当前位置:文档之家› 材料热力学与动力学复习题答案资料

材料热力学与动力学复习题答案资料

材料热力学与动力学复习题答案资料
材料热力学与动力学复习题答案资料

一、常压时纯Al 的密度为ρ=2.7g/cm 3

,熔点T m =660.28℃,熔化时体积增加5%。用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则

RTm Hm R Tm Hm

Sm ≈??≈?=

?

…①

由克-克方程V

T H dT

dP ??=…②

温度变化对ΔH m 影响较小,可以忽略,

①代入②得

V T H dT dP ??=dT T

1V Tm R dp V T Tm R ?≈??≈…③ 对③积分

dT T

1

V T Tm R p d T Tm Tm p

p p

??

?+?+?=

整理 ??? ?

??+?=?T m T 1ln V T m R p V T R V Tm R Tm T ??=???≈

Al 的摩尔体积 V m =m/ρ=10cm 3=1×10-5m

3

Al 体积增加 ΔV=5%V m =0.05×10-5m 3

K 14.60314

.810510R V p T 7

9=??=??=?-

Tm’=Tm+T ?=660.28+273.15+60.14=993.57K

二、热力学平衡包含哪些内容,如何判断热力学平衡。

内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。

热力学平衡的判据:

(1)熵判据:由熵的定义知dS Q T

δ≥不可逆可逆

对于孤立体系,有0Q =δ,因此有

dS 可逆

不可逆

≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有

dS 可逆

不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡

自发环境体系总0S S S ≥?+?=?

(2)自由能判据 若当体系不作非体积功时,在等温等容下,有

()0d ,≤V T F 平衡状态

自发过程

上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向

进行,直至自由能减小到最低值,体系达到平衡为止。

(3)自由焓判据 若当体系不作非体积功时,在等温等压下,有

0d ≤G 平衡状态

自发过程

所以体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进 行,直至自由能减小到最低值,体系达到平衡为止。

三、试比较理想熔体模型与规则熔体模型的异同点。

(1)理想熔体模型:在整个成分范围内每个组元都符合拉乌尔定律,这样的溶体称为理想溶体,其特征为混合热为零,混合体积变化为零,混合熵不为零。从微观上看,组元间粒子为相互独立的,无相互作用。

(2)符合下列方程的溶体称为规则溶体:(形成(混合)热不为零,混合熵等于理想的混合熵)

???????=='='=2A B 2B

A 2A

B 2B

A ln ln ln ln x x x RT x RT αγαγαγαγ其中,α’为常数,而α为(1/T)的函数,即α =α’/RT 相同点:混合熵相等。

不同点:(1)理想熔体模型混合热为零,规则混合热不为零;

(2)理想假设组元间粒子为相互独立的,无相互作用,规则考虑粒子间的相互作用。 四、固溶体的亚规则溶体模型中,自由能表示为

m i

i i i

i i m G x x RT G x G E 0 ln ++=∑∑

其中过剩自由能表示为

∑=-=0

B A AB B A E

)(ννx x L x x G m

实际测得某相中0L AB 和1L AB ,请分别给出组元A 和B 的化学位表达式。 解:该模型有A ,B 两相。

00(ln ln )E

m A A B B A A B B m G x G x G RT x x x x G =++++

过剩自由能表示为

∑=-=0

B A AB B A E

)(ννx x L x x G m

E

01m A B AB A B AB A B G =x x L +x x L x -x ()

代入Gm 中 00(ln ln )m A A B B A A B B G x G x G RT x x x x =+++

01A B AB A B AB A B x x L x x L x -x ++()

化学位 m m B A G G x x μ?==+?A A G m B B m A B G

G G x x μ?==+?

解得:

020

ln (3)A A A B AB A B AB G RT x x L x x L μ??=+++-??

020ln (3)B B B A AB A B AB G RT x x L x x L μ??=+++-??

五、向Fe 中加入α形成元素会使γ区缩小,但无论加入什么元素也不能使两相区缩小到

0.6at%以内,请说明原因。

解:当

1,γB αB <

γ

αF e

0γαA 0α

B γB 11→→?=?≈

-G RT G RT x x

加入一种合金元素后,0B x γ

≈,此时01α

αγ

B Fe x G RT

→-=

?

在1400K (x

γB 最大值点)时,0αγ

Fe

G →?有最小值71.7J 此时B x γ≈0.6 at%

则:%

1001400

314.87

.71??-

=γB x =0.6 at%

六、今有Fe-18Cr-9Ni 和Ni80-Cr20两种合金,设其中含碳量为0.1wt%,求T=1273?C 时碳在这两种合金中活度。

解:对于Fe-20Cr-10Ni 合金,由x i 与y i 的关系可得

00462.01C

C

C =-=

x x y

21330.0Cr =y 09447.0N i =y 69223.0Fe

=y 从表9-1查得 J γ

Cr = -100964J/mol ,J γ

Ni = 46000J/mol 而

mol

J 21701178.1946115])21([C C gr

C 0Fe 0FeC 0=-=-+--T I y G G G γγγm ol J 35788555.1121079C -=--=T I γ

58.1)]2(1ex p[

C C gr C 0C C F e 0F eC 0C =∑+--+-=M M v v y J I y G I G G RT

f γ

γγγ因此在Fe-20Cr-10Ni 合金

%727.000727.0C C C ===x f a γ 对于 Ni80-Cr20合金,有%465.0N i γC

=-a

七、假如白口铁中含有3.96%C 及2.2%Si ,计算在900?C 时发生石墨化的驱动力,以铸铁分别处于γ +渗碳体两相状态与γ +石墨两相状态时碳的活度差来表示此驱动力。由于Si

不进入Fe 3C 中,所以有K Si Cem/γ

= 0。在Fe-C 二元合金中,已知900?C 时γ +渗碳体两相

状态碳的活度为二a γC = 1.04;当γ与石墨平衡时a γ

C = 1。

解:要计算Fe-Si-C 三元合金中石墨化驱动力,首先要求出三元合金中x γC ,u γC ,x γ

Si 和u γSi 四个参数。

188

.009.28/0.285.55/04.94011

.12/96.31Si Fe C C C alloy C =+=+=-=

x x x x x u

0406

.009

.28/0.285.55/04.9409.28/0.21Si Fe Si C Si alloy

Si =+=+=-=

x x x x x u

假定γ中的碳含量与二元系中相同,根据Fe-C 相图,900℃与渗碳体相平衡时奥氏体碳含

量为1.23%。因此有

0579

.085.55/77.98011

.12/23.1γ

C ==

u

渗碳体的分子式为Fe 3C ,因此x C

Cem

=0.25或u C Cem =0.333,利用杠杆定律计算γ相的摩

尔分数

528

.00579.0333.0188

.0333.0=--=

γf 472.0Cem

=f 因为K Si Cem/γ=0,由硅的质量平衡可得

alloy

Si

Cem Si 0u f f u =?+γγ

0769.0528.0/0406.0S i ==γu

279

.01)()(ln

C

Cem C

Cem Si B

C T

C =--=

γ

γ

γ

γu u K a a

a γC = 1.375

二元合金中石墨化驱动力为

()()04.0104.1Gr C Fe 3=-=-γγγγC C

a a 三元合金中石墨化驱动力为

()()375.01375.1Gr C Fe 3=-=-γγγγC C a a

八、通过相图如何计算溶体的热力学量如熔化热、组元活度。 解:熔化热以Bi-Cd 相图为例计算

如含0.1摩尔分数的Cd 时,合金的熔点要降低,已知Bi 的熔点为T A * = 43.5K ,

于是Bi 的熔化热

H Bi 可由以下方法计算得到:

l

s G G Bi

Bi =

l l s s

a RT G a RT G Bi Bi 0Bi Bi

0ln ln +=+ s

l l s G G a a RT Bi

0Bi 0Bi

Bi ln -=

Bi 0Bi 0Bi 0Bi 0Bi 0

S T H G G G s l ?-?=?=-

在纯Bi 的熔点温度T Bi *时,熔化自由能Δ0G Bi = 0,于是由式(10-4)可得纯Bi 的熔化熵为

*

?=?Bi

Bi 0Bi 0T H S

)1(Bi Bi 0Bi 0Bi 0Bi 0*

-?=-=?T T H G G G s l

由于Bi-Cd 为稀溶体,可近似取

1Bi Bi ==s s x a

l

l l x x a Cd Bi Bi 1-== l

l x x Cd

Cd )1ln(-≈-

于是得

l

x T R T H Cd

2Bi Bi 0)(1*?=?

将具体数据

,T Bi *=543.5K ,R=8.314J/K*mol ,x Cd l =0.1 mol 代入得

Δ0H Bi = 10.77 kJ/mol

组元活度:

设已知相图如图所示。在温度为T 1时,a 点组成的α相与b 点组成的l 相平衡共存,所以

l A αA μμ=

αA αA 0l A l A 0

ln ln a RT a RT +=+μμ

l A αA αA

0l A

ln a a RT =-μ

μ

RT G a a *?=

A

0l A αA ln

αA 0l A 0A 0 μμ-=?*G 为A 组分的摩尔熔化吉布斯自由能

当固溶体α中A 浓度x A α 接近1时,可近似假定A 组元遵从拉乌尔定律,即用x A α代替a A α,则

RT G x a *?-=A 0αA

l A ln ln

?

?

********?-?+

?-?=?T

T p T

T p T

T

C T

T C T H T H G A

A

d d A

,A ,A

A

0A

0A 0

A ,A ,A ,≈-=?*s p l p p C C C

***-?+

=A

A

A 0αA

A

][ln

ln RTT T T H x a l

***-?=

A

A

A 0A

][ln RTT T T H a l (当固溶体α为极稀溶体,x A α→1)

九、请说明相图要满足那些基本原理和规则。

(1)连续原理:当决定体系状态的参变量(如温度、压力、浓度等)作连续改变时,体系中每个相性质的改变也是连续的。同时,如果体系内没有新相产生或旧相消失,那么整个体系的性质的改变也是连续的。假若体系内相的数目变化了,则体系的性质也要发生跳跃式的变化。

(2)相应原理:在确定的相平衡体系中,每个相或由几个相组成的相组都和相图上的几何图形相对应,图上的点、线、区域都与一定的平衡体系相对应的,组成和性质的变化反映在相图上是一条光滑的连续曲线。

(3)化学变化的统一性原理:不论什么物质构成的体系(如水盐体系、有机物体系、熔盐体系、硅酸盐体系、合金体系等),只要体系中所发生的变化相似,它们所对应的几何图形(相图)就相似。所以,从理论上研究相图时,往往不是以物质分类,而是以发生什么变化来分类。

(4)相区接触规则:与含有p 个相的相区接触的其他相区,只能含有p ±1个相。或者说,只有相数相差为1的相区才能互相接触。这是相律的必然结果,违背了这条原则的相图就是违背了相律,当然就是错误的。

(5)溶解度规则:相互平衡的各相之间,相互都有一定的溶解度,只是溶解度有大有小而已,绝对纯的相是不存在的。

(6)相线交点规则:相线在三相点相交时,相线的延长线所表示的亚稳定平衡线必须位于其他两条平衡相线之间,而不能是任意的。

十、请说明表面张力产生的原因?

十一、已知温度为608 K 时,Bi 的表面张力为371 mJ/m 2,Sn 的表面张力为560 mJ/m 2,Bi 的摩尔原子面积为6.95?104 m 2/mol ,Sn 的摩尔原子面积为6.00?104 m 2/mol 。试Bi-Sn 二元合金的表面张力。

解:首先计算转移系数16.11000.61095.644

=??=r

为了计算b 1/b 2r

的比值,先计算(11-17)式中指数项。

式中 n Bi =1/A Bi =0.144?10-8 mol ,σSn -σBi =189 mJ/m 2,R=8.3143 J?K -l ?mol -l

40

.13)exp(

011

2=-RT

n σσ

查阅文献,可以作出以a Bi /a Sn r

为纵坐标,以a Bi 为横坐标的曲线。计算时先求出在合金浓度为x Bi 时的活度a Bi ,然后利用上面的曲线找出a Bi /a Sn r

值。这样就可以利用(6-17)式计算

此b Bi /b r

Sn 。再用与求a 值同样的方法求出b Bi 值。将上述结果代入(11-16)式,就可以求出合金的表面张力。

例如,当x Bi =0.796,x Sn =0.204时,求得a Bi =0.804,a Bi /a Sn r

=4.40。按式(11-16),求

得b Bi /b r

Sn =4.40?13.40=58.96,然后由图表查得b Bi =0.98。于是

mJ/m2386804.098

.0ln 1095.6608103143.83718

7=???+=σ

十二、以二元合金为例,分析析出相表面张力对相变的影响。

多数的情况下附加压力的影响是作用在第二相粒子上,如果α相基体上分布着球形的

β相是处于常压下,而α相在此基础上还要受到附加压力的作用为

)0(ααm m G G =

ββββ)0(m

m m V p G G +=

由附加压力给相平衡所带来的化学势变化为

)0()(A A A μμμ-=?p

)0()(B B B μμμ-=?p

如果附加压力所带来的溶解度变化不大,即

1 α

B 0αB B <<-=?x x x

那么,可以根据摩尔自由能曲线图(下图)中的几何关系得到下面的比例式

1A

B α

B

βB β

βμμ?-?=-x x V p m

))((A B α

B βB ββμμ?-?-=x x V p m

当Δx B →0时

)d()(A B αB βB ββμμ--=x x V p m

αB αB αA αA αμμx x G m +=

α

B

A B 2B α2d )

d(d d x x G m μμ-=

α

B

2B

α

2A B d d d )d(x x G m =-μμ

αB

2B

α

2αB βB

ββ

d d d )

(x x G x x V p

m m

-

=

)d d )((2d

2B α2αB βB αB

x G x x r V x m m

-=

β

σ

]

)1(2)[()1(2d

αB αB αB βB

α

B αB α

B

x x I RT x x r x x V x AB m ----=

αβσ

十三、请解释钢中淬火马氏体低温回火时为什么先析出亚稳ε化合物而不是稳定的渗碳体(Fe 3C )?

解:经分析,亚稳碳化物ε的分子式为Fe x C ,x = 2.3 ~ 2.5,碳浓度明显高于Fe 3C(θ)。如下图所示,成分为x

αB

的过饱和固溶体(淬火马氏体)析出这种化合物的相变驱动力ΔG m

ε

实际上比析出Fe 3C 时的相变驱动力ΔG m ε

要小一些。但是,此刻决定哪个碳化物优先析出的并不是相变驱动力,而是形核驱动力。由下图可以以看出,析出亚稳碳化物ε的形核驱动力Δ*

G m ε

要大于析出Fe 3C(θ)时的形核驱动力Δ*

G m θ

(即有更大的负值),因此ε碳化物优先析出。但如果在回火温度长时间保持,ε碳化物最终要转变成为Fe 3C 。图中已经表明α+ε两相的自由能要高于α+Fe 3C 两相混合物的自由能,所以有发生此转变的相变驱动力。

十四、通过原子的热运动,分析影响扩散系数的因素。

AB 二元均质合金系个溶质原子沿着垂直于立方晶系<100>晶面的主轴方向跃迁,假设理想溶液,不考虑AB 原子间的交互作用,三维空间每次可跳跃距离为a ,且在x, y, z 三个方向跳跃几率相等,则在+x 方向跳跃的概率为1/6,令τ为原子在结点上平均停留时间,则跳跃频率f = 1/τ。已知在平面I 上A 原子数为n A ,在II 平面上的A 原子数为(n A +adn A /dx),从平面I 到平面II 流量为J

由平面II 到平面I 的流量为J 2→1,则

aA n J A 2

161

τ=→

aA x n a n J τ61d d A A 21??????

+=→

净流量

x n A a J J J d d 6A

21

221τ-

=-=→→

与Fick 第一定律相比较,则有

f

a a D 226

16==τ

如果将某一固定方向原子跃迁的几率用w 表示(与扩散机构及点阵类型有关),则

f

wa D 2=

可以证明,体心立方点阵中间隙扩散时w = 1/24,点阵结点扩散时w =1/8,而面心立方点阵

中 w = 1/12

由于原子跳跃频率对温度极敏感,由经典平衡统计力学计算、频率f 与温度的关系为

)

exp(kT G f ?-'=νω

其中,ω’为一个原子离开平衡位置跃迁到另一间隙位置的方式数;υ为原子在平衡位置的振动频率,υ= (α/m)1/2/2π,α为弹性系数,m 为原子质量;ΔG 为原子由平衡位置跃迁到另一平衡位置所作的功。因此有

)

exp(22kT

G a f a D ?-'==ωνωω)

exp()exp(2kT H k S a D ?-?'=ωνω

面心立方点阵,间隙原子扩散可以写成

)

exp()exp(2kT H k S a D ?-?=ν

对于按空位机制扩散时,扩散系数可表示成

)

exp()exp(2

kT H H k S S a D m

f m f ?+?-?+?'=ωνω

十五、如何获得可肯-达尔定律

十六、在材料凝固过程中,所发生的液-固相变实际上是由形核与长大两个过程所组成,其中形核对所获得的材料组织形貌更具影响。请说明均匀形核与不均匀形核的本质差异以及在生产和科研中如何利用均匀形核与不均匀形核。

十七、从动力学角度,分析第二相颗粒粗化机理。

设自过饱和的α固溶体中析出颗粒状β相。β相总量不多,因此颗粒间的平均距离d远大于β相颗粒半径r。又因为各颗粒形核时间不同,所以颗粒大小也不相等。设有两个半径不等的相邻的β相颗粒(如图),半径分别为r1和r2,且r1

α固溶体溶解度与β相的半径r有关。两者之间的关系为

RTr

V C

r

C B

σ

α

α2

)

(

)

(

ln=

1

)

(

)

(

)

(

<<

-

α

α

α

C

C

r

C

)

2

1

)(

(

)

(

RTr

V

C

r

C B

σ

α

α+

=

出相颗粒聚集长大式的扩散过程

C

(r)

C

(r)

十八、分析片状新相侧向长大时,长大速度与时间的关系 设A 、B 两组元形成如图所示的共晶相图。 取单位面积界面,设该界面在时间内向前沿x 轴推进dl ,则新相增加的体积为dl ,

新增的相所需的B 组元的量dm1,为

l

C C m d )(d 1αβ-=

β相长大所需的B 原子由B 原子在α相中扩散提供。根据菲克第一定律,设界面处α相中的B 原子浓度梯度为dC/dx ,B 原子在α相中扩散系数为D ,则扩散到单位面积界面的B 组

元的量dm 2为 τ

d d d d 2??

?

??=x C D m

因为dm 1=dm 2

所以

τ

αβd d d d )(???

??=-x C D l C C

?

?

? ??-==

x C C C D l v d d d d αβτ

相内部,B 组元的浓度沿曲线变化。为使问题简化,可近似用一直线代替曲线,

L C C x C α-=0d d )()

(0αβαC C L C C D v --=

图中面积A1相当于新形成的相所增加的B 组元的量,面积A2相当于由于

相的形成

在剩余的相中失去的组元B 的量。这两块面积应相等,

2

1A A =?

)(2)(00αβC C L

l C C -=

-

?

l

C C C C L α

β--=0)0(2?

)

()

(0αβαC C L C C D v --=

?

l

C C C C C C

D v )02

0)((2)(---=

βαβα?

2

20)(2)(αβαC C l C C D v --=

?

τταβααβα

D C C C C C C C C D l 2

02202)()(??? ??--=--=

?

21210τα

βαD C C C C l --=

?

τ

τ

αβαA

D

C C C C v =

--=

)

(20

α

C

A

A

C

(

十九、分析球状新相长大时,长大速度与时间的关系。

设球状新相β的半径为r 1,成分为C β。母相α原始成分为C 0,α/β界面处α相成分为C α 。如图所示,C 0>C α ,出现浓度梯度,使溶质原子由四周向球状新相扩散,使新相不断长大。如以新相中心为圆心,贫化区半径为r 2。当母相过饱和度C 0-Cα不大时,可以将向圆心的径向扩散看成稳态扩散,则通过不同半径r 的球面的扩散量为一常数,即

r C r D m d d π4d d 21-=τ → C D r r m d π4d d d 21=τ

设D 为常数,积分可得

1

20211

π4d d r r C C D r r m ---=ατ

r 1相对于r 2很小,r 2-r 1≈ r 2,则

)(π4d d 011

ατC C D r m --=…①

设在dτ时间内,β相半径增加dr ,需要溶质原子的量dm 2为

r

C C r m d )(π4d 212αβ--=…②

联立①②得

r C C r C C D r d )(π4d )(π42101αββτ-=-

r

B

C C r C C

D r v =--==

)()(d d 10αβατ

二十、在假定形核率和晶体长大速度不随时间变化的前提下,请推导出发生相变时,新相的体积分数随时间的变化关系(即约森-梅耳方程)

球状新相长大示意图

C

C

C

α

β

r

r

华南理工大学热力学复习题(校内本科)答案

1、孤立系统;热力学系统与外界既无能量交换也无物质交换时,称之为孤立系统 1、 开口系统;热力学系统与外界既有能量交换也有物质交换 2、 闭口系统;热力学系统与外界只有能量交换无物质交换 3、 绝热系统;热力学系统与外界无能量交换 4、 热源;工质从中吸收热能的物质 5、 平衡状态;一个热力学系统,在不受外界影响的条件下系统状态能够始终保持不变 6、 工质;实现热能与机械能相互转化的媒介物质 8、可逆过程;是准平衡过程,应满足热的和力的平衡条件,同时过程中不应有任何耗散效应 7、 技术功;技术上可资利用的功() ()12212 22 1z z g c c w w f f i t -+-+ = 8、 体积功;是系统由于体积改变而与环境交换的能量称为体积功。 9、 热力学能;由内动能、内位能以及维持一定分子结构的化学能和原子核内部的原子能 以及电磁场作用下的电磁能等构成。 10、 焓;热力学能与推动功之和pV U H += 11、 熵;表示物质系统状态的物理量。T Q dS ?= 12、 熵产;闭口系统内不可逆绝热过程中熵之所以增大,是由于过程中存在不可逆因素 引起耗散效应,使损失的机械功转化为热能(耗散热)被工质吸收。这部分有耗散产生的熵增量,叫做熵产 13、 理想气体;理想气体分子是具有弹性的、不具体积的质点;分子间相互没有作用力。 14、 实际气体;不满足气体分子是具有弹性的、不具体积的质点;分子间相互没有作用 力假设的气态物质 15、多变过程;工质的状态参数p 、v 、T 等都有显著变化,与外界之间换热量也不可忽略不计,这是不能简化为四种基本热力过程,可用定值=n pv 16热力学定律的两种说法;克劳修斯说法:热不可能自发地、不付代价地从低温物体转至高温物体。 开尔文说法:凡有温差的地方都能产生动力 15、 卡诺定理;定理一:在相同温度的高温热源和相同温度的低温热源之间工作的一切 可逆循环,其热效率相等,与可逆循环的种类无关,与采用哪种工质无关。 定理二:在温度同为1T 的热源和同为2T 的冷源间工作的一切不可逆循环,其热效率必小于可逆循环。 16、 熵增原理;孤立系统内部发生不可逆变化时,孤立系的熵增加;发生可逆变化时, 熵不变;使孤立系统熵减小的变化不可能发生。 17、 能量贬值原理;孤立系统中进行热力学过程时火用 只会减少不会增加,可逆过程下 火用 保持不变。 18、 火用 ;可无限转换的能量 19、火无 ,不可能转换的能量, 20、冷量火用 :温度低于环境温度的系统,吸入热量0Q 时所做出的最大有用功成为冷量火

材料热力学与动力学

材料热力学与动力学 参考书目:1.<> Peter Atkins , Julio de Paula .Oxford University Press 2002. 2.<> William F.Smith 2006. 3.<>WilliamD.Callister2009. ※1.Cp为什么是个常数?(材料结构、德拜公式、量子力学)[注:此题老师不止两次提到,有可能是考题哦] 练习题1 1.How to get microstructure picture and how to understand them. 1)扫描电子显微镜(SEM),通过细聚焦电子束在样品表面扫描激发出的各种物理信 号来调制成像的显微分析技术。 应用:形貌分析(显微组织、断口形貌、三维立体形态) 2)透射电子显微镜(TEM),是采用透过薄膜样品的电子束成像来显示样品内部组织 形态与结构。 应用:形貌分析(显微组织和晶体缺陷) 3)X射线衍射(XRD),利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶 格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法。 应用:点阵常数的测定、晶体对称性的测定 4)电子探针(EPMA)利用聚焦的很细的电子束打在样品的微观区域,激发出样品该 区域的特征X射线。 应用:微区毫米范围显微结构分析。 纵坐标表示衍射强度,横坐标2θ表示衍射方向(衍射线在空间分布的方位) 2.From the OM (Optics Microscope光学显微镜)pictures of a kinds of steel and an ordinary piece of china ,you can derive what kinds of information ,please list that and make a short discussion . 钢铁材料的显微组织根据含碳量的不同各有不同,相同含碳量在不同温度下的组织 也有所不同。含碳量为0.77%的钢称为共析钢;含碳量低于0.77%的钢称为亚共析 钢;含碳量为0.77~2.11%的钢称为过共析钢;含碳量高于2.11%的称为铸铁。不 同含碳量和合金成分的钢或铸铁,其显微组织各不相同。同一成分的钢或铸铁,经 过不同的金属热处理后也具有不同的显微组织。不同的显微组织具有不同的性能,

化工热力学习题集(附答案)复习 (1)

模拟题一 一.单项选择题(每题1分,共20分) 本大题解答(用A或B或C或D)请填入下表: 1.T温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体 的状态为(c ) A.饱和蒸汽 B.超临界流体 C.过热蒸汽 2.T温度下的过冷纯液体的压力P(a ) A.>()T P s B.<()T P s C.=()T P s 3.T温度下的过热纯蒸汽的压力P( b ) A.>()T P s B.<()T P s C.=()T P s 4.纯物质的第二virial系数B() A 仅是T的函数 B 是T和P的 函数 C 是T和V的 函数 D 是任何两强度性质 的函数 5.能表达流体在临界点的P-V等温线的正确趋势的virial方程,必须 至少用到() A.第三virial系 数B.第二virial 系数 C.无穷 项 D.只需要理想气 体方程 6.液化石油气的主要成分是() A.丙烷、丁烷和少量 的戊烷B.甲烷、乙烷 C.正己 烷 7.立方型状态方程计算V时如果出现三个根,则最大的根表示() A.饱和液摩尔体积 B.饱和汽摩尔体积 C.无物理意义

8. 偏心因子的定义式( ) A. 0.7lg()1 s r Tr P ω==-- B. 0.8lg()1 s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 12. 关于逸度的下列说法中不正确的是 ( ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 13. 二元溶液,T, P 一定时,Gibbs —Duhem 方程的正确形式是 ( ). a. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 2 = 0 b. X 1dlnγ1/dX 2+ X 2 dlnγ2/dX 1 = 0 c. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 1 = 0 d. X 1dlnγ1/dX 1– X 2 dlnγ2/dX 1 = 0 14. 关于化学势的下列说法中不正确的是( ) A. 系统的偏摩尔量就是化学势 B. 化学势是系统的强度性质

工程热力学期末复习题1答案知识分享

一、判断题: 1. 平衡状态一定稳定状态。 2. 热力学第一定律的实质是能量守恒定律; 3.公式d u = c v d t 适用理想气体的任何过程。 4.容器中气体的压力不变则压力表的读数也绝对不会改变。 5.在T —S 图上,任意二条可逆绝热过程线不能相交。 6.膨胀功与流动功都是过程的函数。 7.当把一定量的从相同的初始状态压缩到相同的终状态时,以可逆定温压缩过程最为省功。 8.可逆过程是指工质有可能沿原过程逆向进行,并能恢复到初始状态的过程。 9. 根据比热容的定义式 T q d d c ,可知理想气体的p c 为一过程量; 10. 自发过程为不可逆过程,非自发过程必为可逆过程; 11.在管道内作定熵流动时,各点的滞止参数都相同。 12.孤立系统的熵与能量都是守恒的。 13.闭口绝热系的熵不可能减少。 14.闭口系统进行了一个过程,如果熵增加了,则一定是从外界吸收了热量。 15.理想气体的比焓、比熵和比定压热容都仅仅取决与温度。 16.实际气体绝热节流后温度一定下降。 17.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。 18. 不可逆循环的热效率一定小于可逆循环的热效率; 19.混合气体中质量成分较大的组分,其摩尔成分也一定大。 20.热力学恒等式du=Tds-pdv 与过程可逆与否无关。 21.当热源和冷源温度一定,热机内工质能够做出的最大功就是在两热源间可逆热机对外输出的功。 22.从饱和液体状态汽化成饱和蒸汽状态,因为气化过程温度未变,所以焓的变化量Δh=c p ΔT=0。 23.定压过程的换热量q p =∫c p dT 仅适用于理想气体,不能用于实际气体。 24.在p -v 图上,通过同一状态点的定熵过程的斜率大于定温过程的斜率。

热力学与动力学往年考试整理

判断题: 1.由亚稳相向稳定相转变不需要推动力。? 2.压力可以改变材料的结构,导致材料发生相变。√ 3.对于凝聚态材料,随着压力升高, 熔点提高。√ 4.热力学第三定律指出:在0 K时任何纯物质的熵值等于零。? 5.在高温下各种物质显示相同的比热。√ 6.溶体的性质主要取决于组元间的相互作用参数。√ 7.金属和合金在平衡态下都存在一定数量的空位,因此空位是热力学稳定的缺 陷。√ 8.固溶体中原子定向迁移的驱动力是浓度梯度。? 9.溶体中析出第二相初期,第二相一般与母相保持非共格以降低应变能。? 10.相变过程中如果稳定相的相变驱动力大于亚稳相,一定优先析出。? 1.根据理查德规则,所有纯固体物质具有大致相同的熔化熵。 2.合金的任何结构转变都可以通过应力驱动来实现。 3.在马氏体相变中,界面能和应变能构成正相变的阻力,但也是逆相变的驱动 力。 4.在高温下各种纯单质固体显示相同的等容热容。 5.二元溶体的混合熵只和溶体的成分有关,与组元的种类无关。 6.材料相变形核时,过冷度越大,临界核心尺寸越大。 7.二元合金在扩散时,两组元的扩散系数总是相同。 8.焓具有能量单位,但它不是能量,也不遵守能量守恒定律;但是系统的焓变 可由能量表达。 9.对于凝聚态材料,随着压力升高, 熔点提高, BCC-FCC转变温度也升高。 10.由于马氏体相变属于无扩散切变过程,因此应力可以促发形核和相变。 简答题: 1.一般具有同素异构转变的金属从高温冷却至低温时,其转变具有怎样的体积特征?试根据高温和低温下自由能与温度的关系解释此现象。有一种具有同素异构转变的常用金属和一般金属所具有的普遍规律不同,请指出是那种金属?简要解释其原因?(8分)

第二章热力学第一定律练习题及答案

第一章热力学第一定律练习题 一、判断题(说法对否): 1.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生 变化时,所有的状态函数的数值也随之发生变化。 2.在101.325kPa、100℃下有lmol的水和水蒸气共存的系统,该系统的状态 完全确定。 3.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完 全确定。 4.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 5.从同一始态经不同的过程到达同一终态,则Q和W的值一般不同,Q + W 的值一般也不相同。 6.因Q P = ΔH,Q V = ΔU,所以Q P与Q V都是状态函数。 7.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力一定时;系统的体积与系统中水和NaCl的总量成正比。8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 9.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。 10.一个系统经历了一个无限小的过程,则此过程是可逆过程。 11.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。12.因焓是温度、压力的函数,即H = f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。 13.因Q p = ΔH,Q V = ΔU,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W。14.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 15.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。16.(?U/?V)T = 0 的气体一定是理想气体。 17.一定量的理想气体由0℃、200kPa的始态反抗恒定外压(p环= 100kPa) 绝热膨胀达平衡,则末态温度不变。 18.当系统向环境传热(Q < 0)时,系统的热力学能一定减少。

最新工程热力学期末复习题答案

最新工程热力学期末复习题答案 《工程热力学》练习题参考答案 第一单元 一、判断正误并说明理由: 1.给理想气体加热,其热力学能总是增加的。 错。理想气体的热力学能是温度的单值函数,如果理想气体是定温吸热,那么其热力学能不变。 1.测量容器中气体压力的压力表读数发生变化一定是气体热力状态发生了变 化。 错。压力表读数等于容器中气体的压力加上大气压力。所以压力表读数发生变化可以是气体的发生了变化,也可以是大气压力发生了变化。 2.在开口系统中,当进、出口截面状态参数不变时,而单位时间内流入与流出 的质量相等,单位时间内交换的热量与功量不变,则该系统处在平衡状态。 错。系统处在稳定状态,而平衡状态要求在没有外界影响的前提下,系统在长时间内不发生任何变化。 3.热力系统经过任意可逆过程后,终态B的比容为v B大于初态A的比容v A,外 界一定获得了技术功。 错。外界获得的技术功可以是正,、零或负。 4.在朗肯循环基础上实行再热,可以提高循环热效率。 错。在郎肯循环基础上实行再热的主要好处是可以提高乏汽的干度,如果中间压力选的过低,会使热效率降低。 6.水蒸汽的定温过程中,加入的热量等于膨胀功。 错。因为水蒸汽的热力学能不是温度的单值函数,所以水蒸汽的定温过程中,加入的热量并不是全部用与膨胀做功,还使水蒸汽的热力学能增加。 7.余隙容积是必需的但又是有害的,设计压气机的时候应尽可能降低余隙比。 对。余隙容积的存在降低了容积效率,避免了活塞和气门缸头的碰撞,保证了设备正常运转,设计压气机的时候应尽可能降低余容比。 8.内燃机定容加热理想循环热效率比混合加热理想循环热效率高。 错。在循环增压比相同吸热量相同的情况下,定容加热理想循环热效率比混合加热理想循环热效率高;但是在循环最高压力和最高温度相同时,定容加热理想循环热效率比混合加热理想循环热效率低。 9.不可逆过程工质的熵总是增加的,而可逆过程工质的熵总是不变的。 错。熵是状态参数,工质熵的变化量仅与初始和终了状态相关,而与过程可逆不可逆无关。 10.已知湿空气的压力和温度,就可以确定其状态。

热力学与动力学

2007年度《材料热力学与动力学》考试题 姓名:学号: 判断题:(用√或?符号指出对错。20分,每小题2分) 1.热力学第三定律指出:在0 K时任何纯物质的熵值等于零。 2.焓具有能量单位,但它不是能量,也不遵守能量守恒定律;但是系统的焓变可由能量表达。 3.在高温下各种物质显示相同的比热。 4.对于凝聚态材料,随着压力升高, 熔点提高, BCC-FCC转变温度也升高。 5.溶体的性质主要取决于组元间的相互作用参数。 6.亚稳相即使没有外力推动,随着时间的延长,最终会转变为稳定相。 7.金属和合金在平衡态下都会存在一定数量的空位,因此说空位是热力学稳定的缺陷。 8.固溶体中原子定向迁移的驱动力是浓度梯度。 9.溶体中析出第二相初期,第二相一般与母相保持非共格以降低应变能。 10.由于马氏体相变属于无扩散切变过程,因此应力可以促发形核和相变。 简答题:(40分,每小题8分,任选5题,其余题目答出可酌情加分) 1.一般具有同素异构转变的金属从高温冷却至低温时,其转变具有怎样的体积特征?试根据高温和低温下自由能与温度的关系解释此现象。有一种具有同素异构转变的常用金属和一般金属所具有的普遍规律不同,请指出是那种金属?简要解释其原因? 2.试举出三种二元溶体模型;简要指出各溶体模型的原子相互作用能I AB的特征。 3.试利用给出的a,b两种溶体Gm-X 图中化学势的图解示意图(右图), 指出两种溶体的扩散特征有什么 不同;那一种固溶体中会发生上坡 扩散。 ( a ) ( b ) 4.向Cu中加入微量的Bi、As合金时 所产生的效果完全不同。加入微量的 Bi会使Cu显著变脆,而电阻没有显

热力学与动力学

热力学与动力学

————————————————————————————————作者:————————————————————————————————日期: ?

2006年度《材料热力学与动力学》考试题 简答题: 1.一般具有同素异构转变的金属从高温冷却至低温时,其转变具有怎样的体积特征?试根据高温和低温下自由能与温度的关系解释此现象。有一种具有同素异构转变的常用金属和一般金属所具有的普遍规律不同,请指出是那种金属?简要解释其原因?(8分) 2.金属和合金在平衡态下存在一定数量的空位,因此有人说一定数量的空位是金属和合金中的热力学稳定缺陷,此说法是否正确?根据空位数量对自由能及其组成要素(焓和熵)的影响方式,从热力学角度进行简要解释。(8分) 3.试举出三种二元溶体模型;简要指出各溶体模型的原子相互作用能IAB的特征。 (6分) 4.试利用给出的a,b两种溶体Gm-X图中化学势的图解示意图,指出两种溶体的扩散特征有什么不同;那一种固溶体中会发生上坡扩散。(7分) (a) (b) 5.向Cu中加入微量的Bi、As合金时所产生的效果完全不同。加入微量的Bi会使Cu显著变脆,而电阻没有显著变化,加入微量的As并不会使Cu变脆,但是能显著提高电阻。试根据下面的相图,从溶解度角度对上述现象加以解释。(8分)

6.将固溶体相和晶界相视为两相平衡状态,如果已知上述两相的自由能-成分曲线,指出:采用什么方法或法则来确定两相的平衡成分?一般来说,两相的平衡溶质成分具有怎样的关系?(5分) 7.简要回答什么是耗散结构以及产生耗散结构的必要条件;举出2个自组织现象的实例。(6分) 8.在相变形核阶段,体积自由能、界面能以及应变能中哪些是相变的驱动力?哪些是相变的阻力?试解释:在形核阶段,形核的总自由能为正值,为什么核心能形成呢?以马氏体为例,在核心长大阶段的自由能以及界面能和应变能如何变化?(8分) 9.根据过饱和固溶体中析出第二相时的相平衡关系或者Gibbs-Thomson方程,简要说明第二相粒子粗化过程;从温度对长大速率和对扩散两个方面的影响,简要说明温度对粒子粗化的作用。(7分) 分析计算题: 1.已知纯钛α/β平衡温度为882?C,相变焓为14.65 kJ/mol。估算β钛过冷到800?C时,β-Ti转变为α-Ti的相变驱动力(不计上述过冷温度范围对相变的焓变及熵变的影响)。(10分) 2.从过饱和固溶体(α)中析出的第二相通常都是很小的粒子(β),一般这些小粒子在表面张力的作用下会受到附加压应力的作用,写出附加压应力与表面张力和球形粒子尺寸的关系。以二元溶体为例,用图示的方法简要分析附加压应力对溶体相与析出相界面(α/β)平衡关系的影响。在析出的初期,这小粒子一般与基体保持共格关系,简要分析其原因。(15分) 3.在25?C和0.1MPa下,金刚石和石墨的标准熵分别为2.4 J/mol?K和5.7 J/mol?K,标准焓分别为395kJ/mol和394kJ/mol,密度分别为3.5g/cm3和2.3g/cm3, 碳的摩尔质量为12g。试计算石墨在此条件下转变为金刚石的相变驱动力;试根据自由能与体积和温度的关系(dG=VdP - SdT)计算室温下实现石墨-金刚石转变所需临界压力(不计压力对石墨以及压力对金刚石造成的体积改变)。(15分)

化工热力学复习题附答案

化工热力学复习题 一、选择题 1.T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( C ) A.饱和蒸汽 超临界流体 过热蒸汽 2.纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 3.设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 4.关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 5.下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。 (D )强度性质无偏摩尔量 。

6.关于逸度的下列说法中不正确的是( D ) (A)逸度可称为“校正压力” 。(B)逸度可称为“有效压力” 。 (C)逸度表达了真实气体对理想气体的偏差。(D)逸度可代替压力,使真实气体的状态方程变为fv=nRT。(E)逸度就是物质从系统中逃逸趋势的量度。 7.二元溶液,T, P一定时,Gibbs—Duhem 方程的正确形式是( C ). a. X1dlnγ1/dX 1+ X2dlnγ2/dX2 = 0 b. X1dlnγ1/dX 2+ X2 dlnγ2/dX1 = 0 c. X1dlnγ1/dX 1+ X2dlnγ2/dX1 = 0 d. X1dlnγ1/dX 1– X2 dlnγ2/dX1 = 0 8.关于化学势的下列说法中不正确的是( A ) A. 系统的偏摩尔量就是化学势??????? B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势??? D. 化学势大小决定物质迁移的方向 9.关于活度和活度系数的下列说法中不正确的是( E ) (A)活度是相对逸度,校正浓度,有效浓度;(B) 理想溶液活度等于其浓度。 (C)活度系数表示实际溶液与理想溶液的偏差。(D)任何纯物质的活度均为1。(E)r i是G E/RT的偏摩尔量。 10.等温等压下,在A和B组成的均相体系中,若A的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将(B )

材料热力学与动力学复习题答案

一、常压时纯Al 的密度为ρ=2.7g/cm 3 ,熔点T m =660.28℃,熔化时体积增加5%。用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则 RTm Hm R Tm Hm Sm ≈??≈?= ? …① 由克-克方程V T H dT dP ??=…② 温度变化对ΔH m 影响较小,可以忽略, ①代入②得 V T H dT dP ??=dT T 1V Tm R dp V T Tm R ?≈??≈…③ 对③积分 dT T 1 V T Tm R p d T Tm Tm p p p ?? ?+?+?= 整理 ??? ? ??+?=?T m T 1ln V T m R p V T R V Tm R Tm T ??=???≈ Al 的摩尔体积 V m =m/ρ=10cm 3=1×10-5m 3 Al 体积增加 ΔV=5%V m =0.05×10-5m 3 K 14.60314 .810510R V p T 7 9=??=??=?- Tm’=Tm+T ?=660.28+273.15+60.14=993.57K 二、热力学平衡包含哪些内容,如何判断热力学平衡。 内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。 热力学平衡的判据: (1)熵判据:由熵的定义知dS Q T δ≥不可逆可逆 对于孤立体系,有0Q =δ,因此有 dS 可逆 不可逆 ≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有 dS 可逆 不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡 自发环境体系总0S S S ≥?+?=? (2)自由能判据 若当体系不作非体积功时,在等温等容下,有 ()0d ,≤V T F 平衡状态 自发过程 上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向 进行,直至自由能减小到最低值,体系达到平衡为止。 (3)自由焓判据 若当体系不作非体积功时,在等温等压下,有 0d ≤G 平衡状态 自发过程 所以体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进 行,直至自由能减小到最低值,体系达到平衡为止。

化工热力学复习题及答案

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0,0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. : 3. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 4. 1MPa=106Pa=10bar==。 5. 1kJ=1000J== cm 3=10000bar cm 3=1000Pa m 3。 6. 普适气体常数R = cm 3 mol -1 K -1= cm 3 mol -1 K -1= J mol -1 K -1 = mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. & 2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 3. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临界流体。) 4. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高 而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。)

材料热力学与动力学复习题

一、常压时纯Al 的密度为ρ=2.7g/cm 3,熔点T m =660.28℃,熔化时体积增加5%。用理查得规则和克-克方程估计一下,当压力增加1Gpa 时其熔点大约是多少? 解:由理查德规则 RTm Hm R Tm Hm Sm ≈??≈?= ? …① 由克-克方程V T H dT dP ??=…② 温度变化对ΔH m 影响较小,可以忽略, ①代入②得 V T H dT dP ??=dT T 1V Tm R dp V T Tm R ?≈??≈…③ 对③积分 dT T 1 V T Tm R p d T Tm Tm p p p ?? ?+?+?= 整理 ??? ? ??+?=?Tm T 1ln V Tm R p V T R V Tm R Tm T ??=???≈ Al 的摩尔体积 V m =m/ρ=10cm 3=1×10-5m 3 Al 体积增加 ΔV=5%V m =0.05×10-5m 3 K 14.60314 .810510R V p T 7 9=??=??=?- Tm’=Tm+T ?=660.28+273.15+60.14=993.57K 二、热力学平衡包含哪些内容,如何判断热力学平衡。 内容:(1)热平衡,体系的各部分温度相等;(2)质平衡:体系与环境所含有的质量不变;(3)力平衡:体系各部分所受的力平衡,即在不考虑重力的前提下,体系内部各处所受的压力相等;(4)化学平衡:体系的组成不随时间而改变。 热力学平衡的判据: (1)熵判据:由熵的定义知dS Q T δ≥不可逆可逆 对于孤立体系,有0Q =δ,因此有 dS 可逆 不可逆 ≥,由于可逆过程由无限多个平衡态组成,因此对于孤立体系有 dS 可逆 不可逆0≥,对于封闭体系,可将体系和环境一并作为整个孤立体系来考虑熵的变化,即平衡 自发环境体系总0S S S ≥?+?=? (2)自由能判据 若当体系不作非体积功时,在等温等容下,有 ()0d ,≤V T F 平衡状态 自发过程 上式表明,体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向 进行,直至自由能减小到最低值,体系达到平衡为止。 (3)自由焓判据 若当体系不作非体积功时,在等温等压下,有 d ≤G 平衡状态 自发过程 所以体系在等温等容不作非体积功时,任其自然,自发变化总是向自由能减小的方向进 行,直至自由能减小到最低值,体系达到平衡为止。

热力学统计物理练习试题和答案

热力学·统计物理练习题 一、填空题. 本大题70个小题,把答案写在横线上。 1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。 2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。 3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。 4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。 5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。 6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。 7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。 8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。 9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。 10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。 11.循环关系的表达式为 。 12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。 13.W Q U U A B +=-,其中W 是 作的功。 14.?=+=0W Q dU ,-W 是 作的功,且-W 等于 。 15.?δ+δ2L 11W Q ?δ+δ2 L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。 16.第一类永动机是指 的永动机。 17.能是 函数,能的改变决定于 和 。 18.焓是 函数,在等压过程中,焓的变化等于 的热量。 19.理想气体能 温度有关,而与体积 。

化工热力学复习题及答案概要

第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 0不一定等于A ?,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状 态是T ,P 的理想气体,右侧是T 温度的真空。当隔板抽去后,由于Q =W =0, 0=U ?,0=T ?,0=H ?,故体系将在T ,2V ,0.5P 状态下达到平衡,()2ln 5.0ln R P P R S =-=?,2ln RT S T H G -=-=???,2ln RT S T U A -=-=???) 2. 封闭体系的体积为一常数。(错) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等, 初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、终态压力相 等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径无关。) 6. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 1MPa=106Pa=10bar=9.8692atm=7500.62mmHg 。 4. 1kJ=1000J=238.10cal=9869.2atm cm 3=10000bar cm 3=1000Pa m 3。 5. 普适气体常数R =8.314MPa cm 3 mol -1 K -1=83.14bar cm 3 mol -1 K -1=8.314 J mol -1 K -1 =1.980cal mol -1 K -1。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临 界流体。) 3. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P -V 相图上的饱和汽体系和饱和液体系曲线可知。) 4. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自 由度是零,体系的状态已经确定。)

【核心知识】蛋白质折叠的热力学和动力学

蛋白质折叠的热力学和动力学 药学院 10489629 苟宝迪 蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。诺贝尔奖得主Anfinsen认为每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序,由这种氨基酸排列顺序决定它的特定的空间结构。具有完整一级结构的多肽或蛋白质, 只有当其折叠形成正确的三维空间结构才可能具有正常的生物学功能. 如果这些生物大分子的折叠在体内发生了故障, 形成错误的空间结构, 不但将丧失其生物学功能, 甚至会引起疾病.蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。 蛋白质折叠的研究(图1[1]),是生命科学领域的前沿课题之一。不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。 图1 蛋白质折叠的热力学研究 蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?X-射线晶体衍射是至今为止研究蛋白质结构最有效的方法, 所能达到的精度是其它任何方法所不能比拟的. 但是, 蛋白质分离纯化技术要求高, 蛋白质晶体难以培养,

晶体结构测定的周期较长, 从而制约了蛋白质工程的进展. 随着近代物理学、数学和分子生物学的发展, 特别是计算机技术的进步, 人们开始用理论计算的方法, 利用计算机来预测蛋白质的结构. 同源模建方法是最常用、最有效的蛋白质结构预测方法. 但是, 利用同源模建方法预测蛋白质结构时, 需用同源蛋白质的已知结构作为模板. 当缺乏这种模板结构时, 预测则很难奏效. 这是该方法的天生缺陷. 是否能从蛋白质序列出发, 直接预测蛋白质的结构? 从理论上最直接地去解决蛋白质的折叠问题,就是根据测得的蛋白质的一级序列预测由Anfinsen原理决定的特定的空间结构。蛋白质氨基酸序列,特别是编码蛋白质的核苷酸序列的测定现在几乎已经成为常规技术,利用分子生物学技术可以从互补DNA(cDNA)序列可以推定氨基酸序列,大大加速了蛋白质一级结构的测定。目前蛋白质数据库中已经存有大约17万个蛋白的一级结构,但是测定了空间结构的蛋白大约只有1.2万个,这中间有许多是很相似的同源蛋白,已经有人根据基因组的数据用统计方法重新估计了蛋白质折叠类型数目大约为1000种。 “蛋白质结构预测”属于理论方面的热力学问题,蛋白质分子结构本身的复杂性决定了结构预测的复杂性。目前结构预测的方法大致可分为两大类。一类是假设蛋白质分子天然构象处于热力学最稳定,能量最低状态,考虑蛋白质分子中所有原子间的相互作用以及蛋白质分子与溶剂之间的相互作用,采用分子力学的能量极小化方法,计算出蛋白质分子的天然空间结构。第二类方法是利用存入蛋白质数据库的数据进行预测相比,基于同源性的重复循环技术非常可靠地灵敏地进行结构预测。找出数据库中已有的蛋白质的空间结构与其一级序列之间的联系总结出一定的规律,逐级从一级序列预测二级结构,再建立可能的三维模型,根据总结出的空间结构与其一级序列之间的规律,排除不合理的模型,再根据能量最低原理得到修正的结构。但是,第一类方法遇到在数学上难以解决的多重极小值问题,而逐级预测又受到二级结构预测精度的限制。 图2[2]为蛋白质折叠研究的漏斗模型。从能量的角度看,漏斗表面上的每一个点代表蛋白质的一种可能的构象,变性状态的蛋白质构象位于漏斗顶面,漏斗最底部的点表示用X-射线单晶衍射或NMR测定的蛋白质天然构象,而漏斗侧面的斜率用来说明蛋白质折叠路径(图3[1])。 图2

材料热力学与动力学

《材料热力学与动力学》读书报告 一、概述 1、体系与环境 体系是所研究的对象的总和,或者把所要研究的那部分真实世界的各物体想象的从其周围划分出来作为研究对象。而环境是指与所研究对象(体系)有联系、有影响的部分,或指体系以外与之联系的真实世界。体系与环境是相互依存和相互制约的一对,对于不同的研究内容,体系与环境也不同,如何划分体系与环境,完全根据所研究问题的性质来决定。 热力学体系与环境之间的相互联系是指它们之间所发生的物质交换和能量交换,而能量交换的形式有传热和做功。根据体系与环境之间相互联系的不同,可以将体系分为三类:(1)开放体系:又称敞开体系,体系与环境之间,既有物质交换,又有能量交换; (2)封闭体系:体系与环境之间,只有能量交换,没有物质交换; (3)孤立体系:又称隔离体系,体系与环境之间,既没物质交换,也没有能量交换。 2、体系的性质 根据体系的性质与体系中物质数量的关系,可将其分为两类: (1)容量性质:又称广延性质或广延量,其数值与体系中物质的数量有关,整个体系的某个容量性质的数值,为体系中各部分该性质数值的总和,即具有加和性。如体积、质量、内能、热容、熵等。 (2)强度性质:又称内禀性性质或强度量,其数值与体系中物质的数量无关,没有加和性。如温度、压力、密度等。 容量性质与强度性质虽有上述区别,但是容量性质有时也可以转化为强度性质,即容量性质除以总质量或总物质的量就成为强度性质。如体积为容量性质,而摩尔体积为强度性质,热容为容量性质,而摩尔热容则为强度性质。 3、状态与状态函数 热力学用体系所具有的宏观性质来描述其状态。当体系的一系列性质,如质量、温度、压力、体积、组成以及焦聚状态等全部确定以后,这个体系就具有了一个确定的状态。反之,体系状态确定后,其所具有的宏观性质均有确定值,与到达该状态前经历无关。由于状态与性质之间的单值对应体系,体系的这些热力学性质又称做状态函数。状态函数只与体系的始态与终态有关,与变化的具体历程无关。由于体系的状态都是利用体系的宏观物理性质来描述的,所以又称为体系的宏观状态。其中体系的任一性质发生了变化均意味着体系状态的变化。因此这些性质又称为体系的状态变数。 由于体系各性质之间彼此相互联系、相互制约,只有部分性质是独立的,在某一状态下,其他的性质可以表示成各独立性质的函数,即存在相当于数学上的自变量与因变量的关系,因此称这些可以用独立性质通过函数关系表示出来的体系性质为状态函数。也就是说,状态函数是一些具有相对独立性的性质函数的体系性质。 4、过程与途径 体系从始态向终态过渡称为过程,或者说体系体系发生的任何变化为过程。完成过程的具体历程(步骤)称为途径。 途径可由若干过程组合而成。由一定始态到达一定终态的过程,可以经过不同的途径,但是状态函数的改变值是相同的。因为状态一定时,状态函数只有一个确定的数值,状态函数的改变不随具体途径不同而变化。 二、材料热力学基础知识

热力学和动力学测验题

化学原理模块课堂测验 1、可逆反应:C(s)+H2O(g)? CO(g)+H2(g) Δr H mΘ>0。下列说法你认为对否?为什么? (1)达平衡时各反应物和生成物的分压一定相等; (2)改变生成物的分压,使Q

相关主题
文本预览
相关文档 最新文档