当前位置:文档之家› SPI接口使用简介

SPI接口使用简介

SPI接口使用简介
SPI接口使用简介

AX1003 SPI接口使用简介

AN-AX1000-005-V10-CH-SPI

2006年8月

版本 1.0 1 SPI协议简介

SPI(Serial Peripheral Interface)是一种串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。

SPI接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS (从使能信号)四种信号构成,CS决定了唯一的与主设备通信的从设备,如没有CS信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。

通讯时,数据由SDO输出,SDI输入,数据在时钟的上升或下降沿由SDO输出,在紧接着的下降或上升沿由SDI读入,这样经过8/16次时钟的改变,完成8/16位数据的传输。

2 AX1003的SPI接口

AX1003有两个同步串行通讯接口,SSP1和SSP2,均支持SPI接口协议,其中SSP1支持SPI的主模式和从模式,SSP2支持SPI的主模式。两个的接口的使用介绍分别如下。

3 SSP1的SPI使用

SSP1支持四种模式的SPI,可以工作在主模式或从模式,它的接口和以下3条I/O复用。

Serial Data Out (SPIDO) – RD2

Serial Data In (SPIDI) – RD3

Serial Clock (SPICLK) – RD1

3.1 控制寄存器

SPI的寄存器由SPI_CTRL(SPI控制寄存器)和SPI_BUF(SPI数据缓存)构成。均为8位的寄存器。SPI_CTRL可设置SPI的工作方式,时钟频率,触发SPI的发送或接收,产生通讯完成的标志,模块的使能和中断允许。

3.2 工作模式设置

SPI的工作模式由SPI_CTRL的SPIEDGE和SPIIDST来设置,可配置成四种模式,其信号时序如图 3-1所示。

SPIIDST = 0,SPIEDGE = 0 时钟(SPICLK)在空闲时为低电平,在下降沿时采样

SPIIDST = 0,SPIEDGE = 1 时钟(SPICLK)在空闲时为低电平,在上升沿时采样

SPIIDST = 1,SPIEDGE = 0 时钟(SPICLK)在空闲时为高电平,在上升沿时采样

SPIIDST = 1,SPIEDGE = 1 时钟(SPICLK)在空闲时为高电平,在下降沿时采样3.3 时钟频率设置

SPI工作在主模式时需设置其时钟频率,可由SPI_CTRL的SPIFRQ来配置,可选择由

系统时钟的64/16/4分频,或Timer2溢出时间的2分频来产生SPI的时钟。若使用Timer2来产生时钟,Timer2将不能被其他模块使用。

图 3-1 SPI信号时序图

3.4 SPI发送

SPI的数据发送可按以下步骤进行:

1. 配置SPI的主/从模式和工作模式,若为主模式,配置时钟频率。

2. 配置SPI中断使能,允许SPI模块,即SPIEN = 1。

3. 配置I/O方向,RD2为输出,RD3为输入,RD1为输入(从模式)或输出(主模式)。

4. 写入要发送的数据(8bit)至SPI_BUF。

5. 将SPIPND置1,即启动SPI的发送。

6. 等待SPIPND变为1或中断,即SPI的发送完成。

7. 将SPIPND清零。

8. 如需要继续发送,从第4步开始重复。

3.5 SPI接收

SPI的数据接收可按以下步骤进行:

1. 按发送的第1~3步配置SPI模块。

2. 将SPIPND置1,即启动SPI的接收。

3. 等待SPIPND变为1或中断,即SPI的接收完成。

4. 将SPIPND清零。

5. 将SPI_BUF的数据读出,即读取收到的数据。

6. 如需要继续发送,从第2步开始重复。

3.6 程序范例

该例程中假设系统时钟为16MHz,SPI工作在主模式,时钟频率为1MHz,主程序中AX1003向SPI从设备不断发送数据55H。

4 SSP2的SPI使用

SSP2支持GPSI,SPI,I2S模式,其中SPI只支持主模式,它的接口和以下3条I/O复用。

Serial Data Out (GPDO) – RC4

Serial Data In (GPDI) – RC5

Serial Clock (GPTXCLK) – RC2

4.1 控制寄存器

SSP2的SPI的寄存器由GPSI_STATUS(SSP2状态寄存器),GPSI_CTRL(SSP2控制寄存器),GPSI_CKDIV(SSP2分频器),GPSI_BUF(SSP2数据缓存)构成。均为8位的寄存器。GPSI_CTRL可设置SPI的工作方式,GPSI_CKDIV可设置时钟频率,GPSI_BUF存放接收或发送的数据,并可通过写入触发SPI的发送或接收。

4.2 工作模式设置

SSP2的SPI的工作模式由GPSI_CTRL的SPIEDGE和SPIIDST来设置,可配置成四种模式,其配置方法跟SSP1的SPI相同。

4.3 时钟频率设置

SSP2的SPI的时钟频率设置需配置GPSI_CKDIV寄存器,其时钟频率CLK按以下公式计算。

CLK = F_SYS / [(GPSI_CKDIV +1 )×2]

其中F_SYS为系统频率,GPSI_CKDIV为用户写入该寄存器的值。

4.4 SPI发送

SPI的数据发送可按以下步骤进行:

1. 配置SPI的工作模式,配置时钟频率。

2. 配置SPI中断使能,允许SSP2模块,选择SPI模式,即GPSIEN = 1,SPISEL = 1。

3. 配置I/O方向,RC2和RC4为输出,RC5为输入。

4. 写入要发送的数据(8bit)至GPSI_BUF,同时便触发了SPI的发送。

5. 等待GPSITBUF变为0,即待发送的数据写入移位寄存器。

6. 等待中断或GPSISDING变为1,即SPI的发送完成。

7. 如需要继续发送,从第4步开始重复

4.5 SPI接收

SPI的数据接收可按以下步骤进行:

1. 按发送的第1~3步配置SPI模块。

2. 写入GPSI_BUF寄存器,同时便触发了SPI的接收。

3. 等待GPSITBUF变为0,即数据写入移位寄存器。

4. 等待中断或GPSISDING变为1,即SPI的接收完成。

5. 如需要继续接收,从第2步开始重复

4.6 程序范例

该例程中假设系统时钟为16MHz,使用SSP2的SPI主模式接收,时钟频率为1MHz,主程序中AX1003从SPI从设备不断接收数据。

SPI接口设计与实现

SPI接口设计与实现 SPI(SerialPeripheralInterface)总线是一种同步串行外设接口,它 可以使MCU与各种外围设备以串行方式进行通信以交换信息。SPI总线应用广泛,已经成为很多器件的标准配置,可以直接和各个厂家生产的 多种标准外围器件直接接口。其它常用的串行接口还有I2C、UART这 两种接口,这三种接口互有优缺点。与I2C接口相比,SPI接口速度更快、协议更简单、并且是全双工的,但连线也相对多一些。与UART接口相比,SPI更灵活,因为其使用主设备的时钟进行同步,所以两个比特之间 的时间间隔可以是任意的。在点对点的通信中,SPI接口不需要进行寻 址操作,且为全双工通信,显得简单高效。 1SPI总线工作原理 SPI总线一般以主/从模式工作,通常有一个主设备和一个或多个从设备,数据传输由主机控制,典型SPI结构框图如图1所示。SPI总线包含四条信号线,分别是sclk、miso、mosi和cs,其中,sclk为数据传输时钟,由主机产生;miso是从机输出,主机输入数据线;mosi是主机输出, 从机输入数据线;cs是从设备片选信号,由主机控制,当连接多个从设备时,通过该信号选择不同的从设备。SPI总线是按字节发送数据的,主机和从机内部都包含一个8位串行移位寄存器,在时钟信号控制下,寄存 器内的数据由高到低输出至各自的数据线,8个时钟后,两个寄存器内的数据就被交换了。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个字节,就必须发送一个空字节来引发从机 的传输。当主机发送一个连续的数据流时,可以进行多字节传输,在这 种传输方式下,从机的片选端必须在整个传输过程中保持低电平。 根据串行同步时钟极性和相位不同,SPI有四种工作方式。时钟极性(CPOL)为0时,同步时钟的空闲状态为低电平,为1时,同步时钟的空闲 状态为高电平。时钟相位(CPHA)为0时,在同步时钟的第一个跳变沿采 样数据,为1时,在同步时钟的第二个跳变沿采样数据。因为主设备时

9种常用接口介绍

9种常用接口介绍 关键字:常用接口 1、射频 天线和模拟闭路连接电视机就是采用射频(RF)接口。作为最常见的视频连接方式,它可同时传输模拟视频以及音频信号。RF接口传输的是视频和音频混合编码后的信号,显示设备的电路将混合编码信号进行一系列分离、解码在输出成像。由于需要进行视频、音频混合编码,信号会互相干扰,所以它的画质输出质量是所有接口中最差的。有线电视和卫星电视接收设备也常用RF连接,但这种情况下,它们传输的是数字信号。 2、复合视频 不像射频接口那样包含了音频信号,复合视频(Composite)通常采用黄色的RCA(莲花插座)接头。“复合”含义是同一信道中传输亮度和色度信号的模拟信号,但电视机如果不能很好的分离这两种信号,就会出现虚影。 3、S端子 S端子(S-Video)连接采用Y/C(亮度/色度)分离式输出,使用四芯线传送信号,接口为四针接口。接口中,两针接地,另外两针分别传输亮度和色度信号。因为分别传送亮度和色度信号,S端子效果要好于复合视频。不过S端子的抗干扰能力较弱,所以S端子线的长度最好不要超过7米。 4、色差 色差(Component)通常标记为Y/Pb/Pr,用红、绿、蓝三种颜色来标注每条线缆和接口。绿色线缆(Y),传输亮度信号。蓝色和红色线缆(Pb和Pr)传输的是颜色差别信号。色差的效果要好于S端子,因此不少DVD以及高清播放设备上都采用该接口。如果使用优质的线材和接口,即使采用10米长的线缆,色差线也能传输优秀的画面。5、VGA VGA(VideoGraphicsArray)还有一个名称叫D-Sub。VGA接口共有15针,分成3排,每排5个孔,是显卡上应用最为广泛的接口类型,绝大多数显卡都带有此种接口。它传输红、绿、蓝模拟信号以及同步信号(水平和垂直信号)。使用VGA连接设备,线缆长度最好不要超过10米,而且要注意接头是否安装牢固,否则可能引起图像中出现虚影。 6、DVI DVI(DigitalVisualInterface)接口与VGA都是电脑中最常用的接口,与VGA不同的是,DVI可以传输数字信号,不用再进过数模转换,所以画面质量非常高。目前,很多高清电视上也提供了DVI接口。需要注意的是,DVI接口有多种规范,常见的是DVI-D(Digital)和DVI-I(Intergrated)。DVI-D只能传输数字信号,大家可以用它来连接显卡和平板电视。DVI-I则在DVI-D可以和VGA相互转换。 关于DVI接口更详细信息请参考DVI接口详解 7、HDMI HDMI(HighDefinitionMultimediaInterface)接口是最近才出现的接口,它同DVI一样是传输全数字信号的。不同的是HDMI接口不仅能传输高清数字视频信号,还可以同时传输高质量的音频信号。同时功能跟射频接口相同,不过由于采用了全数字化的信号传输,不会像射频接口那样出现画质不佳的情况。对于没有HDMI接口的用户,可以用适配器将HDMI接口转换位DVI接口,但是这样就失去了音频信号。高质量的HDMI线材,即使长达20米,也能保证优质的画质。

各种显示接口的介绍

各种显示接口的介绍 中国投影网行业资讯2009-9-10 9:47:10编辑:晨阳[ 大中小] TV接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCA)可以算是TV的改进型接口,外观方面有了很大不同。它传输的是复合视频信号,也称做复合视频信号(CVBS)接口。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。 在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,也就是Y、C分离传输,所以我们又称它为“二分量视频接口”。与AV 接口相比,S端子不再对色度与亮度混合传输,这样就避免了设备内信号干扰而产生的图像失真,能够有效的提高画质的清晰程度。 但S-Video仍要将色度与亮度两路信号混合为一路色度信号进行成像,所以说仍然存在着画质损失的情况。虽然S端子不是最好的,不过一般情况下AV信号为640线,S端子可达到1024线,但是这需要由片源来决定。一般来说这种接口在DVD、PS2、XBOX、NGC 等视频和游戏设备上广泛使用。 色差分量接口 对于色差来说,目前可能应用并不算很普遍,主要的原因是一些CRT电视机并没有提供色差分量的输入接口。简单的说,相比过去的AV和S端子,色差是将信号分为红、绿、

基于CPLD的SPI接口设计

基于CPLD 的SP I 接口设计 D esign i ng SP I I n terface ba sed on CPLD 何永泰 (楚雄师范学院 楚雄 675000) 【摘 要】 根据SP I 同步串行接口的通信协议,介绍了在X ilinx Coo lR unnct XPLA 3CPLD 中利用V HDL 语言实现SP I 接口的设计原理和编程思想,通过用此接口,使得那些没有SP I 接口功能的微处理器和微控制器,也能通过SP I 接口与外围设备进行数据交换。 【关键词】 SP I 接口,CPLD ,接口扩展,接口设计,串行接口 ABSTRACT A cco rding to comm un icati on p ro toco l of SP I synch ronou s serial in terface ,th is paper p resen ts the design theo ry and p rogramm ing idea of i m p lem en ting SP I in terface w ith V HDL language in X ilinx Coo lR unner XPLA 3CPLD .T h is in terface can be u sed to data exchange w ith peri pheral apparatu s fo r m icrop rocesso r and m icrocon tro ller w h ich have no t SP I in terface functi on .KEYWOR D S SP I in terface ,CPLD ,in terface expan si on ,in terface design ,serial in terface 1 SP I 总线接口协议 SP I (Seri on Perp heral In terface )总线接口是一个 全双工,同步串行数据接口。许多微处理器,微控制器和外部设备具有这个接口。它能够实现在微控制器之间或微控制器与外部设备之间通信。SP I 总线通常有4条线组成,即:串行时钟线(SCK )、主机输出从机输入 线(M O S I )、 主机输入从机输出线(M ISO )和从机选择线SS N 。SCK 靠主机和数据流来驱动。M O S I 数据线从主机输出数据作为从机的输入数据。M ISO 数据线传送从机输出的数据作为主机的输入数据。在大多数情况下,使用一个SP I 作为主机,它控制数据向1个或几个从机传送。主机驱动数据从它的SCK 和M O S I 端到各从机的SCK 和M O S I 端,被选择的从机驱动数据从它的M ISO 端到主机的M ISO 端。SS N 控制线用于从机选择控制。 SCK 的相位和极性能改变SP I 的数据格式,时钟极性CPOL =‘0’,串行数据的移位操作由时钟正脉冲触发,时钟极性CPOL =‘1’,串行数据的移位操作由负脉冲触发;时钟相位CPHA =‘0’, 串行数据的移位 图1 CPHA =‘0’时SP I 的数据转换时序图 操作由时钟脉冲前沿触发,时钟相位CPHA =‘1’,串行数据的移位操作由时钟脉冲后沿触发。时钟相位CPHA =‘0’时SP I 的数据转换时序图如图1所示。 在图1中SCK 信号在第一个SCK 周期中的前半周期无效,在这种模式中,SS 的下降沿示意数据传送的开始,因此,SS 在连续串行字节之间必须被取反和重新申明。时钟相位CPHA =‘1’时SP I 的数据转换时序图如图2所示。 在图2中SCK 信号从无效电平到有效电平的第一边沿意味着在这种模式下数据传送的开始,SS 信号能保持有效的低电平在连续串行字节之间,这种模式用于只有一个主机和一个从机的系统中。 在SP I 传送数据时,8位数据从一个SP I 接口移出时,另一个SP I 接口也开始移出8位数据,这样主机的8位移位寄存器和从机的8位移位寄存器可以被看作是16移位寄存器,16位移位寄存器移动8个位置就实现了在主机和从机之间交换数据。基于CPLD 的SP I 接口设计中,从SP I 总线上接收的数据被保存在一个接收寄存器中,发送的数据被写到一个发送寄存器中 。 图2 CPHA =‘1’时SP I 的数据转换时序图 3 20040414收到,20040724改回 33 何永泰,男,1970年生,讲师,在读硕士,研究方向:电子工程设计。 ? 72?第17卷 第10期 电脑开发与应用 (总497)

电脑常见的接口大全

电脑常见的接口大全 每一台计算机,不管是台式机还是笔记本,里里外外都有很多的接口,你能把它们每一个都认出来而且知道它们的用途吗?通常一些相关的文章 介绍起来都缺乏耐心,而且也没有足够的插图之类,更使得大家犯迷糊。 本文旨在综合参考之用,不仅是帮助新人菜鸟,希望也能够对经验丰富的人有所帮助。通过大量的图片和简单的解释文字,我们将向您介绍在PC 上各种各样的插槽、端口、接口,以及通常是什么样的设备来连接在上面。 因此本文对于那些对电脑内外接口不太清楚的人会更有帮助一些,而不是一篇电脑连接故障的快速参考书。 PC的部件连接性方面比较让人欣慰的是:不兼容的接口配件等根本就不能连接在一起。当然也不排除极少的情形出现,还好因此导致硬件损害的事情现在也是非常少见了。 USB

USB(Universal Serial Bus)接口大家可能最熟悉了吧,USB是设计用来连接鼠标、键盘、移动硬盘、数码相机、网络电话(VoIP的skype 之类)、打印机等外围设备的,理论上一个USB主控口可以最大支持127个设备的连接。USB分为两个标准,USB1.1最大传输速度为12Mbps,USB2.0为480Mbps,这两种标准的接口是完全一样的,也可向下兼容,传输速度的不同取决于电脑主板的USB主控芯片和USB设备的芯片。USB接口可以带有供电线路,这样USB设备例如移动硬盘等就不用再接一条电源线了(最高500mA 5V电压),现在支持USB接口的手机也可以通过电脑来充电。 USB接口方式有三种:PC上常见的是Type A型,一些USB设备上(一般带有连接线缆)常使用Type B,而Mp3、相机、手机等小型数码设备上通常是mini USB接口。

SPI接口详细说明

SPI 串行外设接口总线,最早由Motorola提出,出现在其M68系列单片机中,由于其简单实用,又不牵涉到专利问题,因此许多厂家的设备都支持该接口,广泛应用于外设控制领域。 SPI接口是一种事实标准,并没有标准协议,大部分厂家都是参照Motorola的SPI接口定义来设计的。但正因为没有确切的版本协议,不同家产品的SPI接口在技术上存在一定的差别,容易引起歧义,有的甚至无法直接互连(需要软件进行必要的修改)。 虽然SPI接口的内容非常简单,但本文仍将就其中的一些容易忽视的问题进行讨论。 SPI ( Serial Peripheral Interface ) SPI接口是Motorola 首先提出的全双工三线同步串行外围接口,采用主从模式(Master Slave)架构;支持多slave模式应用,一般仅支持单Master。 时钟由Master控制,在时钟移位脉冲下,数据按位传输,高位在前,低位在后(MSB first);SPI 接口有2根单向数据线,为全双工通信,目前应用中的数据速率可达几Mbps的水平。 SPI接口信号线 SPI接口共有4根信号线,分别是:设备选择线、时钟线、串行输出数据线、串行输入数据线。 设备选择线SS-(Slave select,或CS-)

SS-线用于选择激活某Slave设备,低有效,由Master驱动输出。只有当SS-信号线为低电平时,对应Slave设备的SPI接口才处于工作状态。 SCLK:同步时钟信号线, SCLK用来同步主从设备的数据传输,由Master驱动输出,Slave设备按SCK的步调接收或发送数据。 串行数据线: SPI接口数据线是单向的,共有两根数据线,分别承担Master到Slave、Slave到Master的数据传输;但是不同厂家的数据线命名有差别。 Motorola的经典命名是MOSI和MISO,这是站在信号线的角度来命名的。 MOSI:When master, out line; when slave, in line MISO:When master, in line; when slave, out line 比如MOSI,该线上数据一定是Master流向Slave的。因此在电路板上,Master的MOSI引脚应与Slave的MOSI引脚连接在一起。双方的MISO也应该连在一起,而不是一方的MOSI连接另一方的MISO。 不过,也有一些产家(比如Microchip)是按照类似SDI,SDO的方式来命名,这是站在器件的角度根据数据流向来定义的。 SDI:串行数据输入 SDO:串行数据输出 这种情况下,当Master与Slave连接时,就应该用一方的SDO连接另一个方的SDI。 由于SPI接口数据线是单向的,故电路设计时,数据线连接一定要正确,必然是一方的输出连接另一方的输入。 其实这个问题本来很简单的,但由于不同厂家产品的命名习惯可能不同,因此还需小心,以免低级出错。 数据传输的时序模式

视频输入输出常用接口介绍

视频输入输出常用接口介绍 随着视频清晰度的不断提升,这也促使我们对高清视频产生了浓厚的兴趣,而如果要达某些清晰度的视频就需要配备相应的接口才能完全发挥其画质。所以说视频接口的发展是实现高清的前提,从早期最常见且最古老的有线TV输入到如今最尖端的HDMI数字高清接口,前前后后真是诞生了不少接口。但老期的接口信号还在继续使用,能过信号转换器就能达到更清晰的效果,比如: AV,S-VIDEO转VGA AV,S-VIDEO转HDMI,图像提升几倍,效果更好。 从现在电视机背后的接口也能看出这点,背后密密麻麻且繁琐的接口让人第一眼看过去有点晕的感觉。今天小编就将这些接口的名称与作用做一个全面解析,希望能对选购电视时为接口而烦恼的朋友起到帮助。 TV接口

TV输入接口 TV接口又称RF射频输入,毫无疑问,这是在电视机上最早出现的接口。TV接口的成像原理是将视频信号(CVBS)和音频信号(Audio)相混合编码后输出,然后在显示设备内部进行一系列分离/ 解码的过程输出成像。由于需要较多步骤进行视频、音视频混合编码,所以会导致信号互相干扰,所以它的画质输出质量是所有接口中最差的。 AV接口 AV接口又称(RCARCA)可以算是TV的改进型接口,外观方面有了很大不同。分为了3条线,分别为:音频接口(红色与白色线,组成左右声道)和视频接口(黄色)。

AV输入接口与AV线 由于AV输出仍然是将亮度与色度混合的视频信号,所以依旧需要显示设备进行亮度和色彩分离,并且解码才能成像。这样的做法必然对画质会造成损失,所以AV接口的画质依然不能让人满意。在连接方面非常的简单,只需将3种颜色的AV线与电视端的3种颜色的接口对应连接即可。 总体来说,AV接口实现了音频和视频的分离传输,在成像方面可以避免音频与视频互相干扰而导致的画质下降。AV接口在电视与DVD连接中使用的比较广,是每台电视必备的接口之一。 S端子 S端子可以说是AV端子的改革,在信号传输方面不再将色度与亮度混合输出,而是分离进行信号传输,所以我们又称它为“二分量视频接口”。

spi_和接口设计

SPI 接口的设计 第二章介绍了模数转换器的可编程控制架构,其中可编程控制功能的实现需要分成两部分:一部分为SPI 接口电路,以及其根据部寄存器存储的数据产生的控制信号;另一部分是具体的电路受控模块。本章将介绍接口与数字逻辑电路的设计,包括应用于本模数转换器的SPI 接口与数字逻辑电路的设计、综合以及仿真验证。 3.1 数据通信接口 3.1.1 串行通信 基本的通信方式有两种:并行通信和串行通信。并行通信是指数据以成组的方式,在多条并行信道上同时进行传输。 串行通信指要传送的数据或信息按一定的格式编码,然后在单根线上,按位的先后顺序进行传送。接收数据时,每次从单根线上按位接收信息,再把它们拼成一个字符,送给CPU (Central Processing Unit )做进一步的处理。收发双方必须保持字符同步,以使接收方能从接收的数据比特流中正确区分出与发送方相同的一个一个字符。串行通信只需要一条传输信道,易于实现,是目前主要采用的一种通信方式,它具有通信线少以及传送距离远等优点。 串行通信时,按数据的传送的方向可以分为单工、半双工和全双工等三种方式。 (1)单工(Simplex ):数据线仅能向一个方向传输数据,两个设备进行通信时,一边只能发送数据,另一边只能接收数据。 (2)半双工(Half Duplex ):数据可在两个设备间向任一个方向传输,但因为只有一根传输线,故同一时间只能向一个方向传输数据,不能同时收发。 (3)全双工(Full Duplex ):对数据的两个传输方向采用不同的通路,可以同时发送和接收数据, 串行通信有两种基本工作方式:异步方式和同步方式。采用异步方式(Asynchronous )时,数据发送的格式如图3-1所示。不发送数据时,数据信号线呈现高电平,处于空闲状态。当有数据要发送时,数据信号线变成低电平,并持续一位的时间,用于表示字符的开始,称为起始位。起始位之后,在信号线上依次出现待发送的每一位字符数据,最低有效位0D 最先出现。采用不同的编码方案,待发送的每个字符的位数就不同。当字符用ASCII 码表示时,数据位占7位(60~D D )。在数据位的后面有一个奇偶校验位,其后有停止位,用于指示字符的结束。停止位可以是一位也可以是一位半或两位。可见,用异步方式发送一个7位的ASCII 码字符时,实际需发送10位、10.5位或11位信息。如

常用视频接口详解

常用视频接口详解 ● 必备接口: ·HDMI接口:是最新的高清数字音视频接口,收看高清节目,只有在HDMI通道下,才能达到最佳的效果,是高清平板电视必须具有的基本接口。 ·DVI接口:是数字传输的视频接口,可将数字信号不加转换地直接传输到显示器中。 ·色差分量接口:是目前各种视频输出接口中较好的一种。 ·AV接口:AV接口实现了音频和视频的分离传输,避免了因音/视频混合干扰而导致的图像质量下降。 ·RF输入接口:是接收电视信号的射频接口,将视频和音频信号相混合编码输出,会导致信号互相干扰,画质输出质量是所有接口中最差的。 ● 实用接口: ·光纤接口:使用这种接口的平板电视不通过功放就可以直接将音频连接到音箱上,是目前最先进的音频输出接口。 ·RS-232接口:是计算机上的通讯接口之一,用于调制解调器、打印机或者鼠标等外部设备连接。带此接口的电视可以通过这个接口对电视内部的软件进行维护和升级。 ·VGA接口:是源于电脑显卡上的接口,显卡都带此种接口。VGA就是将模拟信号传输到显示器的接口。 ·S端子:是AV端子的改革,在信号传输方面不再对色度与亮度混合传输,这样就避免了设备内信号干扰而产生的图像失真,能够有效地提高画质的清晰程度。 ● 可选接口: ·USB接口:是目前使用较多的多媒体辅助接口,可以连接U盘、移动硬盘等设备。 ·蓝牙接口:是一种短距的无线通讯技术,不需要链接实现了无线听音乐,无线看电视。 ·耳机接口:使用电视无线耳机可在电视静音的情况下,自由欣赏精彩节目。 ● 趋势接口: ·DisplayPort接口:可提供的带宽就高达10.8Gb/s,也允许音频与视频信号共用一条线缆传输,支持多种高质量数字音频。 ● 必备接口:什么是HDMI接口? HDMI是新一代的多媒体接口标准,全称是High-Definition Multimedia InteRFace,中文意思为高清晰多媒体接口,该标准由索尼、日立、松下、飞利浦、东芝、Silicon image、Thomson (RCA)等7家公司在2002年4月开始发起的。其产生是为了取代传统的DVD碟机、电视及其它视频输出设备的已有接口,统一并简化用户终端接线,并提供更高带宽的数据传输速度和数字化无损传送音视频信号。

全功能SPI接口的设计与实现

SPI 串行通信接口是一种常用的标准接口,由于其使用 简单方便且节省系统资源,很多芯片都支持该接口,应用相当广泛[1]。但是现有文献和设计多数仅实现了SPI 接口的基本发送和接收功能,对SPI 接口的时序控制没有进行深入的研究。全功能SPI 接口应具有四种不同的时钟模式,以适应具有不同时序要求的从控制器。文中主要研究SPI 接口的时钟时序,并用具体电路实现具有4种不同极性和相位的时钟,最后通过仿真验证和FPGA 验证[2]。 1SPI 控制器典型结构 SPI 模块中的典型结构是用于通信的主从2个控制器之 间的连接,如图1所示。由串行时钟线(SPICLK )、主机输入从机输出线(SPISOMI )、主机输出从机输入线(SPISIMO )、SPI 选通线(SPISTE )4条线组成[3]。当CPU 通过译码向主控制器写入要传输的数据时,主控制器通过串行时钟线来启动数据传输,将会在串行时钟线的一个边沿将数据移出移位寄存器,而在串行时钟的另一个边沿将数据锁存在移位寄存器中。 SPI 选通线是SPI 控制器的使能端,可以选择多个从机,实现 一主多从的结构,只要SPI 选通信号将要选的从机处的选通信号变为低电平就能够连接成功。 2 全功能SPI 控制器设计 2.1 SPI 控制器内部结构 SPI 控制器的原理框图如图2所示,其中主要包括:1)SPI 控制器的内部寄存器 SPI 操作控制寄存器(SPICTL ),SPI 状态寄存器(SPISTS ), SPI 波特率设计寄存器(SPIBRR ),SPI 接收缓冲寄存器 图1 SPI 主从连接Fig.1 Master -slave link 全功能SPI 接口的设计与实现 辛晓宁,孙文强 (沈阳工业大学研究生学院,辽宁沈阳110870) 摘要:SPI (Serial Peripheral Interface ,串行外围接口)是Motorola 公司提出的外围接口协议,它采用一个串行、同步、全双工的通信方式,解决了微处理器和外设之间的串行通信问题,并且可以和多个外设直接通信,具有配置灵活,结构简单等优点。根据全功能SPI 总线的特点,设计的SPI 接口可以最大发送和接收16位数据;在主模式和从模式下SPI 模块的时钟频率最大可以达到系统时钟的1/4,并且在主模式下可以提供具有四种不同相位和极性的时钟供从模块选择;可以同时进行发送和接收操作,拥有中断标志位和溢出中断标志位。关键词:全功能SPI ;时钟极性和相位;串行通信;微处理器;中断控制中图分类号:TP332.3 文献标识码:A 文章编号:1674-6236(2012)23-0153-04 Design and implementation of full featured SPI master interface XIN Xiao -ning ,SUN Wen -qiang (Graduate School ,Shenyang University of Technology ,Shenyang 110870,China ) Abstract:The SPI put forward by Motorola Company is a full-duplex ,synchronous serial date link that is standard across many microprocessors ,microcontrollers ,and peripherals It enables communication between microprocessors and peripherals and inter -processor communication ,The SPI system is flexible enough to interface directly with numerous commercially available peripherals ,and it also has some excellences such as it can be configured flexibly and it has a simply structure ,and so on.This SPI has 16-bit transmit and receive capability.The maximum transmission rate in both slave mode and master mode is now CLKOUT/4.The SPI can provide four different clocking schemes on the SPICLK pin.It can be sending and receiving at same time.It has SPI interrupt flag and TXBUF full flag. Key words:full function of SPI ;polarity and phase of CLK ;serial communication microprocessor ;interrupt control 收稿日期:2012-08-11 稿件编号:201208039 作者简介:辛晓宁(1965—),男,辽宁沈阳人,博士,教授。研究方向:SOC 集成电路设计。 电子设计工程 Electronic Design Engineering 第20卷Vol.20第23期No.23 2012年12月Dec.2012 -153-

STB常用接口介绍

1.RF (Radio Frequency) RF射频端子是最早在电视机上出现的,也是目前家庭有线电视采用的接口模式。 成像原理:将视频信号(CVBS)和音频信号(Audio)相混合编码后,输出然后在显示设备内部进行一系列分离/ 解码的过程输出成像。 传输信号:模拟音视频信号 优点:接口简单,成本低,传输距离远(>100m)。 缺点:由于步骤繁琐,且音视频混合编码会互相干扰,所以它的输出质量也是最差的。 我司的RF调制器(21-69CH)也采用此种接口。 2.CVBS(Composite Video Broadcast Signal) 复合视频信号,最简单、最原始的视频接口,也就是通常所称的RCA(标准视频输入)接口。传输的是复合视频信号,传输介面是一根普通的视频线。黄色的为视频信号,白色的为左声道音频信号,红色的为右声道音频信号。 传输信号:模拟音视频信号 优点:传输方便、设备结构简单、成本低,成为目前电视设备上应用最广泛的接口。 缺点:由于A V接口是将亮度信号和色度信号采用频谱间置方法复合在一起的,传输的仍然是一种亮度/色度(Y/C)混合的视频信号,仍然需要显示设备对其进行亮/色分离和色度解码才能成像,所以亮色串扰、清晰度低的问题是没法解决的,一般来说只适合用在低清晰度视频信号上。 3.S-Video(Separate Video) 也有人称为Supper Video,二分量视频接口。它将色度信号C 和亮度信号Y进行分离,再分别以不同的通道进行传输,通常采用标准的4芯(不含音效) 或者扩展的7芯( 含音效)接口。 传输信号:模拟视频信号 优点:采用亮色分离,使用独立的传输通道,在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大地提高了图像的清晰度。 S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口,一般可达1024线。 缺点:虽然实现了亮色分离,但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb 和Cr 进行处理,这样仍会带来一定信号损失而产生失真(这种失真很小,但在严格的广播级视频设备下进行测试时仍能发现) 。 1.由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远。 2.音频线要单独接,或采用私有接口,把音频线混合在一个接口上。 4.YPbPr/YCbCr 是S-Video的进阶产品,通常采用Y(绿)Pb(蓝)Pr(红)和YCbCr两种标识,前者表示逐行扫描色差输出,后者表示隔行扫描色差输出。我们只需知道Y Cr Cb的值就能够得到G 的值( 即第四个等式不是必要的),所以在视频输出和颜色处理过程中就统一忽略绿色差Cg 而只保留Y Cr Cb ,这便是色差输出的基本定义。 传输信号:模拟视频信号 优点:将色度信号C分解为色差Cr和Cb,避免了两路色差混合解码并再次分离的过程,也保持了色度通道的最大带宽,只需要经过反矩阵解码电路就可以还原为RGB三原色信号而成像,这就最大限度地缩短了视频源到显示器成像之间的视频信号通道,避免了因繁琐的传输过程所带来的图像失真,所以色差输出的接口方式是目前各种视频输出接口中最好的一种。 缺点:线材昂贵,长线材不好找;音频线要单独接。 5.VGA(Video Graphics Array 视频图形阵列) 又称(S-Dub),这是源于电脑的输入接口,将模拟信号传输到显示器的接口。接口外形象“D”,其具备防呆性以防插反,上面共有15个针孔,分成三排,每排五个。 传输信号:模拟视频信号

基于FPGA的SPI接口设计

基于FPGA的SPI接口设计 SPI是一种在FPGA和其他芯片之间传输数据的简单有效的接口方式。 SPI项目 第一部分:什么是SPI 第二部分:SPI的简单实现 第三部分:应用 第一部分:什么是SPI SPI是允许一个器件同其他一个或多个器件进行通讯的简单接口。 SPI是什么样的? 首先让我们来看看两个芯片之间的SPI接口是如何连接的。 在两个芯片时间通讯时,SPI需要4条连线。 正如你所看到的,他们是SCK、MISO、MOSI以及SSEL。其中一个芯片叫做主控芯片,另一个叫从芯片。 SPI基础 基本特点: 1.同步 2.串行 3.全双工 4.非即插即用 5.一主多从 更多细节: 1.同步时钟有主控芯片产生,每个时钟传输一位数据 2.数据在传输前,首先许要进行并转串,才能用一条线传输 3.两条数据线,一条输入、一条输出 4.主从双方有关于SPI传输的先验知识,如比特顺序、数据长度等 5.数据传输有主控芯片发起,每次只与一个从芯片通讯 SPI是一种同步全双工的通讯接口,每个时钟在两条数据线上各传输一比特数据。 简单的传输 假设在主从芯片之间进行的是8位长度的,高位数据在前的SPI传输,则单个字节的传输在波形上看起来是这样的。 MOSI是主输出线,而MISO则是从输出线。由于SPI是全双工的,所以在时钟沿上两条线同时传输数据。MOSI将数据从主控芯片传输至从芯片,MISO则将从芯片的数据传输到主控芯片。 详细的说是这样的: 1,首先主控芯片使能相应的SSEL信号,通知相应的从芯片数据传输要开始了; 2,主控芯片产生8个SPI时钟周期,并将数据在每个时钟沿发送出去,同时从芯片在也每个时钟沿将数据发送到MISO线上。 3,主控芯片撤销SSEL信号,一次SPI传输结束 多个从芯片的情况

各种视频接口的种类,包含常用的视频接口说明。

视频接口种类 S端子,AV,BNC,色差,VGA(D-SUB),DVI,HDMI接口知识 S端子,AV,BNC,色差,VGA(D-SUB),DVI,HDMI接口知识 S-Video具体英文全称叫Separate Video,为了达到更好的视频效果,人们开始探求一种更快捷优秀、清晰度更高的视频传输方式,这就是当前如日中天的S-Video(也称二分量视频接口),Separate Video 的意义就是将Video 信号分开传送,也就是在AV接口的基础上将色度信号C和亮度信号Y进行分离,再分别以不同的通道进行传输,它出现并发展于上世纪90年代后期通常采用标准的4 芯(不含音效) 或者扩展的7 芯( 含音效)。带S-Video 接口的视频设备( 譬如模拟视频采集/ 编辑卡电视机和准专业级监视器电视卡/电视盒及视频投影设备等) 当前已经比较普遍,同AV 接口相比由于它不再进行Y/C混合传输,因此也就无需再进行亮色分离和解码工作,而且由于使用各自独立的传输通道在很大程度上避免了视频设备内信号串扰而产生的图像失真,极大提高了图像的清晰度,但S-Video 仍要将两路色差信号(Cr Cb)混合为一路色度信号C,进行传输然后再在显示设备内解码为Cb 和Cr 进行处理,这样多少仍会带来一定信号损失而产生失真(这种失真很小但在严格的广播级视频设备下进行测试时仍能发现) ,而且由于Cr Cb 的混合导致色度信号的带宽也有一定的限制,所以S -Video 虽然已经比较优秀但离完美还相去甚远,S-Video虽不是最好的,但考虑到目前的市场状况和综合成本等其它因素,它还是应用最普遍的视频接口之一。 (S端子又可以分为三种 1.普通S端子 最下面的5针型D端子是标准的S端子类型,也是通用的一种规格。除了显卡外电视机以及DVD等视频源上都是这种接口。 2.增强型S端子 中间的那个明显比下面5针的接口多了2个针孔,原先许多ATi原厂的Radeon85007500都是采用的这种接口(上图中间的显卡就是一张原厂的7500),这种7针接口并飞标准接口,这样就决定了不同厂家的7针接口有可能在多出的2针的定义上有所不同。不过除了多出的2针外,7针接口兼容5针标准接头,我们也能使用5针连线。 虽然多出的2针功能和定义各不相同,但是大家一般都是把这两针作为标准AV视频信号输出,这样就使得这个7针接口即能分离出一路5针标准S端子信号,又能分离出一路标准的AV视频信号来,于是有的配备7针S 端子的显卡还配备一个一转二的转接输出装置,可以分成S端子和AV输出两种模式,从这个角度来说7针接口要优越于5针标准借口。不过,绝大多数情况下S端子明显比AV视频输出效果优秀,且大部分电视机都具备这样的接口,所以从这个角度来说配备S同时又配备AV就显得有些添足之嫌了。 3.VIVO端子 最上面那两个多于7针的接口,我们只有在一些VIVO或者在ATi All-In-Wonder产品上面才能看到,平时很少看到。这种接口除了具备5针标准S端子信号以及TV视频信号以外,通常还包含两路音频信号。不过这种接口通常都不会兼容标准5针S端子,我们需要使用转接盒等设备扩展出S端子才能使用。除了可以为显卡增加电

MAX7219及单片机的SPI接口设计

串行显示驱动器PS7219及单片机的SPI接口设计 在单片机的应用系统中,为了便于人们观察和监视单片机的运行情况,常常需要用显示器显示运行的中间结果及状态等等。因此显示器往往是单片机系统必不可少的外部设备之一。常用的显示器有很多种,其中LED(发光二极管显示器)是应用较多的一种,它特别适用于强光和光线极弱的场合。 要使LED显示,必须提供段选码和位选码。传统的硬件译码显示接口广泛采用由中央处理器CPU(如:Intel 8031)扩展I/O口(如:8255),然后再使用逻辑门驱动芯片(如7407等)驱动相应的位码和段码。这种设计,芯片间连线十分复杂,系统工作可靠性不高,已越来越不适应单片机系统集成化、小型化的发展要求。特别是系统并行扩展I/O,其缺点十分明显 (1)连线太多,系统连线复杂,印制板布线不方便; (2)并行总线上挂靠的器件太多,系统工作的稳定性和可靠性低; (3)体积较大,集成度不高。 正是由于上述原因,近年来,各厂家相继开发出了集成度较高、驱动能力较强、驱动位数较多、功能齐全的LED显示驱动器。 本文介绍一种低价位、高性能的多位LED显示驱动器PS7219芯片,以及它与单片机89C51具体的SPI接口设计与应用软件。 1PS7219简介 PS7219是一种新型的串行接口的8位数字静态显示芯片。它是由武汉力源公司新推出的24脚双列直插式芯片,采用流行的同步串行外设接口(SPI),可与任何一种单片机方便接口,并可同时驱动8位LED (或64只独立LED),其引脚图如图1所示。 PS7219内部具有15×8RAM功能控制寄存器,可方便选址,对每位数字可单独控制、刷新、不需重写整个显示器。显示数字亮度可由数字进行控制,每位具有闪烁使能控制位。当引脚CON(13脚)置高电平,可禁止所有显示,达到降低功耗的效果,但同时并不影响对控制寄存器的修改。PS7219还有一个掉电模式、一个允许用户从1位数显示到8位数显示选择的扫描界限寄存器和一个强迫所有LED接通的测试模式。另外,PS7219A型内置一个可靠的uP监控电路,可为外部提供一个脉宽140ms,触发门限典型值为4.63V的高电平复位信号。 如果N个PS7219级联,可实现N×8位LED显示。 2PS7219引脚功能 PS7219引脚功能如表1所示。

常见视频接口介绍

常见视频接口介绍 高清视频带来的不仅仅是视觉上的冲击,音频方面质量也有很大提高,能给大家带来更逼真的现场效果。那么,目前主流的视频接口有哪些呢? 1、射频 天线和模拟闭路连接电视机就是采用射频(RF) 接口。作为最常见的视频连接方式,它可同时传 输模拟视频以及音频信号。RF接口传输的是视频 和音频混合编码后的信号,显示设备的电路将混 合编码信号进行一系列分离、解码在输出成像。 由于需要进行视频、音频混合编码,信号会互相 干扰,所以它的画质输出质量是所有接口中最差 的。有线电视和卫星电视接收设备也常用RF连 接,但这种情况下,它们传输的是数字信号。 2、复合视频 不像射频接口那样包含了音频信号,复合视频(Composite)通常采用黄色的RCA(莲花插座)接头。“复合”含义是同一信道中传输亮度和色度信号的模拟信号,但电视机如果不能很好的分离这两种信号,就会出现虚影。 3、 S端子 S端子(S-Video)连接采用Y/C(亮度/色度)分离式输出,使用四芯线传送信号,接口为四针接口。接口中,两针接地,另外两针分别传输亮度和色度信号。因为分别传送亮度和色度信号,S端子效果要好于复合视频。不过S端子的抗干扰能力较弱,所以S端子线的长度最好不要超过7米。

色差(Component)通常标记为Y/Pb/Pr,用红、绿、蓝三种颜色来标注每条线缆和接口。绿色线缆(Y),传输亮度信号。蓝色和红色线缆(Pb 和Pr)传输的是颜色差别信号。色差的效果要好于S 端子,因此不少DVD以及高清播放设备上都采用该接口。如果使用优质的线材和接口,即使采用10米长的线缆,色差线也能传输优秀的画面。 5、VGA VGA(Video Graphics Array)还有一个名称叫 D-Sub。VGA接口共有15针,分成3排,每排5 个孔,是显卡上应用最为广泛的接口类型,绝大 多数显卡都带有此种接口。它传输红、绿、蓝模 拟信号以及同步信号(水平和垂直信号)。使用 VGA连接设备,使用本公司生产的VGA线(128铜 编3+6VGA线),线缆长度可达200米,不失真不 重影。 6、DVI DVI(Digital Visual Interface)接口与VGA都是电脑中最常用的接口,与VGA不同的是,DVI可以传输数字信号,不用再进过数模转换,所以画面质量非常高。目前,很多高清电视上也提供了DVI 接口。需要注意的是,DVI接口有多种规范,常见的是DVI-D(Digital)和DVI- I(Intergrated)。DVI-D只能传输数字信号,大家可以用它来连接显卡和平板电视。DVI-I则在DVI-D可以和VGA相互转换。

SPI及其接口介绍

一、SPI接口简介 SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。SPI有三个寄存器分别为:控制寄存器SPCR,状态寄存器SPSR,数据寄存器SPDR。外围设备FLASHRAM、网络控制器、LCD显示驱动器、A/D 转换器(如图一所示)和MCU等。 图一、ADC中的SPI 二、SPI接口 一个典型的SPI模块的核心部件是一个8位的移位寄存器和一个8位的数据寄存器SPIDR。通过SPI进行数据传送的设备有主SPI和从SPI之分,即SPI传送在一个主SPI和一个从SPI之间进行。图二给出了两个SPI模块相互连接、进行SPI传送的示意图,图左边是一个主SPI,图右边为一个从SPI。

图二、典型SPI示意图 在AN-877应用笔记中,对spi的接口定义与典型spi接口有所不同,AN-877使用一根线SDIO代替了典型SPI的MISO和MOSI,SS接口用CSB代替。图三和图四分别是双线模式下单器件控制(主从一对一)和双线模式下多器件控制(主从一对多)。 图三:主从一对一控制 图四:主从一对多控制

但是原理都一样。主从机之间一般由3个引脚组成:串行时钟引脚(SCLK)、串行数据输入/输出引脚(SDIO)、片选引脚(CSB)。 1、引脚 数据输入/输出(SDIO):该引脚用作数据的输入/输出,用作输入还是用作输出具体取决于所发送的指令(读或写)以及时序帧中的相对位置(指令周期或数据周期)。在读或写的第一个阶段,该引脚用作输入,将信息传递到内部状态机。如果该命令为读命令,状态机把该引脚(SDIO)变为输出,然后该引脚将数据回传给外部控制器。如果该命令为写命令,该引脚始终用作输入。 串行时钟(SCLK):SCLK由外部控制器提供,时钟频率最高为25MHZ。所有数据的输入输出都是与SCLK同步的。输入数据在SCLK的上升沿有效,输出数据在SCLK的下降沿有效。

相关主题
文本预览
相关文档 最新文档