

煤矿瓦斯(甲烷含量为50-95%)是优质洁净的气体能源,但同时也是煤矿生产中最大的安全隐患。煤矿通常采用大量通风来排放煤矿瓦斯(称为矿井乏风,Ventilation Air Methane,简称VAM),乏气,是煤矿矿井通风排放气体,安全要求甲烷浓度含量低于1%的巷道通风排放气体,通常作为废气排放入大气,中国每年因采煤向大气排放的甲烷气体达100亿立方米,居世界第一,约占世界采煤排放甲烷总量的1/3。在中国煤矿排放的甲烷中,矿井乏风占91%,是甲烷的最大工业排放源。因此, 治理和利用矿井乏风甲烷,是我国面临的紧迫任务。目前国内还未发现与煤矿乏风瓦斯氧化有关的专利。

1、乏气回收发电装置技术发展过程

我公司引进的逆流程反应器矿井乏风瓦斯发电技术,是美国经过14年的设计和研发,设计制造并已经成功试验完成了全球独一无二大型

煤矿乏气发电系统。第一台示范项目于1994年在英国安装运行,进行了有效的瓦斯减排并取得良好经济效益。2001年由澳大利亚温室效应办公室支持,在澳大利亚煤矿建设了一座矿井乏风瓦斯发电站,处理了煤矿250000m3/h的浓度为0.9%的通风瓦斯(乏风),回收的能量用于驱动一台6MW的发电机运转,到目前已经进行了多年的安全无事故的成功项目测试,并获得2005年ACARP最优秀温室气体项目奖。2007年,在美国环境署(EPA)和美国能源部(DOE)的支持下,在美国煤矿建设了一座矿井乏风瓦斯发电站。

2、技术简介

A、工作原理

反应器两端是石英砂或陶瓷颗粒构成的热交换介质层,热交换介质层中心装有电热元件,反应器周围有较好的绝热层.通过氧化剂使矿井

乏气达到低温氧化发热效果。

先用电将陶瓷床中心部分加热到1000摄氏度,然后矿井乏风通过陶瓷床。当矿井乏风通过陶瓷床中部的高温区时甲烷迅速氧化,通过热交换,氧化能量被传递到陶瓷床材料周围。热交换的效率很高,在一个平衡系统中,入口处和出口处气体的温差只有大约40摄氏度。在气体和热交换介质固体床之间发生生热交换时,矿井乏风以一个方向流入和通过反应器,气体温度不断提高,直至甲烷氧化。然后,氧化

的热产品随着继续向床的另一边移动而逐渐降热,直至气体流动自动发生反转。

在甲烷自动点火温度(1000摄氏度)工作时,催化反应器能大量降低自动点火温度。采用热交换技术的这两种反应器均产生热量,可用来满足当地的采暖需要,或用来发电。

氧化过程只在陶瓷床内部发生,没有火焰,温度的水平分布非常均匀。因为温度变化不大,不产生瞬间高温,所以不会产生氮氧化物。

工作原理

矿井乏气

无甲烷通风乏气

完全氧化

向下流动

向上流动

热量发生装置

蒸汽

蒸汽

过热蒸汽

经验结果: 超过0.2%浓度甲烷气体乏气即能被转换

* 0.4% 浓度甲烷乏气, 50% 被转换为0.2% 甲烷浓度含量气体

* 1.0% 浓度甲烷乏气, 80%含量被转换

B、工作过程

气体(排风瓦斯/乏气)与固体(热交换介质)在反应区进行热交换,气体受热达到瓦斯燃烧所需温度,发生氧化反应(燃烧),放出热量。一个循环包括两次风流转向,所以,每一次转向称为半循环。在第一个半循环中,阀1打开,阀2关闭,风流从反应器底部流向顶部。经过一段时间(主要由反应生成的热量确定),阀2打开,阀1关闭,风流从顶部流向底部,完成另一半循环(图二)。开始运行时,电热元件对热交换介质进行预热,使之达到反应所需温度(约1000℃)。在第一个半循环中,回风流以常温通过反应器,由于热交换介质层中心温度达到引燃瓦斯所需温度,发生氧化反应。

热流转换反应器简图

甲烷气体氧化–触媒反应过程(图二)

接触反应堆示意图(双层触媒)

热交换

阀门2

阀门1

阀门1

阀门2

空气、甲烷

热交换介质

催化剂

催化剂

空气、二氧化碳

水、热量*

燃烧房

阀门#2 打开

C.构成

乏气安全氧化发生器由一个钢制容器组成,内部是陶瓷床,加热元件位于陶瓷床中央。由于采用的是箱式标准化设计,所以很容易扩容、搬迁到其他风井重新安装也很容易,可以根据矿井的生产需要而移动。如果甲烷浓度低到0.1%,仍然可以运转而不需要补充额外的能量。如果甲烷浓度高于0.1%,就可以从系统中回收热量并产生诸如热水、过热蒸气等,然后利用蒸气来推动汽轮机发电。该系统氧化甲烷的效率高达98%,最终将甲烷转化为二氧化碳和水。

无明火: 交换器内完全氧化.

氧化发生: 陶瓷内胆加热器

发热效率: 低浓度持续自燃(0.1%甲烷气体浓度).

无明火发生器

1000o C / 1830 F

60o C / 140 F

1994

甲烷气体消除装置

英国煤矿成功试验装置:

8000 m3/h of 矿井乏风,甲烷浓度0.3 – 0.6 % .

甲烷消除后排放浓度0.1 % .

第一代煤矿乏气环保装置示范工程

- 1994年

BHP 澳大利亚2001 - 2002

能源转换事例

6000 m3/h 矿井乏气提供90%乏气转换热水. 生产能力维持12个月不间断供应.

第二代矿井乏气燃烧能源转换器

2001 - 2002

第二代煤矿矿井乏气燃烧能源转换装置示范工程

- 小规模能源燃烧能源转换装置

2005,04,05,试验成功项目

最成功的澳大利亚减少温室气体排放能源转换项目

250 000 m3/h(150 000 标准立方英尺/每分钟)矿井通风乏气发电量6 MW (6兆瓦)

BHP 澳大利亚2005

大型乏气发电装置

规划图

第三代乏气发电设备的矿井安装示范工程

- 世界首例乏气发电设备装置

第三代:大型乏气发电设备

3.项目建设规划及投资预算

每MW装机容量的投资与采用的轮机的容量有关,每台机组的容量越高,则每MW投资越低。较高的资本成本或瓦斯抽放成本会降低收益,产能越高,减排价格越高,矿井乏风的浓度越高,效益就约好。以采集排风量50-100万立方/小时的矿井,抽取25万立方/小时乏风,乏风甲烷含量0.7-1.0%,发电标准装机6000KM为例:

1.设备使用占地5000平方米

2.设备采购、工程建设等预计总投入人民币8000万元

3.建设周期1年完成即可投入使用

4.发电6000千瓦每小时,自用耗电1000千瓦每小时,并网送电

5000千瓦每小时

5.预计全年送电:5000千瓦×8000小时(每年)=4000万度

6.减少甲烷排放相当于二氧化碳排放当量24万吨/每年

四、合同能源管理模式

EMCO是一种基于合同能源管理和新运行机制的节能服务公司,中文

译为“合同能源管理控制专业化节能服务公司”。EMCO与愿意进行

节能改造的客户签订节能服务合同,向客户提供能源效率审计、节能项目设计、原材料和设备采购、施工、监测、培训、运行管理等一条龙服务,并通过与客户分享项目实施后产生的节能效益获得滚动发展。合同能源管理的新型经营模式,在我国矿井乏气发电、能源再生利用、减排等方面将发挥重大作用。

本项目以上述三、3的基本设计方案为例,

1.项目初始投入资金8000万元人民币

2.发电效益:5000千瓦× 8000小时/年×电价0.5元/度=2000万

元/年

3.国际碳汇贸易收入:CDM 24万吨x USD10/每吨=240万美元/年

不计算CDM指标收益,仅投资收益率达20%,预计5年回收投入成本。

五、市场前景

目前我国矿井乏气排放占甲烷气体排放的91%,低浓度瓦斯发电项目正处于研发完成项目推广中,矿井乏气发电节能减排项目在国内尚属

于空白,目前国内两个乏气发电研发项目均刚进入小规模实验设备研究阶段,与国际先进水平距离尚远。本项目介绍的矿井乏气大型发电设备在国际专利技术上是独一无二的先进技术,并且,经过超过10年的技术改良及研发,其安全性、稳定性及量产成本均属世界第一。综上所述,利用安装矿井乏风处理装置,就可以将温室气体问题变成一个为企业创造效益的经济增长点。

高低浓度瓦斯发电对比

瓦斯发电项目投资简述 一、燃气内燃发电机组 燃气内燃发电机组分为高浓度瓦斯发电机组和低浓度瓦斯发电机组,高浓度瓦斯发电机组要求甲烷含量在25%以上;低浓度瓦斯发电机组要求甲烷含量在12%-25%;根据瓦斯浓度情况选择发电机组型号,低瓦斯发电机组一般选择1MW左右,高瓦斯发电机组一般选择2MW左右。高瓦斯发电机组发电效率比低瓦斯发电机组发电效率略高。瓦斯发电机燃料能量约35%被机组转化为电能,约30%随废气排出,25%被发动机冷却水带走。 低浓度瓦斯发电机组采用电控燃气混合器技术,可以自动控制空燃比,以适应瓦斯的浓度变化,将瓦斯浓度调整9%,此时瓦斯爆炸反应最完全,瓦斯、氧气氧化反应完全,实现零氧平衡,此时爆炸威力也最大,做功效率最高。高低瓦斯发电最大的区别:低浓度处于爆炸极限内的甲烷在进入机组前的过程中是不允许设置储气罐和加压机,而高浓度瓦斯在输送过程中可不设计瓦斯安全输送系统。 二、高低瓦斯发电工艺及区别 瓦斯经过安全输送系统(雾化水系统、水封阻火器、安全阀等)的传输,瓦斯预处理系统对气体杂质、液态水的过滤和气体温度的调控,进入机组内先进行预混合,之后由涡轮增压器增压、中冷器降温、在缸内用火花塞点火,燃烧后高温高压气体带动缸体活塞和曲轴运动,推动发动机做功,将机械能转化为电能。详细工艺流程见下图:

瓦斯发电工艺系统。瓦斯发电工艺主要包括11项系统,热力系统、燃料供应系统、余热利用系统、瓦斯输送安全装置系统、除灰系统、水处理系统、供水系统、并网工程、电气系统、热工控制系统、附属生产工程、烟气脱硫脱硝系统。各工艺系统详细情况介绍如下:热力系统:瓦斯与空气在集装箱式内燃机发电机机组进气入口处混合后,进入涡轮增压器增压,再经过中冷器冷却,通过进气管由进气门控制进入气缸,经火花塞点火爆炸氧化,产生动力驱动发电机曲轴旋转,曲轴将动力传给交流发电机,转换成电能输出。主要设备包括燃气发动机和交流发电机,以及配套的管路和设备。 燃料供应系统:矿井瓦斯从井下煤层中,经过瓦斯泵站抽采后,抽排到地面,由瓦斯输送管道经过泵送、离心脱水、制冷脱水等一系列安全处理措施,提供给瓦斯发电机组。主要工程包括:瓦斯预处理土建、罗茨风机设备及安装工程。 余热利用系统:发电机组尾气净化后排烟温度高达400-600℃,直接对空排放将造成热能浪费,为把有效热能充分利用,在排烟筒处设置蒸汽锅炉或者余热锅炉,锅炉将热源提供给用户,解决工业场地冬季取暖供热问题。主要设备包括余热锅炉和配套管路设备。

低浓度瓦斯输送、利用、排空安全技术措施

低浓度瓦斯输送、利用、排空安全技术措施 审批签名表

由于我矿瓦斯抽采浓度基本都在30%以下,为保障低浓度瓦斯输送、利用、排空的安全,特制定以下安全保障措施,希相关单位严格按措施执行。 一、基本要求 1.在管道输送系统中靠近可能的火源点(发电机组、地面排空管口、自燃等)附近管道上,安设安全保护设施,确保管道输送安全。 2.在发电瓦斯输送管道系统中安设防逆流装置,防止抽采泵突然停泵而出现回流。 3.管道输送系统中不设置缓冲罐。 4.加压设备选择湿式压缩机。 5.抽采设备应选择湿式抽采泵。 6.正压输送时,输送压力不宜超过20kPa。 7.安设段管道及附件应能承受正压2.5MPa的压力,其它管道及附件应能承受正压1.0MPa、负压0.097MPa的压力。 8.管路安设尽量选用金属管道。 9.地面瓦斯输送管道采用埋地敷设,在管道进、出建筑物100m 范围内,应每隔25m左右接地1次,其接地电阻不应大于20Ω。 二、安全设施 (一)内燃机瓦斯发电用管道输送要求 1、在瓦斯发电用低浓度瓦斯管道输送安全保障设安设阻火泄爆、抑爆、阻爆三种不同原理的阻火防爆装置。阻火泄爆装置选择水封阻火泄爆装置,抑爆装置可选择自动喷粉抑爆装置、细水雾输送抑爆装

置和气水二相流输送抑爆装置中的一种,阻爆装置选择自动阻爆装置。 2、监控用火焰、压力传感器安装在支管上脱水器的两侧。火焰传感器位于脱水器与发电机组之间,距离脱水器2m~3m;压力传感器位于脱水器与分管之间,距离脱水器1m~2m。 3、水封式阻火泄爆装置的安设位置距最远端支管的距离(沿管道轴向)应小于30m。 4、水封式阻火泄爆装置应能自动控制水位,确保其有效阻火的水封高度。 5、抑爆装置选用自动喷粉抑爆装置时,其安设位置距离最近的火焰传感器的距离(沿管道轴向)为40m~50m;选用细水雾输送抑爆装置或气水二相流输送抑爆装置时,其安装始端距水封阻火泄爆装置的距离不大于3m。 6、自动阻爆装置距抑爆装置末端的距离不大于10m。 7、安全保障设施任一装置的运行参数不能满足安全要求时,应能实现自动报警,并在3 分钟内关停发电机组,同时打开瓦斯排空管。 8、安全保障设施安设段管道内径不大于500mm。 (二)地面瓦斯排空要求 1、抽出的低浓度瓦斯不利用时,其地面排空管路应安设阻火泄爆、抑爆两种不同原理的阻火防爆装置。阻火泄爆装置宜采用水封式阻火泄爆装置,抑爆装置宜采用自动喷粉抑爆装置。 2、自动喷粉抑爆装置监控用火焰传感器安装在排空管上,距排

低浓度瓦斯发电技术研究现状分析

低浓度瓦斯发电技术研究现状分析 摘要:煤炭开采过程中会排放大量的瓦斯气,其主要来自于矿井瓦斯抽取系统、地面钻井和煤矿井下回风井形,而这些瓦斯气浓度都较低。煤矿生产时所采用的 瓦斯为清洁能源,如果对其进行回收发电利用可以有效减少温室气体的排放,在 满足煤矿用电要求的同时,还可以把多余的电能输送到电网中,对于推动企业和 区域经济发展具有很大的实用价值。本文作者结合自己的工作经验并加以反思, 对低浓度瓦斯发电技术研究现状进行了深入的探讨,具有重要的现实意义。 关键词:低浓度瓦斯发电;氧化发电;技术原理 利用瓦斯发电是有效的节能方式,国内的瓦斯发电总容量已经达到了几万千瓦,瓦斯发 电的装机规模得到了快速的提升。其中大多采用低浓度瓦斯发电的方式,可以有效地提高煤 矿瓦斯的应用价值。 1低浓度瓦斯发电技术研究现状 1.1内燃机发电技术 因为煤矿生产抽采出来的瓦斯浓度及压力都不稳定,因此需要采用控制器来对执行机构 发出燃气调整及空气进气量等控制命令,从而实现自动混合控制,混合处理后的瓦斯浓度可 以控制在6%左右,保证发动机空燃比处于合理状态,由此看来,空燃比自动控制技术更适合应用在低浓度、大流量和瓦斯和空气的混合,从而实现低浓度瓦斯发电。在发动机缸体内出 现爆燃,回火的几率会提高,如果发动机缸温大于500度,缸盖及活塞等部会的热负荷会不 断提升,可能会由于爆震而引发机械运行事故,因此可以采用稀薄燃烧技术,发动机内的热 负荷会显著减小,有效地减小回火的可能性,机组运行可靠性也会得到有效提升。除此之外,缸体甲烷燃烧速度也会提升,燃烧效率可以得到保证,发动机的运行性能可以得到改进和优化。当前,国内发电机组制造商一般都会把发动机缸体内的点燃能量提高,一般设置在0.1 焦左右,再采用预燃技术,高温高压气体快速点燃燃烧室内稀薄的瓦斯气体,稀薄燃烧会使 燃烧室内的传热减少,燃烧温度及排气温度都会显著降低,可以保证有效的热效率,最高可 以达到35%左右。 1.2燃气轮机发电技术 提升燃气轮机效率的主要途径就是把燃气初始温度提高,也就是改进和优化高温部件的 冷却处理技术。涡轮喷嘴、叶片等关键的高温部件材料从原来的合金材料发展到陶瓷、结晶 叶片等,早期的喷嘴及动叶片冲击、对流等冷却技术已经转变为蒸汽冷却。通过大量的实践 可以看出,燃气温度提升100度,燃气轮机效率可提升2-3%,采用技术先进的冷却技术,可 以使平前端燃气进口温度提升500-800度,所以,燃气轮机具备的热效率从原来的16-25%上 升到40%左右。 一般情况下,把燃气轮机功率区间在300-20000千瓦的划分到小型燃气轮机,而功率在30-300千瓦的归为微型燃气轮机,但微型燃气轮机发电机技术还处在科研中。因为矿井抽取 的瓦斯浓度以低、中浓度的比较多,发电机组形成相同的输出功率应该输入更多的低热值瓦斯,运行情况产生的变化会引起透平和压气机工作无法保证协调,透平温度会显著提升,出 现效率减少而产生停机问题。 1.3氧化发电技术

瓦斯抽采指标计算方法

l 一评价单元抽采钻孔控制范围内煤层平均倾向长度, m ; 附录瓦斯抽采指标计算方法 A1预抽时间差异系数计算方法: 预抽时间差异系数为预抽时间最长的钻孔抽采天数减去预 抽时间最短的钻孔抽采天数的差值与预抽时间最长的钻孔抽采 天数之比。预抽时间差异系数按式(1)计算: max 式中:一预抽时间差异系数,% T max —预抽时间最长的钻孔抽采天数, d ; T min —预抽时间最短的钻孔抽采天数, do A2瓦斯抽采后煤的残余瓦斯含量计算 按公式(2)计算: W )G Q (2) 式中: W 一煤的残余瓦斯含量,m 3/t ; (7.9594) W )—煤的原始瓦斯含量,m/t ; Q 一评价单元钻孔抽排瓦斯总量,m 3; G 一评价单元参与计算煤炭储量,to 评价单元参与计算煤炭储量 G 按公式(3)计算: G L H 1 H 2 2R l n 技 R m (3) 式中:L 一评价单元煤层走向长度,m ; max T min 100% (1)

H i、H2 一分另U为评价单元走向方向两端巷道瓦斯预排等值宽度,m如果无巷道则为0; h i、h2 一分别为评价单元倾向方向两侧巷道瓦斯预排等值宽度,m如果无巷道则为0; R 一抽采钻孔的有效影响半径, m; m一评价单元平均煤层厚度,mi 3 —评价单兀煤的皆度,t/m。 H i、H2、h i、h2应根据矿井实测资料确定,如果无实测数据,可参照附表1中的数据或计算式确定。 附表1巷道预排瓦斯等值宽度

A3抽采后煤的残余瓦斯压力计算方法: 煤的残余相对瓦斯压力(表压)按下式计算: ab P CY 0.1 100 A d M ad 1 P CY 0.1 W CY ■- ■- 1 b(P CY 0.1) 100 1 0.31 M ad P a (4) 式中:W L残余瓦斯含量,”/t ; (7.9594) a,b一吸附常数;a=20.7739,b=1.6280 P CY一煤层残余相对瓦斯压力,MPa ,(0.101325 MPa) p a 一标准大气压力 A d 一煤的灰分,% (1.04) M ad 一煤的水分,% (11.09) 一煤的孔隙率,m3/ m3; (4.23) 一煤的容重(假密度),t/ m 3。(1.45) A4可解吸瓦斯量计算方法: 按公式(5)计算: W W CY W CC j (5) 式中:W j 一煤的可解吸瓦斯量,mvt ; 3 一 W CY一抽米瓦斯后煤层的残余瓦斯含也,m/t; W Cc 一煤在标准大气压力下的残存瓦斯含量,按公式 (6)计算。 …0.1ab 100 A d M ad 1 兀 W Cc ------------------------ ------------------------------------- ------------------------------- -------- 1 0.1b 100 1 0.31M ad (6)

瓦斯发电新技术

瓦斯发电新技术---节能减排 瓦斯发电技术属于新能源发电技术,主要是将煤矿未能充分利用的瓦斯燃烧转变为电能。瓦斯作为一种温室气体,温室效应突出,当前CDM能源组织要求各国要减少瓦斯排放量。基于瓦斯发电技术不断应用下,逐渐降低了发电成本,提高了发电的稳定性。在全球提倡节能减排形势下,相关企业必须要不断研发与探索,完善发电技术,合理利用不同浓度的瓦斯,保证瓦斯发电的安全运行。 鹤壁中德新研发的KQ—1型瓦斯发电智能管理系统,是以“煤矿瓦斯发电站前置传感器与应急气源”(专利号201220321230.4)、“煤矿瓦斯发电站气源浓度与压力稳定系统”(专利号201120550319.3)两项专利技术为基础研制的控制系统,从自动控制瓦斯排放量、自动调节发电机组空燃比、无瓦斯泄漏正负压放水等几个方面着手,实现瓦斯发电的经济环保、节能减排、高效安全。其实现方式为: 1)实现瓦斯浓度的提前预警 由于瓦斯浓度传感器具有不可消除的滞后性,就地采集的数据不能及时反映进入机组的瓦斯的真实情况。本系统依据“煤矿瓦斯发电站前置传感器”专利技术,将现有的就地采集技术改为前置传感器采集技术,使系统得到的瓦斯参数为当前机组进气口的实际瓦斯参数,以便系统具有足够的反应时间,起到预警效果,保证系统调节的及时性与准确性,从根本上预防“飞车”、“紧急停车”等问题的出现。 2) 实现富余瓦斯的自动放散 得益于前置传感器提供的预警功能,本系统中的自动放散部分有足够的反应时间,依据传感器的参数,自动调节放散阀门开度,排放掉富余瓦斯,实现供给量等于需求量,杜绝因瓦斯浓度过高或总量过大导致的机组“飞车”问题,同时解决了手动放散存在的及时性和准确性问题,降低人工劳动量。 采用本系统的自动放散技术,能够保证按需供给瓦斯,实现低浓度瓦斯发电机组的满载运行,提高机组运行功率,使瓦斯资源得到充分利用,环境污染减少,经济与社会效益大幅提高。 3) 实现空燃比的自动调节 当前业内的共识是当空气与瓦斯的混合比例达到9.5%时天然气的燃烧最为充分。然而因为低浓度瓦斯浓度、压力不稳定等固有特点,市场上现有的控制系统因为滞后性并不能实现对机组空燃比的精确控制。 基于前置的瓦斯浓度传感器,本系统能够预判瓦斯浓度的变化情况,根据机组的需量计算燃气调节阀、空气阀等阀门的调整角度,实现对阀门的精确调控,进而控制进入机组的空气和瓦斯气浓度、流量及压力等数据,保证机组安全平稳运行,避免现有控制系统造成的滞后和不精确等问题,防止发生“飞车”或“紧急停车”等故障。 4)实现应急气源的自动补给 CNG应急气源装置由CNG或LNG气瓶组等部分构成,是汽车“油改气”技术的延伸。由它们组成的小容量气源,解决了因低浓度瓦斯不能储存,电站没有应急气源可用的难题。 气瓶内装有高纯度瓦斯,当气源波动至发电机组最低运行条件以下时,系统依据传感器的参数,自动调节应急气源的阀门开度,实现自动补气,保证机组在

煤矿低浓度瓦斯发电技术及经济性研究

煤矿低浓度瓦斯发电技术及经济性研究 摘要:中国煤矿每年排放到空气中的瓦斯占全世界总量的将近1/2[1]。瓦斯是重要的温室气体,也是一种燃料。如果能合理地将瓦斯变废为宝,不仅能够减少温 室效应将多余的电量上网,还能够在一定程度上缓解中国能源紧缺的现状。瓦斯 发出的电可以用于抽取瓦斯,而抽取的瓦斯又能够发电,这就形成了一种良性循环,使这项技术能够快速发展起来。 关键词:低浓度瓦斯;燃气发电;煤矿;安全 引言 煤矿瓦斯的处理方式一般分为3类:高浓度瓦斯采抽进入燃气管线;中浓度 瓦斯经过提纯压缩后应用;低浓度瓦斯一般存在于煤矿乏风中,瓦斯浓度一般在30%CH4以下,可用于燃烧供热和发电用途。就煤矿低浓度瓦斯发电供热技术及 其经济性进行研究,提出应用低浓度瓦斯进行热电联产的必要性,并对其经济性 进行测算。 1用于发电的矿井瓦斯浓度预处理 ①由于煤矿井下含水量多,空气湿度相对较大,所以抽采出的瓦斯气体里含有大量的水蒸气。这些水蒸气不但不能用于发电,还会对发电设备造成一定程度 的损坏。所以必须对抽出的瓦斯气体进行脱水处理。目前比较常用的脱水方法是 冷凝法,就是将抽出的气体温度降低、使水蒸气液化自动与其他气体脱离。 ②由矿井直接抽采出的瓦斯里一般都会含有一些不能燃烧的有害气体,这些气体是不能够用来燃烧发电的。所以需要采用一定的方法将它们分离出去。对于 粉尘,一般是采用过滤方法清除的,而其他的有害气体是利用它们的物理性质来 分离。 ③由于抽采的瓦斯浓度不一样,它们的压力也不一样,而在发电机组里需要瓦斯的压力是一定的,所以在送入之前必须要对瓦斯进行稳压处理以达到所需的 压强。在初始阶段即瓦斯在矿井下刚刚被抽出来的时候,由于矿井下环境条件比 较复杂,直接抽采出的瓦斯混合气体的压力和浓度变化幅度比较大,波动比较强烈,这时将抽采出的瓦斯气体经过均压装置,能够起到稳压的作用,以达到要求 的压强范围,使发电机能够持续高效安全地运行。 ④低浓瓦斯气从矿井抽采出来要经过管路输送到发电站的发电机组,而低浓瓦斯易爆炸,这就要求输送配套安全装置,确保低浓度瓦斯在输送中的安全,常 用的有细水雾低浓瓦斯输送系统、两相流瓦斯输送系统。 2各种发电技术及其特点 2.1内燃机发电技术特点 内燃机能够保持理想燃烧状态的关键技术是能否自动调节燃气和空气进气量 的百分比,一般这个混合气体的浓度保持在6%左右是最为理想的状态。由于矿 井抽采的瓦斯不像汽油等化石燃料一样能够保持稳定的浓度,各种情况的存在使 矿井抽采到的瓦斯在浓度及压力等方面变化比较频繁。这就要求内燃机的控制系 统能够根据瓦斯的实时浓度和空气进行配比,使混合后的气体浓度基本保持在6%左右,该控制技术最适合浓度比较低但是流量很大的瓦斯气体发电。如果混合气 体的浓度不够稳定,内燃机就会在缸内发生爆燃,这种情况最直接的后果就是增 大内燃机发生回火的概率,尤其是当内燃机气缸内的温度超出一定限度后,这个

瓦斯发电站动火安全技术措施

仅供参考[整理] 安全管理文书 瓦斯发电站动火安全技术措施 日期:__________________ 单位:__________________ 第1 页共5 页

瓦斯发电站动火安全技术措施 一、施工概况: 由于瓦斯发电站新增2台发电机组,现需对延伸的进气管路、进水管路、排气管路、发电机组架进行焊接,为保证施工安全、顺利进行,特编制本措施。 二、现场施工负责人:王丰华、刘志东(大坤科技有限公司) 三、安全负责人:王丰华、刘志东 四、施工安全监督人:李民(五凤矿) 五、施工时间:2014年5月14日-5月21日 六、施工地点:瓦斯发电站 七、施工前准备工作: 1、施工前准备好氧气、乙炔、焊机、焊线、焊条等焊接器材。 2、施工前,将各种工器具运送至施工地点。 3、施工前准备好灭火器、消防桶等安全器材并将水管连接到施工地点。 4、组织施工人员学习本措施并签字并由施工安全负责人布置施工重点及安全注意事项。 八、施工步骤: 1、施工前半小时,停止瓦斯发电机组运行,由准确通知要明确通知瓦斯抽放泵站打开对空排放阀,将瓦斯对空排放,关闭通往瓦斯发电站的阀。 2、施工负责人确认施工工具、消防设及人员到位后,安全负责人确认安全后汇报调度室准备开始施工。 3、在得到调度室同意后,瓦斯检查员检查现场瓦斯浓度,在瓦斯 第 2 页共 5 页

浓度低于0.5%后方能通知专业持证施工人员开始气割、焊接,施工人员在接到主要负责人通知施工气割、焊接指令后,方可按照技术措施进行施工,施工负责人和瓦检员要时刻注意检测施工现场瓦斯浓度的变化。 4、按照施工要求对需要切割和焊接的地方进行切割、焊接。 5、焊接完成后,敲掉焊渣,检查焊接情况,确认焊接是否牢固。 6、确认所有工序完成之后,由安全负责人和施工负责人检查管路焊接情况,确认一切正常后汇报调度室完成情况。 7、安全负责人确认一切正常后,请示调度室是否可以开机。 8、得到调度室许可后,按照操作规程开启瓦斯发电机组。 9、待瓦斯发电机组运行正常后,施工人员收拾工器具,打扫施工现场卫生,离开施工现场。 九、施工安全保证措施: 1、焊接施工前所有参加施工人员都必须认真学习本措施,做到责任明确措施落实,未学习者不得进入施工现场,焊接时要由专职电焊工持证操作。 2、除持证焊接人员可带火之外,其余人员一律不得带易燃易爆物品、电子产品、不得穿化纤衣服进入施工现场。 3、焊机在没有接到操作负责人的指令前不得擅自使用,且必须严格检查其完好性,任何时候出现问题都必须停止作业,及时上报并处理,只有经过严格的检验合格后才能使用。 4、施工负责人必须随身携带瓦斯便携仪随时注意检查工作现场的瓦斯浓度,当瓦斯超过0.5%以上时要立刻停止作业,及时汇报并查找原因。所有现场施工人员都必须听从施工主要负责人的统一指挥,只有在施工负责人确认安全的情况下才能焊接施工。 第 3 页共 5 页

基于煤矿低浓度瓦斯发电现状的改进对策

基于煤矿低浓度瓦斯发电现状的改进对策 摘要:利用煤矿坑道中排出的瓦斯气体进行发电即符合能源的综合利用又符合清洁能源的开发事宜。因此,瓦斯发电在煤矿区域被大量应用。在应用的过程中随着时间的推移,坑道中的瓦斯含量会逐年下降,当降到30%以下时则无法满足瓦斯发电的需求进而造成了能源的浪费。本文总结前人研究的结果,结合本人的工作经验从瓦斯的贮存浓缩以及发电机组的改进两个方面讨论低浓度瓦斯的发电利用。 关键词:低浓度瓦斯;发电效率;机组改进;瓦斯发电的智能化 一、引言 瓦斯发电在我国被广泛的使用,大型煤矿区域对瓦斯的开采以及排放均十分的重视。又研究表明瓦斯发电所提供的电能不仅能够供应矿区的全部能源消耗还可以为附近电网提供清洁的、低价的能源。但是,在实际的操作过程中瓦斯发电机组对瓦斯的浓度要求高于30%,随着时间的推移煤矿瓦斯的浓度往往会低于这个标准。当低于这个标准后则表现为发电效率的低下,甚至缺失。并造成二次污染,严重的威胁了煤矿的用电安全以及周边环境的安全。前人往往采用人为添加的方式对瓦斯进行浓度的增幅,这样既增加了使用成本还造成了运输成本的提高,不利于绿色能源的开发。本文以瓦斯当地贮存浓缩以及对发电机组改进的方式来提高对低浓度瓦斯的利用效率,进而达到提高发电效率。希望为今后的研究提供理论基础。 二、低浓度瓦斯下发电效率提高研究的必然性 (1)高浓度瓦斯资源的匮乏 煤矿地区的起始瓦斯浓度能够较好的满足发电机组的需求,其原始浓度达到50%以上。随着煤炭资源的开采以及瓦斯资源的利用,其浓度逐年下降。以笔者工作的煤矿瓦斯应用情况为例,存在大量的5%到25%浓度的瓦斯气体资源。超过30%浓度的瓦斯气体资源的开产量不到总量的10%。并且还存在下降的趋势,根据估算,这

瓦斯发电方案

1、项目概况: 盘县石桥镇鹏程煤矿年产15万吨,有抽排系统,井下相对涌出瓦斯量61方/分,浓度50%以上。根据厂负荷800KW左右,可以上2台500GF1-2RW机组,后期如果负荷增加,或者上网手续办理好后可以再增加机组。 2.项目方案 根据瓦斯浓度本项目方案采用胜利油田胜利动力机械有限公司生产的“胜动”牌500GF1-2RW瓦斯发电机组,该发电机组适用于瓦斯浓度大于30%以上的瓦斯发电。 本方案从“胜动”瓦斯发电机组技术可行性、安全保障、经济可行性等方面,进行建站项目可行性分析论证。 3.瓦斯发电的可行性 内燃机对瓦斯的适应性 胜利油田胜利动力机械有限公司是全国唯一的系列化、专业化燃气机生产企业,燃气机的生产已经有20多年的历史。近几年在瓦斯、煤层气、天然气、石油炼化尾气、焦炉尾气的利用上取得了突破,产品已经在全国各地得到广泛应用。我公司生产的瓦斯发电机组已经在贵州水城、重庆松藻、山西晋城、山西阳泉、安徽淮南、淮北、辽宁阜新、辽宁抚顺等地煤矿成功应用。 瓦斯发电机组针对瓦斯特点设计,采用了数字点火技术、电控技术、增压中冷、稀燃技术等多项国家专利技术和实用新技术,很好地解决了燃烧控制、浓度变化等问题。 瓦斯发电机组应用的技术 煤矿瓦斯抽放过程中,瓦斯的压力和CH 浓度是在不断变化的,胜利油田胜利动力机 4 械有限公司生产的瓦斯发电机组适应瓦斯的变化,具有以下技术特点: 3.2.1空燃比自动调节技术 煤矿抽排瓦斯过程中浓度和压力不稳定,该瓦斯发电机组采用电控混合技术对发动机的空燃比进行实时控制。发动机自动实时监控燃烧状况,由中央控制单元发出指令,执行器调整燃气通道,从而改变燃气进气量,达到自动调节混合比的目的,使发动机空燃比始终保持在理想状态,整个调整过程自动实现。 瓦斯发电机组采用电子控制技术,通过闭环自动调节混合气空燃比,显着提高对燃气浓度变化的适应能力,瓦斯浓度在6%-100%之间变动时,机组都能适应。 3.2.2低压进气技术 针对一些瓦斯压力低的特点,该发电机组采用先混合后增压技术设计使机组对燃气的 O以上即可达到机组的使用条件,不需要压力要求较低,只需要燃气进气压力达到300mmH 2 增加加压装置,减少投资。未采用此技术的国内其他厂家的发电机组需要增加加压装置,这样不仅增加了投资,同时也增加了机组故障点、安全隐患,并消耗了电力。 3.2.3稀燃技术

精选-瓦斯抽采指标计算方法

附录瓦斯抽采指标计算方法 A1预抽时间差异系数计算方法: 预抽时间差异系数为预抽时间最长的钻孔抽采天数减去预 抽时间最短的钻孔抽采天数的差值与预抽时间最长的钻孔抽采 天数之比。预抽时间差异系数按式(1)计算: max 式中:一预抽时间差异系数,% T max —预抽时间最长的钻孔抽采天数, d ; T min —预抽时间最短的钻孔抽采天数, d o A2瓦斯抽采后煤的残余瓦斯含量计算 按公式(2)计算: 式中:W C Y —煤的残余瓦斯含量,m/t ; (7.9594) W )—煤的原始瓦斯含量,m/t ; Q —评价单元钻孔抽排瓦斯总量,m ; G —评价单元参与计算煤炭储量,t o 评价单元参与计算煤炭储量 G 按公式(3)计算: G L H 1 H 2 2R l h 1 h 2 R m (3) 式中:L —评价单元煤层走向长度,m max T min 100% (1) W CY W 0G Q G (2)

I—评价单元抽采钻孔控制范围内煤层平均倾向长度,m; H i、H2 —分别为评价单元走向方向两端巷道瓦斯预排等 值宽度,m如果无巷道则为0; h i、h2 —分别为评价单元倾向方向两侧巷道瓦斯预排等值宽度,m。如果无巷道则为0; R —抽采钻孔的有效影响半径,m; m—评价单元平均煤层厚度,m 3 —评价单元煤的密度,t/m。 H i、H2、h i、h2应根据矿井实测资料确定,如果无实测数据,可 参照附表1中的数据或计算式确定。 附表1巷道预排瓦斯等值宽度

(6)计算。 W CC 0.1ab 100 A d M ad 1 0.1b 100 1 1 0.31M ad A3抽采后煤的残余瓦斯压力计算方法: 煤的残余相对瓦斯压力(表压)按下式计算: ab P C Y 0.1 100 A d M ad 1 P CY 0.1 W CY 1 b(P C Y 0.1) 100 1 0.31M ad P a ⑷ 式中:W Y—残余瓦斯含量,m/t ; (7.9594) a,b—吸附常数;a=20.7739,b=1.6280 P CY—煤层残余相对瓦斯压力,MPa p a —标准大气压力,(0.101325 MPa) A—煤的灰分,% (1.04) M ad —煤的水分,% (11.09) —煤的孔隙率,m/ m 3; (4.23) —煤的容重(假密度),t/ m 3。(1.45) A4可解吸瓦斯量计算方法: 按公式⑸计算: W j W CY W CC (5) 式中:W j —煤的可解吸瓦斯量,m/t ; 3 W CY—抽米瓦斯后煤层的残余瓦斯含量,m/t ; W C C—煤在标准大气压力下的残存瓦斯含量,按公式

低浓度瓦斯综合利用技术研究

低浓度瓦斯综合利用技术研究 发表时间:2016-12-12T14:13:07.460Z 来源:《基层建设》2016年25期9月上作者:牛楠 [导读] 摘要:低浓度瓦斯的综合利用在技术上与经济上均具有可行性,且符合国家能源产业发展方向,提高了矿井抽采积极性,提升了矿井安全性。 淮南矿业集团瓦斯利用分公司安徽省淮南市 232001 摘要:低浓度瓦斯的综合利用在技术上与经济上均具有可行性,且符合国家能源产业发展方向,提高了矿井抽采积极性,提升了矿井安全性。 关键词:低浓度;瓦斯综合利用;技术 一、装机形式的确定 某煤矿抽采总量在 25 m3 / m i n 左右,其中高负压抽采瓦斯量约 13 m3 / m i n,浓度约为 15% ;低负压抽采瓦斯量约 12 m3 / m i n,浓度约为 5% ,掺混后瓦斯浓度约为 12% ,考虑到抽采系统瓦斯抽采纯量和抽采浓度变化幅度比较大,采用高、低负压抽采瓦斯,掺混后全部采用国产低浓度瓦斯内燃发电机组。国内低浓度瓦斯发电机组热耗一般为 11. 0kW· h,甲烷热值约 35. 5 M J/Nm3 ,总装机容量 4 357 kW 。考虑到现阶段瓦斯流量和浓度都不稳定,所以取10% 的富余系数,本次装机按约 4 200 kW 考虑,并适当预留扩建余地。目前在我国运行或安装的国产瓦斯发电机组,主要有 500、700 和 1 000、1200 kW 几种机型,各种机型均适合本瓦斯发电项目。根据万峰煤矿瓦斯抽采站抽采量、瓦斯浓度、瓦斯气热值等条件,根据目前国内利用瓦斯气发电技术应用的现状,本设计对单机容量为 700 和 1000 kW 两种机型进行方案对比:方案一为 4 台 1000 kW 低浓度瓦斯发电机组;方案二为 6 台 7 00kW 低浓度瓦斯发电机组。两个方案技术经济比较见表 1。 二、低浓度瓦斯的输送 1、输送系统工艺流程 根据目前的瓦斯浓度和抽采量以及今后扩建的需要,瓦斯抽采站出口至瓦斯发电站厂区布置 2 根DN500 的瓦斯输送管道,经约 160 m 的距离到达瓦斯发电机组进口,其机组进口压力不小于 2 500 Pa(按瓦斯输送速度不大于 12 m / s),满足机组调压阀前对瓦斯的压力要求。当抽出的瓦斯浓度高于 9% 时燃气机组能安全稳定运行,为保证输送瓦斯浓度在要求的范围内,在瓦斯发电站进掺混装置后,设置瓦斯浓度检测装置,当掺混瓦斯浓度小于 9% 时自动打开放散管,部分或全部放空低浓度瓦斯,保证机组正常运行。在瓦斯抽采站至瓦斯发电站的气源接口处,为保障瓦斯发电站停机或机组检修时有效切断气源,设置快速关闭阀门,作为紧急关断用。万峰煤矿瓦斯放散、水封阻火器布置在室内,输送管路及雾化水管路设置可靠的保温防冻措施。低浓度燃气内燃发电机组所需瓦斯浓度范围较宽,在 10% ~25% 能安全运行,而浓度 5% ~15%的瓦斯在管道运输中极易爆炸。因此为了保证安全生产,从瓦斯抽采站来的瓦斯采用细水雾输送系统,通过水雾发生器在瓦斯管道内连续成雾,从而降低送往发电机组间瓦斯管道的危险性 [ 5] 。细水雾输送系统工艺流程为:瓦斯—抽采泵站—自动水封阻火器—湿式放散阀—瓦斯管道专用阻火器—水雾输送系统—溢流水封阻火器—气水分离器—瓦斯发电机组发电。 2、安全保护措施 细水雾瓦斯输送系统采用了细水雾变送装置,即将水加压通过喷嘴变成水雾,再将水雾和瓦斯气一起通过管路送到发电机组前进行脱水送入发电机组,对于输送系统前、后端接口部分安装了瓦斯专用阻火器,严格的安全设施,使火焰不会蔓延。一般情况下,燃烧前都有温度积累上升的过程,水雾可有效控制瓦斯气体温度,使其远低于燃点(瓦斯的燃点是 700℃)。燃烧发生时,水雾迅速气化,稀释瓦斯浓度,使其达不到爆炸范围,同时水气包围燃烧源,阻止其继续燃烧和蔓延 [ 5] 。在输送系统中设有设备主要包括自动水封阻火器、溢流水封阻火器、湿式放散阀、细水雾发生器、气水分离器、篮式过滤器、瓦斯管道专用阻火器、雾化水泵等以确保系统安全稳定的运行。低浓度瓦斯输送系统不设置储气罐和加压设备,依靠瓦斯抽采泵的余压输送,由抽采站抽采的瓦斯用管道输送至电站,在输送管路上设置湿式水位自控阻火器系列和金属波纹带瓦斯管道专用阻火器系列,在瓦斯输送总管上阻火器系列后设置水雾发生器,由水泵将雾化水池中的水加压送入,产生细水雾,与抽采站来的瓦斯混合后送至各发电机组。发电机组前配备一套脱水器,脱出来的水返回雾化水池再循环使用,瓦斯脱水后进入瓦斯发电机组。全部过程由计算机监控运行,确保输送系统压力正常。 三、气源的保证 本煤矿建有地面永久抽放泵站,采用分源抽采方法。安设有抽采泵 6 台,独立的抽采系统 3套,其中一套高负压抽采系统,抽采泵型号为2BEC67,标况流量 370 m3 / m i n;两套低负压抽采系统,一套为 2BEC67,另一套为 P2620 抽采泵,标况流量 630 m3 / m i n,每套系统一运一备,目前运行一套高负压抽采系统与一套 P2620 低负压抽采系统。瓦斯发电工程启动后,对部分管路进行连接改造,完成 3 套系统同时正常运转。其中高负压系统1 套,用于抽采本煤层钻孔、边掘边抽钻孔与邻近层顶板钻孔;低负压抽采系统两套,用于工作面采空区埋管抽采。为保证气源的充足与浓度的稳定,高负压抽采系统上一是保持本煤层钻孔施工进度的均匀连续性,同时在工作面回风巷增加顶板钻孔,抽采采空区裂隙带瓦斯,以增加瓦斯来源,二是对已施工钻孔每周进行全面排查一次,对浓度低于 10% 的钻孔进行关控,以保证高负压抽采浓度;在低负压抽采系统上进行埋管抽采改造,由原来单趟 φ 450m m 埋管改为一趟 φ 315 m m 与一趟 φ 200 m m ,两趟管路前后相差 10 m ,呈迈步式抽采,改造后优点体现在一是减少因隅角拆管停抽的影响(两趟管每次拆一趟即可),实现了不停抽拆管,二是两趟管路一深一浅,抽采浓度不一样,利用每趟管上阀门可随时调控低负压抽采浓度与抽采流量,而原来单趟管随着埋深加大,抽采浓度增大,拆管后浓度又突然降低;另外对管路进行及时放水、除渣等维护工作,保持抽采系统的畅通。 结束语 本煤矿低浓度瓦斯利用实践表明,低浓度瓦斯输送上采用细水雾输送系统,同时严格安全配套设备,可对瓦斯浓度低于 30% 的瓦斯进

瓦斯抽采指标计算方法

附录 瓦斯抽采指标计算方法 A1 预抽时间差异系数计算方法: 预抽时间差异系数为预抽时间最长的钻孔抽采天数减去预抽时间最短的钻孔抽采天数的差值与预抽时间最长的钻孔抽采天数之比。预抽时间差异系数按式(1)计算: %100max min max ?-=T T T η (1) 式中:η—预抽时间差异系数,%; m ax T —预抽时间最长的钻孔抽采天数,d ; m in T —预抽时间最短的钻孔抽采天数,d 。 A2 瓦斯抽采后煤的残余瓦斯含量计算 按公式(2)计算: 0CY W G Q W G -= (2) 式中:CY W —煤的残余瓦斯含量,m 3 /t ;(7.9594) 0W —煤的原始瓦斯含量,m 3 /t ; Q —评价单元钻孔抽排瓦斯总量,m 3 ; G —评价单元参与计算煤炭储量,t 。 评价单元参与计算煤炭储量G 按公式(3)计算: ()()12122G L H H R l h h R m γ=--+--+ (3) 式中:L —评价单元煤层走向长度,m ; l —评价单元抽采钻孔控制范围内煤层平均倾向长度, m ;

H、2H—分别为评价单元走向方向两端巷道瓦斯预排等 1 值宽度,m。如果无巷道则为0; h、2h—分别为评价单元倾向方向两侧巷道瓦斯预排等值 1 宽度,m。如果无巷道则为0; R—抽采钻孔的有效影响半径,m; m—评价单元平均煤层厚度,m; —评价单元煤的密度,t/m3。 H、2H、1h、2h应根据矿井实测资料确定,如果无实测数 1 据,可参照附表1中的数据或计算式确定。 A3 抽采后煤的残余瓦斯压力计算方法:

煤的残余相对瓦斯压力(表压)按下式计算: ()()0.10.110011(0.1) 10010.31d ad CY CY CY ad CY a ab P P A M W b P M P πγ++--=??++++ (4) 式中:W CY ─残余瓦斯含量,m 3 /t ;(7.9594) b a ,─吸附常数;a=20.7739,b=1.6280 CY P ─煤层残余相对瓦斯压力,MPa ; a P ─标准大气压力,(0.101325 MPa) d A ─煤的灰分,%;(1.04) ad M ─煤的水分,%;(11.09) π─煤的孔隙率,m 3/ m 3;(4.23) γ ─煤的容重(假密度),t/ m 3 。(1.45) A4 可解吸瓦斯量计算方法: 按公式(5)计算: CC CY j W W W -= (5) 式中:j W ─煤的可解吸瓦斯量,m 3 /t ; CY W ─抽采瓦斯后煤层的残余瓦斯含量,m 3 /t ; CC W ─煤在标准大气压力下的残存瓦斯含量,按公式 (6)计算。 0.1100110.110010.31d ad CC ad ab A M W b M γ --=??+++π (6) A5 采煤工作面瓦斯抽采率计算方法:

低浓度瓦斯利用技术在我国的应用及现状讲解

低浓度瓦斯利用技术在我国的应用及现状 安全07—2 王延廷 摘要:介绍了我国煤矿抽采瓦斯利用存在的问题和煤矿低浓度瓦斯利用的主要技术途径,详细分析了煤矿低浓度瓦斯利用技术的研究现状,并对今后的利用前景进行了客观展望。 关键词:低浓度瓦斯利用;现状;前景 1、煤矿瓦斯利用现状 我国是一个产煤大国, 矿井瓦斯是煤矿安全生产的最大隐患。国家对煤矿瓦斯抽采工作非常重视,将其作为治理瓦斯的根本措施,提出了“先抽后采、能抽尽抽、以用促抽”的12字方针,并制订了《煤矿瓦斯抽采基本指标》等一系列标准和法规, 加大了瓦斯抽采工作的力度, 煤矿瓦斯抽采量逐年大幅度增加。2006年全国煤矿瓦斯抽采量为32.4亿/m3;2007年全国瓦斯抽采量为47.35亿/m3,其中井下瓦斯抽采量为44亿/m3; 2008年全国瓦斯抽采量达到55亿/m3,其中淮南、阳泉、松藻、水城和宁煤 10家重点煤矿瓦斯抽采量超过1亿/m3。 我国煤矿瓦斯利用起步较早,从20世纪 50年代就开始利用, 但瓦斯利用率非常低,目前只占瓦斯抽采量的1/3左右。2006年瓦斯利用量为11.5亿/m3,利用率为35.49%;2007年瓦斯利用量为14.46亿/m3,占30.54% (其中井下抽出瓦斯利用量为13亿/m3,占30.2 % ); 2008年瓦斯利用量为16亿/m3,占29.09 % ,瓦斯利用率还略有下降。 另据统计资料分析,2006年全国重点煤矿抽出的瓦斯累计利用量

为6.15亿/m3, 利用率为23.53% ,其中民用瓦斯4.74亿/m3, 占77.07 %; 发电用瓦斯1.41亿 m3,占22.93 %。我国瓦斯利用仍以民用为主。 造成我国煤矿瓦斯利用率低的主要原因: 一是大部分煤矿远离城镇,民用瓦斯规模难以扩大;二是煤矿抽 采瓦斯浓度普遍较低 (( CH4 ) < 30 % ,称为低浓度瓦斯),且浓度不稳定,难以满足工业利用和化工产品的要求。 我国煤矿瓦斯排放量居世界首位, 大量的低浓度瓦斯排放不仅浪费了宝贵的清洁能源, 同时也加重了全球温室效应的影响。因此, 结合我国煤矿低浓度瓦斯的排放特点, 从技术及经济角度研究适宜的瓦斯利用技术, 对加强我国煤矿抽放瓦斯和风排瓦斯的资源化利用,具有十分的重要意义。 2、煤矿低浓度瓦斯利用的技术途径 1)瓦斯发电。采用煤矿低浓度瓦斯发电机组和输送安全保障技术,实现低浓度瓦斯发电,目前在技术是可行的,以后将成为低浓度瓦斯利用的主要技术途径。 2)瓦斯浓缩。采用变压吸附技术和低温液化分离技术, 将煤矿低浓度瓦斯浓缩成高浓度瓦斯,作为民用燃料和化工原料等。 3)掺混燃烧。将煤矿低浓度瓦斯作为工业锅炉的辅助燃料, 与煤炭掺混燃烧,进行发电或其他热能利用。 4)瓦斯氧化利用。将抽排的低浓度瓦斯, 与煤矿乏风瓦斯混合后,进行氧化反应,利用氧化反应产生的热能,进行发电、制冷和制热, 进行热量的阶梯利用。 3、煤矿低浓度瓦斯利用技术研究现状 目前,我国在煤矿低浓度瓦斯利用技术的研究主要有: 一、煤矿

瓦斯涌出量的计算

1、回采工作面瓦斯涌出量 回采工作面瓦斯涌出量由开采层(包括围岩)和邻近层两部份组成,计算公式如下: q 采=q 1+q 2 式中:q 采——回采工作面相对瓦斯涌出量,m 3/t ; q 1——开采层相对瓦斯涌出量,m 3/t ; q 2——邻近层相对瓦斯涌出量,m 3/t ; 1、开采层瓦斯涌出量 )(q 03211c W W M m K K K -?? ??= 式中:K 1——围岩瓦斯涌出系数; K 2——回采工作面丢煤涌出系数,其值为回采率的倒数; K 3——顺槽掘进预排系数,后退式回采,K 3=(B-2b )/ B ; B ——回采工作面长度,m ; b ——顺槽瓦斯预排宽度,m ; m ——开采层厚度,m ; M ——工作面采高,m ; W 0——煤层原始瓦斯含量,m 3/t ; W c ——煤层残存瓦斯含量,m 3/t 。 2、邻近层瓦斯涌出量 )(q 012ci i i n i i W W M m -??=∑ =η 式中:q 2—— 邻近层相对瓦斯涌出量,m 3/t ; i η——邻近层瓦斯排放率,%; W 0i ——各邻近层原始瓦斯含量,m 3/t ; W ci ——各邻近层残存瓦斯含量,m 3/t ; m i ——各邻近层煤厚,m ; 其余符号意义同前。 2、掘进面瓦斯涌出量计算

掘进工作面瓦斯涌出来源包括两部份,一是暴露煤壁涌出瓦斯,二是破落煤块涌出瓦斯,其涌出量计算公式如下: q 掘=q 3+q 4 q 3=D×V×q 0×(2 1V L -) q 4=S×V×γ×(W 0-W c ) 式中:q 掘——掘进面绝对瓦斯涌出量,m 3/min ; q 3——掘进巷道煤壁绝对瓦斯涌出量,m 3/min ; q 4——掘进巷道落煤绝对瓦斯涌出量,m 3/min ; D ——巷道断面内暴露煤壁面周边长度,m ; V ——巷道平均掘进速度,m/min ; L ——掘进煤巷长度,m ; q 0——掘进面煤壁瓦斯涌出初速度,m 3/(m 2·min); q 0=0.026 [ 0.0004×(V r )2+0.16 ] ×W 0 式中:V r ——掘进煤层原煤挥发份,% S ——掘进煤巷断面积,m 2 ; γ——原煤容重,t/m 3; 其余符号意义同前。 3、采区瓦斯涌出量计算 1 i 1A 1440K ? ?? ??+=∑∑==n n i i i i q A q q 掘采‘ 区 式中:q 区——生产采区相对瓦斯涌出量,m 3/t ; K′——生产采区内采空区瓦斯涌出系数; q 采i ——第i 个回采工作面相对瓦斯涌出量,m 3/t ; A i ——第i 个回采工作面的日产量,t ; q 掘i ——第i 个掘进工作面绝对瓦斯涌出量,m 3/min ; A o ——生产采区平均日产量,t ; 4、矿井瓦斯涌出量

低浓度瓦斯发电机组执行的标准

低浓度瓦斯发电机组执行的标准 1燃气机组制造、检验所执行的标准 GB/T2820-1997 往复式内燃机驱动的交流发电机组 GB/T1859-2000 内燃机噪声功率级的测定、准功率法 GB/T6702-2000 往复式内燃机性能 GB/T14024-1992 内燃机电站无线电干扰特性的测量方法及允许值、传导干扰GB 3100-1993 国际单位制及其用法 IEC 60079 爆炸性气体环境用电器设备 ISO 3046 往复式内燃机性能 ISO 8178 往复式内燃机废气排放测定 ISO 8528 往复式内燃机驱动的交流发电机组 JB/T9583.1-1999 气体燃料发电机组通用技术条件 2主要原材料采用标准 Q/ZC 56003-92 300球铁曲轴验收技术条件 Q/ZC 56005-89 300铌缸套验收技术条件 Q/ZC 56013-89 300活塞 Q/ZC 56069-2001 柴油机锻钢件(连杆、主要螺栓等) Q/ZC 56044.1-2001 柴油机灰铸铁件(机体、机座等) Q/ZC 56044.3-2005 柴油机蠕墨铸铁(缸盖等) 3 瓦斯输送执行的标准 GB 50028-93 城镇燃气设计规范 GB 50251-2003 输气管道工程设计规范 GB 50183-2004 石油天然气工程设计防火规范 GB 50257-96 电气装置施工及验收规范 GB 50235-1997 工业金属管道工程施工及验收规范; GB 50316-2000 工业金属管道设计规范 GB 50275-98 压缩机、风机、泵安装工程施工及验收规范 GB 16808—1997 可燃气体报警控制器技术要求和试验方法 GB 6222—86 工业企业煤气安全规程 GB 15630—1995 消防安全标志设置要求

相关主题
文本预览
相关文档 最新文档