当前位置:文档之家› 现代高层建筑的结构设计

现代高层建筑的结构设计

现代高层建筑的结构设计

发表时间:2017-11-06T10:29:24.073Z 来源:《基层建设》2017年第20期作者:李然[导读] 摘要:随着城市化进程的加快,城市建筑以高层建筑为主,其发展变化越来越多样化。

身份证号码:13018219911106xxxx

摘要:随着城市化进程的加快,城市建筑以高层建筑为主,其发展变化越来越多样化。对于设计师来说,相应的问题也更为复杂。在层数的增加的变化,建筑物的高度、空间结构的使用,基于体系结构的几种简单的原始结构和各种简单结构的发展,结构简单、结构简单和其他更复杂的巨人。高层建筑结构体系的变化直接决定高层建筑的承载能力、侧向刚度、抗震性能、材料消耗和造价。不同的结构体系适用于楼层、高度和功能不同的建筑物。本文结合自己的工作经验,阐述了高层建筑结构设计要点及注意事项,并指出了高层建筑今后的发展方向。

关键词:高层建筑;结构设计;布置原则;设计

目前,基于有限的土地面积,随着社会人口的加速增长,会导致居住的形式纵向发展。从建筑方面出发,今后整个行业的发展趋势是高层或超高层。近年来,城市现代化建设使得我国高层建筑也如雨后春笋般拔地而起。所以,如何优化设计高层建筑,就显得十分重要。本文将从以下几个方面进行阐述:结构平面的设计与布置;结构立面的设计与布置;如何选择合理的结构体系以及建筑基础的设计与布置等。

1.结构立体的设计与布置

当结构为三维时,刚度应上下,从上到下逐渐增大。结构竖向刚度是否均匀,主要影响因素是各剪力墙的合理布置。框支剪力墙结构是竖向刚度突变的典型实例。框架支撑层为软弱层,变形较大,层易发生地震破坏。为了避免因地震引起的软弱层,楼层剪力墙的布置将转换层剪切在上面,均匀地传递给它,因此在结构设计中,不会允许全部或大部分框支剪力墙的设计。均匀规整的结构是垂直布置最基本的原则。均匀性,指的是刚度、车身形状、承载能力和质量,从上到下分布,均匀变化。规则,主要是指身体的规则,如果有变化,应该是有规律的渐变。对于规模的收入应该是有限的,往往发生在上下楼层,使规模较小,如果身体的大小变化,应该是大,小,逐步变化。不应发生太大的突变。

2.结构平面的设计与布置

为减轻水平作用下的扭转效应,应尽量使建筑物的质心和刚心重合,所以设计平面形状宜对称、简单、规则。平面凸出部分不宜过长,过长会加大端部往构件的位移,偏心越大其扭转效应越大,导致应力集中引起破裂。减少结构的扭转效应: 2.1减少地震作用引起的扭转。

布置均匀的平面刚度,可减少地震作用下的扭转,剪力墙的布置是影响平面刚度均匀的主要因素。剪力墙、井筒等的对称布置有利于减少地震作用引起的扭转。平面上质量偏心和质量分布的均匀性也需注意,它们也会引起扭转,质量集中于平面边缘,更会加大扭转。

2.2抵抗结构扭转的能力一定要加强。

加强结构抗扭刚度的重要措施,是合理布置剪力墙,或将框筒结构布置于周边等。从建筑要求与使用功能方面出发,高层、超高层的平面布置应力求简单、规则、对称。对于地震区、带或地震重点防御区的抗震建筑,简单、规则、对称的原则尤为重要。因条件所限,遇到严重不规则的结构时,应分割成若干简单、规则的独立单元。

3.结构体系的合理选型

高层和超高层建筑结构设计中最重要的是选择问题,即结构体系的选择是否合理。结构体系的刚度和强度是不同的。高层建筑的高度也不同。高层建筑结构体系,从结构上可分为框架剪力墙结构、剪力墙结构、框架结构、剪力墙、板柱结构、部分框架剪力墙结构、筒体结构等。根据建筑的要求、建筑的功能、场地类型和抗震等级,高层建筑结构体系的选择是不同的。框架结构的框架-剪力墙结构总体上具有应用灵活方便、抗震性能和刚度等优点,适用于宾馆建筑和公共建筑。由于剪力墙结构的承载能力和刚度,整体空间性能较好,节省钢量,受力位移水平较低,适用于多层宾馆建筑和高层住宅建筑的分区。框架结构空间大,布局灵活,但由于其刚度小、抗震性能差、维修费用高,在高层、高层建筑中使用较少。这一点在建筑抗震设计规范中有明确规定。一般剪力墙结构和框架-剪力墙结构可以满足大多数建筑高度的要求;横向刚度的受力性能,大空间是管结构的优点,当建筑高度大、层数多,和设防烈度高,各种结构体系难以满足设计要求,应该是管结构的选择。

4.建筑基础的设计与布置

根据高层建筑的层数、结构类型、荷载及地基承载力,可以首先考虑筏形或箱形基础;若地基承载力或变形不能满足设计要求时,可以选择桩基或复合地基。倒肋形、倒无梁楼盖式是筏形基础的常见类型。倒肋形楼盖式筏基,用料省,刚度好,但费模板,施工麻烦。倒无梁楼盖式的筏基,用料多,板厚大,刚度差,但便于地下空间的应用,施工方便。箱形基础传力均匀,整体性好,刚度大,当地基极软,沉降十分严重不均匀时,宜选用。桩基础承载力大,抵御复杂荷载能力强,能良好地适应各种地质条件,当浅层地基比较松软且承载力差,而坚实土层埋藏较深的时候,宜选用桩基础。

5.结语

(1)在高层建筑的平面设计和布局中,应是平面形状对称、规则和简单,只需使心与质心一致,平面刚度应均匀排列,平面凸部不宜过长。2)竖向布置设计最基本的原则是规则均匀的结构。也就是说,结构的形状、刚度、承载力和质量分布都要从上到下逐渐改变,不应有过多的突变。3)高层建筑结构体系应该是一个合理的选择,根据其不同的适用高度、建筑要求、功能、环境和地震等级类别的内容,结构设计人员应合理选择根据高层建筑设计中的具体情况。4)在建筑物基础的设计和布局,应选择整体性好,能满足承载力和变形的要求,能够有效调整的基础上形成的不均匀沉降,如筏板或箱形基础;当上述基本形式不能满足要求,可以考虑桩基或复合地基参考文献:

[1]霍小平.结构造型概念设计初探[J].西北建筑工程学院学报,2000(4):20-25.

[2]李祖钞.高层建筑结构设计中的常见问题探讨[J].建材发展导向,2011(3):39-40.

[3]傅学怡.实用高层建筑结构设计[M].中国建筑工业出版社,2010.

[4]周洲.某复杂高层建筑结构设计分析[J].山西建筑,2011,37(32):44-45.

高层建筑结构设计题

填空题 1一般而论,高层建筑具有,,,的特点。 2. 从受力角度来看,随着高层建筑高度的增加,对结构起的作用将越来越大。 3. 现代高层建筑所采用的材料,主要是,两种。 4. 高层钢结构具有,,等优点。 5. 不同国家、不同地区、不同结构形式所采用的结构材料不同,大致有以下几种形式:,,。 6. 钢筋混凝土梁的破坏形态有两种形式:和。 7. 一般用途的高层建筑荷载效应组合分为以下两种情况:,。 8. 剪力墙中斜裂缝有两种情况:一是,二是。 W(KN/m2)可按下式计算:10. 9. 垂直于建筑物表面的单位面积上的风荷载标准值K 剪力墙配筋一般为:、和。 11. 影响柱子延性的因素主要是、和。 二.选择题 1. 关于高层建筑考虑风荷载的概念,下列何项正确?() [A] 高层建筑的风荷载是主要荷载,其基本风压值的采用与多层建筑相同,按30年一遇的最大10 分钟平均风压来确定; [B] 高层建筑计算风振系数及风压高度变化系数时,都要考虑地面粗糙程度的影响; [C] 高层建筑的风振系数,与建筑物的刚度有密切关系,一般来说,刚度越大,建筑 物的风振影响就越大; [D] 所有的高层建筑,都要考虑风振系数>1.0的风振影响。 2. 下列高层建筑中,计算地震作用时何者宜采用时程分析法进行补充计算?( ) [1] 建筑设防类别为乙类的高层建筑; [2] 建筑设防类别为甲类的高层建筑; [3] 高柔的高层建筑; [4] 刚度和质量沿竖向分布特别不均匀的的高层建筑。 [A] [1] [2]; [B] [1] [3]; [C] [2] [4]; [D] [3] [4]; 3. 框架结构在竖向荷载作用下,需要考虑梁塑性内力重分布而对梁端负弯矩进行调幅,下列调幅及组合中哪项是正确的?( ) [A] 竖向荷载产生的弯矩与风荷载及水平地震作用产生的弯矩组合后进行调幅; [B] 竖向荷载产生的弯矩与风荷载作用产生的弯矩组合后再进行调幅,水平地震作用产生的弯矩不调幅; [C] 竖向荷载产生的梁端弯矩应先调幅,再与风荷载及水平地震作用产生的弯矩组合; [D] 对组合后的梁端弯矩进行调幅,跨中弯矩将相应加大。 4. 在对一、二级抗震等级的框架体系中的框架柱进行截面设计时,往往需将其内力乘以一个增大系数,现有以下这些因素:( ) [1] 在梁柱节点以保持强柱弱梁和截面设计中的强剪弱弯的要求; [2] 加强短柱(柱净高与柱截面尺寸之比小于4)受力的要求; [3] 提高角柱的抗扭能力; [4] 保证底层柱的下端处不首先屈服; [5] 考虑柱在整个框架结构中的重要性,宜适当扩大安全度的需要。

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

高层建筑基础结构设计探讨

高层建筑基础结构设计探讨 发表时间:2018-04-18T15:19:14.887Z 来源:《建筑学研究前沿》2017年第32期作者:刘少龙[导读] 对于高层建筑来讲,其主要由上部结构、基础和地基等三部分构建成为一个完整的体系。 摘要:高层基础在结构体系中是非常关键的组成部分,由于建筑自身高度较大及层数较多,竖向荷载很大,这些都会导致在风荷载及地震荷载作用下的高层建设倾覆力矩会成倍增长,因此,基础结构设计要科学合理,才能为建筑提供更好的竖直和水平承载力。本文主要对高层建筑基础结构设计选型及要点进行探讨,供同行借鉴参考。 关键词:高层建筑;基础结构;设计;结构选型;要点 前言 对于高层建筑来讲,其主要由上部结构、基础和地基等三部分构建成为一个完整的体系,而且三个部分相互依托,相互作用。因此在高层建筑基础结构设计过程中,要对上部结构刚度、地基条件和基础受力等所带来的影响进行充分考虑,并在此基础上来选择适宜的基础结构形式,依托于相关理论来完成地基和基础的设计,尽可能的减少基础内力和沉降,确保基础结构具有较好的经济性,这对于整个工程项目的顺利实施具有极为重要的意义。 一、高层建筑基础结构设计理论 (一)上部结构的刚度对基础受力状况的影响上部结构的刚度关系到基础受力状况,假设上部结构为绝对刚度情况下时,当地基出现变形现象时,其各竖向构件会出现下沉现象,下沉时具有较好的均匀性。针对于这种情况下,在具体设计过程中,如果忽略竖向构件抗转运能力,基础梁的不动铰支座的作用可以由竖向构件支座来替代,将二者等同,这样基础梁则等同于倒置的连续梁,出现整体弯曲的可能性几乎没有,但会有局部弯曲现象产生。假设上部结构为绝对柔性,在这种情况下上部结构没有约束力作用于基础,一旦基础梁出现局部弯曲,势必会导致整体弯曲情况发生。对于上部绝对刚性或是上部绝对柔性情况下,基础梁无论是在内力大小或者是在内力分布方面都会存在一定的差异。在实践损伤过程中,结构物多处于这两种情况之间,具体需要依靠计算软件来对其整体刚度进行分析。因此在具体高层建筑基础结构设计过程中,可以适当地增加上部结构的刚度,但这需要在地基、基础和荷载等条件不变的情况下进行,这样基础的相对挠曲和内力则会相应减少,上部结构自身内力得以增加。 (二)地基条件对基础受力状况的影响基础受力状况还会受到地基条件的影响,这种影响多来自于地基土的压缩性和分布的均匀性。当地基土质较好,不具有可压缩性时,基础结构整体弯曲现象也不会发生,即使发生局部弯曲,但这种情况出现的机率也不大,这种情况下下部结构也不会有次应力产生。但在实际高层建筑建设过程中,地基土完全处于不可压缩状态的情况几乎不存在,地基土多少会存在可压缩性,并存在分布不均匀性,因此基础弯矩的分布也存在较大的差异。这种情况下,基础与地基界面处会产生不同程度的摩擦,但基于土自身的强度来讲,基础与地基界面之间摩擦时产生的摩擦力较小,这种摩擦力会处于土的抗剪强度以下。在地基土孔隙水压力出现变化时,必然也会导致压缩时摩擦力的大小和分布情况的改变。而且界面并不简单的受来自于基础的影响,外荷载、基础柔度和土蠕变也会对界面情况带来一定的影响,在估计对界面摩擦影响情况时,需要针对完全光滑至完全粘着这两种极端情况来进行考虑。 (三)上部结构与基础和地基共同作用的概念及分析方法在高层建筑基础结构设计过程中,要明确上部结构、地基和基础三者之间的不可分性,这三者作为一个整体,其连接点和接触点都需要满足变形协调的条件,这样才能更准确的对整个系统的变形和内力进行求解。在高层建筑中,由于上部结构和基础多是由梁和板共同组成,因此要想建立上部结构和基础的刚度矩阵,则能够采取的分析方法较多,如有限单元法、有限条法、有限差分法和解析方法等,同时还要依托于变形协调条件,将其与地基的刚度矩阵有效的耦合起来。当前地基可以根据实际情况来选择具体的地基模型,并建立地基刚度矩阵。 二、高层建筑基础选型工作 (一)高层建筑基础选型的影响因素在进行高层建筑基础选型过程中,其影响主要来自于高层建筑上部结构、地质条件、周围环境及高基础桩种类等几个方面。对于高层建筑基础结构来讲,上部结构直接影响到高层建筑基础的类型、深度和浮力等参数,不同的上部结构会对高层建筑基础荷载的大小和分布带来不同的影响,在具体设计时需要设计人员要给予充分的重视。而且在具体设计过程中,当高层建筑上部结构及地下室种类和形状不同时,其所产生的沉降幅度和变形幅度也会存在差异,进而对高层建筑的基础选型带来较大的影响。对于地质条件对高层建筑基础选型所带来的影响,可以从两方面入手分析。其一,考虑来自于地基持力层所带来的影响,由于持力层需要承担高层建筑的基础荷载,因此在高层建筑基础选型时需要以持力层承载能力大小和压缩变化幅度为依据。其二要考虑穿越土层的基本状况,即所选的高层建筑基础类型来综合考虑土层中地下水和桩基穿越能力的实际情况,这样才能选择出适宜的基础类型。高层建筑基础类型还会受到来自于施工中空间因素的影响,因此在具体选型时要选择利于施工及具有较好稳定性的基础类型。由于高层建筑基础桩基的入土和挤土过程中会产生挤土效益,并对周边建筑和地下管网带来较大的影响,因此在选型时尽量选择挤土效应最小的桩基形式。而且基础桩种类不同时,其尺寸也会存在差异,因此基础桩的类型和规格要根据持力层特性、安全性要求及高层建筑负荷等方面进行具体的考虑。另外,还要考虑施工工期这一因素,需要在保证高层建筑基础施工速度、施工质量和施工效益的基础上来选择适宜的基础类型,以此来确保高层建筑基础的持续性、稳定性和安全性,全面兼顾到高层建筑的总体价值。 (二)高层建筑基础选型的基本原则在进行高层建筑基础选型过程中,需要遵循多样性、经济性和总体优化等原则。即在高层建筑基础选型过程中,要求设计人员要对各种高层建筑基础类型进行掌握,并从中选择具有较高社会和综合价值的基础类型。在具体基础选型过程中还要考虑到成本和施工进度,以此来确保达到最佳的经济效益。

高层建筑结构设计常见问题探讨

高层建筑结构设计常见问题探讨 摘要:近年来,建筑高度的不断增加, 风格的变化多样,给高层结构设计提出了新的课题和挑战。本文就结构设计中特别要注意的几个问题进行了分析。 关键词:高层建筑; 结构设计;常见问题 一、高层建筑结构设计特点 1 高层建筑结构设计的特点 1.1 水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。 1.2 轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响造成连续梁中问支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。 1.3 侧移成为控制指标。与较低楼房不同,结构侧移已成为高层建筑结构设计中的关键因素。随着楼房高度的增加,水平荷载下

结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。 1.4 结构延性是重要设计指标。相对于较低楼房而言,高层建筑结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。 二、根据不同类型高层建筑,选择合理的结构体系 2.1结构的规则性问题 新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案”。因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。 2.2结构的超高问题 在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为a 级高度的建筑外,增加了 b级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为 b级高度建筑甚或超过了b 级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

高层建筑结构设计方案模拟题

《高层建筑结构设计》模拟题 一.填空题 1一般而论,高层建筑具有,,,的特点。 2.从受力角度来看,随着高层建筑高度的增加,对结构起的作用将越来越大。3.现代高层建筑所采用的材料,主要是,两种。 4.高层钢结构具有,,等优点。 5.不同国家、不同地区、不同结构形式所采用的结构材料不同,大致有以下几种形式:,,。 6.钢筋混凝土梁的破坏形态有两种形式:和。 7. 一般用途的高层建筑荷载效应组合分为以下两种情况:,。 8.剪力墙中斜裂缝有两种情况:一是,二是。 W(KN/m2)可按下式计算: 9. 垂直于建筑物表面的单位面积上的风荷载标准值 K 10. 剪力墙配筋一般为:、和。 11. 影响柱子延性的因素主要是、和。 二.选择题 1. 关于高层建筑考虑风荷载的概念,下列何项正确?() [A]高层建筑的风荷载是主要荷载,其基本风压值的采用与多层建筑相同,按30年一遇的最大10 分钟平均风压来确定; [B] 高层建筑计算风振系数及风压高度变化系数时,都要考虑地面粗糙程度的影响; [C]高层建筑的风振系数,与建筑物的刚度有密切关系,一般来说,刚度越大,建筑 物的风振影响就越大; [D]所有的高层建筑,都要考虑风振系数>1.0的风振影响。 2. 下列高层建筑中,计算地震作用时何者宜采用时程分析法进行补充计算?() [1]建筑设防类别为乙类的高层建筑; [2] 建筑设防类别为甲类的高层建筑; [3]高柔的高层建筑; [4] 刚度和质量沿竖向分布特别不均匀的的高层建筑。

[A] [1][2]; [B][1] [3]; [C] [2][4]; [D] [3] [4]; 3.框架结构在竖向荷载作用下,需要考虑梁塑性内力重分布而对梁端负弯矩进行调幅,下列调幅及组合中哪项是正确的?() [A] 竖向荷载产生的弯矩与风荷载及水平地震作用产生的弯矩组合后进行调幅; [B]竖向荷载产生的弯矩与风荷载作用产生的弯矩组合后再进行调幅,水平地震作用产生的弯矩不调幅; [C] 竖向荷载产生的梁端弯矩应先调幅,再与风荷载及水平地震作用产生的弯矩组合; [D] 对组合后的梁端弯矩进行调幅,跨中弯矩将相应加大。 4. 在对一、二级抗震等级的框架体系中的框架柱进行截面设计时,往往需将其内力乘以一个增大系数,现有以下这些因素:() [1] 在梁柱节点以保持强柱弱梁和截面设计中的强剪弱弯的要求; [2] 加强短柱(柱净高与柱截面尺寸之比小于4)受力的要求; [3] 提高角柱的抗扭能力; [4] 保证底层柱的下端处不首先屈服; [5] 考虑柱在整个框架结构中的重要性,宜适当扩大安全度的需要。 试指出乘以增大系数的正确原因,应是下列何项组合? [A] [2] [3] [5]; [B] [1] [2][4]; [C][1] [3] [5]; [D] [1][3][4] 5. 联肢剪力墙中连梁的主要作用为:() [A]连接墙肢,把水平荷载从一墙肢传递到另一墙肢; [B]连接墙肢,把竖向荷载从一墙肢传递到另一墙肢; [C] 连接墙肢,起整体作用; [D]洞口上方连梁起构造作用。 6. 在原框架结构中增加了若干榀剪力墙后,此结构是否安全可靠? () [A] 整个结构更安全;

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

关于高层建筑结构设计的探讨

关于高层建筑结构设计的探讨 摘要:随着社会的不断进步和科技的不断发展,高层建筑越来越广泛的出现在城市建设中。在高层建筑结构设计方面出现了新的发展和变化。本文主要阐述了某高层建筑结构体系及其地基基础设计、结构计算结果分析,最后针对高位转换的加强措施进行分析论述,仅供参考。 关键词:高层建筑,结构设计,措施 1工程概况 该工程总建筑面积65182m2,主塔楼地面以上84米,共25层(1~6层为裙房),其中1~6层为商业用房,层高4.2~5.5米,7层为住宅会所,8至25层为住宅,层高2.9米。塔楼平面为U形。地面以下为两层地下室,底板顶面标高为-8.7米,地下室主要用于设备用房和小汽车库,其中地下二层为平战结合六级人防地下室。 本工程各土层(岩层)从上至下划分为:①人工堆积层:以素填土为主,平均厚度2.57米;②耕土层:主要成份为粘质粘土或粉土平均厚度1.6米;③冲积层:以粉土为主,局部夹有粉砂和中砂,平均厚度1.79米;④残积土:以粉土为主,平均厚度4.34米;⑤全风化岩:岩石已风化成粉土或粉质粘土平均厚度1.4米;⑥强风化岩:岩芯多呈半岩半土状,平均厚度2.67米:⑦中风化岩:以褐红色粉砂岩为主,局部夹微风化岩,层厚1.5~9.4米,平均厚度5.73米;⑧微风化岩:以砾岩为主,部分为粉砂岩,顶部埋深13~23.3米。 本工程基本风压值Wo =0.5KN/m2,按7度近震设防,Ⅱ类场地。 外墙及分户墙为190厚砌块,内隔墙为120厚砌块,砌块容重为13kN/m3。2结构体系及其设计

经综合分析和技术经济比较,本工程主塔楼及裙房均采用框架—剪力墙结构体系,裙楼竖向结构由电梯井筒、落地剪力墙及框架组成;主塔楼竖向结构由电梯井筒、剪力墙肢、短肢剪力墙组成。根据使用功能需要, 将主塔楼四周框架柱在7层以上转换为短肢剪力墙,第六层设梁式转换层。抗震等级按高层建筑正常提交一级采用:剪力墙取为一级,框架采用一级。 由于转换层高度受限制,为减小转换梁截面尺寸,改善结构的受力性态,经与建筑设计配合,尽量使短肢剪力墙一端支承在框支柱上,使得短肢剪力墙与转换梁协同工作,减小转换梁单独工作时的应力集中。 表1 墙柱截面取值及其变化层次 表2 砼强度等级取值及其变化层次

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

高层建筑结构设计复习试题(含答案)

高层建筑结构设计 名词解释 1. 高层建筑:10层及10层以上或房屋高度大于28m 的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而 设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置 轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力?-P 效应的主要参数。 10. 抗推刚度(D ):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产 生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的 变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受 轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹 塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固 端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。 第一章 概论 (一)填空题 1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002)规定:把10层及10层以上或房屋高度大于28m 的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。

浅析高层建筑结构设计存在的问题及对策

浅析高层建筑结构设计存在的问题及对策 发表时间:2016-05-25T10:16:41.620Z 来源:《工程建设标准化》2016年2月供稿作者:吴志星[导读] (山西平阳重工机械有限责任公司,山西,侯马,043003)众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力。(山西平阳重工机械有限责任公司,山西,侯马,043003) 【摘要】在实行改革开放以后,随着时代的发展和科技的进步,我国的建筑业不仅与时俱进,楼层不断向高处扩展,而且在一定程度上取得了不小的成就,然而在高层建筑结构设计上各种问题频发,这也成为了一个亟待解决的问题。本文通过着重介绍高层建筑结构设计的原则、当前高层建筑结构设计中存在的问题和改进建筑结构设计中常见问题的对策,来强化和确保高层建筑结构设计的不断完善。 【关键词】高层建筑;结构设计;问题;对策 众所周知,高层建筑的最大优势就是能够充分提高土地的利用率,这一优势在一定程度上充分缓解了当前我国土地资源短缺的压力,但是,高层建筑的质量会受到多重因素的影响,一旦产生安全事故,必将对人们的生命和财产带来极大的影响,因此,对建筑的结构设计提出了更高的要求,只有高层建筑的结构设计科学合理,其质量才能有保障,才会有利于社会和谐稳定发展。 一、高层建筑结构的设计原则 1、选择合理的结构方案 只有结构方案经济合理,才能让一个建筑设计合理,可行性强的结构形式和传力简捷、受力明确的结构体系也会促进一个良好设计的形成。因此在进行结构设计时应当具体分析建筑所处的地理环境、材料和设计的需求及施工条件等,充分考虑高层建筑自身的特点,根据实际情况来选择一个合理的结构方案。 2、选择合适的基础方案 在设计过程中要注意最大程度地发挥地基的潜力,在基础设计时要形成详尽的地质勘察报告,如果缺少报告,必须进行现场勘查来制定设计方案,要先通过综合分析工程的地质地貌、施工条件、上部结构类型、相邻建筑物的影响及荷载分布等因素的考虑再进行基础设计,只有这样,才能设计出经济合理的基础方案。 3、进行正确的分析计算 随着科技的发展,计算机技术在结构设计方面已得到广泛应用,种类繁多的计算软件都存在不同程度的缺陷,因此在结构设计的计算过程中会出现不精确的情况,这就要求设计师在使用软件过程中细致认真,对产生的结果认真分析和校对,作出合理判断。 二、当前高层建筑结构设计中存在的问题 1、结构体系选用不科学 由于我国所处地球的板块较为活跃,因此地震频发,对与这些地震多的地区建设高层建筑就应当选用抗震性强的结构体系和建筑材料,一些发达国家通常是使用的钢结构,而我国大多使用的钢筋混凝土结构或者混合结构,但钢框架的刚度较小,钢结构会产生一定程度的负担,也不会起到较好的效果,钢筋混凝土很容易产生弯曲变形而导致侧移,因此在进行结构设计时必须注意使用加强层把侧移量降低或者加大混凝土制土桶刚度。 2、高层建筑普遍超高 高层建筑对抗震能力的要求较高,因此国家严格规定了建筑物的高度,但是实际需求的不断改变使得建筑的高度不断发生改变,因此国家又对A级高度和B级高度进行新的规定和细致划分。即使如此,一些设计师在进行结构设计时往往会忽视高度的问题,对于一些不适合建设高层建筑的地段或条件也会出现为了追求利益的最大化而违反相关规定进行施工,这种情况对整个建筑的成本预计和建设进度都会造成诸多不良影响。 3、结构设计的刚度问题 楼层竖向结构的规则性与平面刚度问题是高层建筑结构设计过程中一个经常遇到的问题,由于在高层建筑的设计过程中每位设计师都有自己的想法和设计理念,因此在设计时就会产生差异,导致结构设计产生矛盾和分歧,在建筑施工过程中很容易出现一味追求独特新颖的外观而忽视抗侧移的刚度对高层建筑能否抗震的影响。 4、材料配备和资源配置不科学 高层建筑的结构特点非常明显,其结构设计的复杂性是由其功能的复杂性决定的,传统的建筑选材多为可燃性材料,这种材料很可能增加高层建筑火灾发生的可能性,对于建筑施工过程中劳动力等资源的配置如果未能提前进行预计和计算,还会对后期的施工造成一定的难度,对于其引发的一系列突发状况也很难及时处理和解决,造成施工进度无法按期完成。 三、改进建筑结构设计中常见问题的对策 1、选用科学的结构体系 受自然灾害的影响,人们对建筑的稳定性能要求逐渐提高,对高层建筑的要求越来越严格,由于高层建筑限制性较大,因此必须对高层建筑结构设计中选用的结构体系进行严格限制,以免在后期的项目施工的设计阶段发生不必要的变动,对计算简图也要慎重选择和使用,根据建筑物的影响因素和自身特点来选用一套科学合理的的结构体系。 2、注重建筑的设计高度 设计师在进行高层建筑的结构设计过程中,要明确意识到有关的高度规范,严格审查设计图纸,确保结构设计与相关的要求和规范相符合,对于建筑施工过程中出现的问题要及时调集有关专家加以具体分析,对高层建筑重新进行设计和评估,以免对建筑的施工进度和质量产生不良影响。国家相关部门也应当加大对高层建筑的审查力度,对不合乎规范的行为进行严加处理,确保高层建筑结构的稳定性和安全性。 3、选择合理的刚度设计

现代高层建筑的结构与设计

现代高层建筑的结构与设计 发表时间:2016-11-02T10:11:57.087Z 来源:《低碳地产》2016年12期作者:程东旭[导读] 在考虑高层建筑地基承重的同时,还要考虑到建筑的抗震能力,保证高层建筑的安全性。 佳木斯市建筑设计研究院【摘要】随着我国城市化的进程不断的加快,城市的人口不断的增多,居住问题成为了影响城市经济发展的重要的因素,在现代的城市中,城市中的土地不断的缩小,人们在进行房地产建设是在不断的向高空发展,在现代城市中摩天大楼比比皆是,这就给现代高层建筑的的结构设计带来了挑战,在考虑高层建筑地基承重的同时,还要考虑到建筑的抗震能力,保证高层建筑的安全性。本文主要对现代高 层建筑的结构设计以及存在的问题进行了分析。 【关键词】高层建筑;结构;设计我国城市经济的飞速发展和建筑水平的不断提高为我国现代高层建筑的发展提供了较大的发展空间,在高层建筑建设的过程中要注重结构的设计,合理的结构设计是衡量我国高层建筑质量的重要指标,因此在进行高层建筑设计时要做好结构设计,保证高层建筑施工的顺利进行,在进行高层建筑结构设计的过程中要控制好设计的要点,保证高层建筑的安全与适用。 1. 高层建筑结构设计的原则 对于一些高层建筑结构设计会运用到许多原则,一般会有下面这些原则:在选择适当的结构简图的时候,要对结构计算在计算简图的基础上展开基本的计算,因为小的失误都有可能造成严重的损失,要选择正确的结构简图,来保证工程结果的重要性;选择正确的结构方案,好的高层建筑设计需要相匹配的结构设计方案,才能使得设计足够经济合理,这样说来其实就是要选择一个符合实际的行动方案和建筑结构设计体系,总得来说就是要对工程的设计严格要求,注意它各方面的问题,如:它的环境问题,材料问题,施工条件等等都是在它的要求范围内的,同时在确定了合理的方案之后也必须要多种方案共同参与对照,在选择好方案之后要对相应的数据进行整理,计算准确的数据,因为电脑软件的不同,最终得出的结果也不同,因此要进行数据的详细分析,对于数据的条件范围也要认真考核,避免由于软件的误差而出现的错误,尽量达到最高精确度。 2.高层建筑结构设计的重要组成 2.1水平荷载的设计 在现在这个高层结构设计的时代,由于高层建筑的发展速度特别的快,给高层设计的技术工人们带来了许多高要求,水平荷载的设计对高层建筑设计影响十分的巨大,在水平荷载的控制力上也要求较高。其中,在水平荷载中风荷载和水平地震力对于高层建筑的结构设计影响力更大。对于风荷载要有较强的刚度,而对于水平地震力的结构要求则又是另外一方面,相对要求较高的是它的柔韧度的要求。但是,恰恰这两个结构要求又是相互矛盾的关系,它们之间存在抵触的条件。为了是水平荷载结构设计更加合理就需要对风荷载和水平地震力的影响研究更加进一步具体化。在外界环境中风力会受到建筑物的阻挡,在摩擦中的时候会和建筑物之间产生阻力,和吸力,而这些总称为风荷载。高层的风荷载在建筑物的安全性上有影响,同时它在高层建筑上震动方面也有一定的影响力,风荷载的影响因素是多变的,并不确定的。而在于水平震动对高层建筑结构设计的影响力,在地震时震感会通过前后的晃动将震动感传授给建筑物,它的震动力分为水平力和竖向力,它们之间的共同作用会使高层建筑物发生扭曲的作用。水平地震力和风荷载力共同作用对高层建筑设计有着不可忽视的作用,人们因多加关注,减少它的破坏力。 2.2抗震的设计 对于高层建筑物来说一定要具有抗震能力。近年来环境不断地恶化,各种各样的自然灾害如地震,泥石流等不断发生,这就对我们的高层建筑产生了巨大的影响力,影响高层建筑的设计,并且还增加了施工的难度,因此人们更加关注高层建筑的抗震作用。在于抗震应用的设计上首先要考虑抗震性的外形设计,再而要重点注意高层建筑材料的选择,选择轻便的用来增强抗震性。除此之外要减轻建筑体系,以此保证施工的难度。 2.3框架结构体系 高层结构的结构体系是错综复杂的。对于高层结构我们最开始就会联想到,那应该就是框架结构体系。框架结构体系是最早被国人们运用的一项结构体系。对于框架结构体系他是运用承重负荷系统,运用了不同的建筑材料设计出来的,它们之间存在着相互联系的关系,而框架结构体系是使用了梁柱作为支撑的工具,来承载这整个建筑物的负荷,对于其他的一些结构中的功能仅仅只是在分割作用中运用到,只属于划分了空间范围,在于整个建筑物的承载力上无参与的功能。在现如今的房屋建筑中,框架结构的房屋建筑是比较灵活的,运用最广的一个建筑结构设计,它在进行改正的时候相对于其他的设计结构也特别便捷。施工简单,整体性也特别的好。 2.4结构轴向承载力的重要性 对于高层建筑物来说,它的最为典型的一个特点是它的占地面积非常的大,体积相比较其他的小型建筑物较为硕大。但是,在硕大的同时它的建筑也是比较壮观的,给人的视觉效果也就不一样,所以这就给高层建筑的设计带来了许多问题,并且也加大了建筑施工的难度。在诸多问题之中要充分考虑的是它的承载力问题,这是最最重要的。而在于竖直方向中如果它的受力方向不对,承载力分布不均那就很容易导致高层建筑结构的轴向变形,这样也会最终影响结构安全,从而影响人们的生命财产安全,人们应该在高层结构设计的时候多加关注轴向承载力的重要性,承载力分布的重要性。 3.高层建筑结构设计中应注意的问题 3.1结构设计的合理性 在现在这各物质经济快速发展的时代,人口的快速增加,土地面积的越发的紧缺,这就促使了高层建筑的进步,人们对高层建筑设计要求越来越高。对于它设计的合理性也更加的注重,只有对结构设计非常的合理才能使得这个建筑有完美的呈现,也才能够使的人们的生命财产安全得到保障,总之,对于合理的结构设计是非常重要的,合理的结构设计也需要考虑方方面面的内容。 3.2完善高层建筑抗震结构设计 对于高层建筑的抗震设计要把握好尺度,要在建筑材料的选材上多做详细的省察。高层结构的震动感由许多原因导致,最为主要的因素是自然原因重中风力和地震的震动感,这就使得高层建筑的抗震选材上需要选用一些较为轻便的材料,增加抗震力,使得结构简化,保障施工的难度。

相关主题
文本预览
相关文档 最新文档