当前位置:文档之家› uboot修改移植开发知识梳理

uboot修改移植开发知识梳理

uboot修改移植开发知识梳理
uboot修改移植开发知识梳理

u-boot修改移植开发知识梳理

/*************************************************************************** ************************

* u-boot裁剪

*

*/

board -------->只留与扳机相关的文件夹

cpu -------->只留与扳机相关的文件夹

include -------->与架构无关的目录删除

include/configs -------->只留架构相关的一个文件

include/asm -------->删除与架构无关的目录

./ -------->主目录lib开头与架构无关的目录删除,注意报libfdt留下

/*************************************************************************** ************************

* makefile 关键说明

*

*/

make ming2440_config流程:

make mini2440_config

--> mini2440_config : unconfig

@$(MKCONFIG) $(@:_config=) arm arm920t mini2440 risecomm s3c24x0

--> mkconfig

mini2440_config : unconfig

@$(MKCONFIG) $(@:_config=) arm arm920t mini2440 risecomm s3c24x0

// $(A:patternA=patternB)。意思就是将A中patternA格式的字符用patternB来代替。回归$(@:_config),

// @代表输入的参数,即:mini2440_config,patternA是_config,patternB是空的。说白了就是将mini2440_config的_config去掉。

@$(MKCONFIG) $(@:_config=) arm arm920t mini2440 tekkamanninja s3c24x0

// 查找MKCONFIG,MKCONFIG就是uboot目录下的那个mkconfig这个文件,这条语句就是:运行mkconfig文件,并传递6个参数进去

mkconfig文件:

作用:建立include目录下的link目录(asm),include目录下创建confg.mk文件,创建config.h文件。

APPEND=no # Default: Create new config file

BOARD_NAME="" # Name to print in make output

TARGETS=""

while [ $# -gt 0 ] ; do

case "$1" in

--) shift ; break ;;

-a) shift ; APPEND=yes ;;

-n) shift ; BOARD_NAME="${1%%_config}" ; shift ;;

-t) shift ; TARGETS="`echo $1 | sed 's:_: :g'` ${TARGETS}" ; shift ;;

*) break ;;

esac

done

// $#是脚本传递的参数的个数。-gt是>的意思。$1:第一个参数。shift:奸杀第一个参数,

// 将第二参数变成第一个……这段代码意思检查参数中,有无-a -n -t这样的参数,没有的话直接break。

// 很明显,makefile传递的6个参数,没有-a,-t,-n。直接break。

[ "${BOARD_NAME}" ] || BOARD_NAME="$1" // :["${BOARD_NAME}"]表示一个条件,BOARD_NAME != NULL, ||表示如果条件为假则运行后面的程序。同时&&表示如果条件为真,则运行后面的程序

// BOARD_NAME等于传进来的第一个参数,即BOARD_NAME=mini2440

[ $# -lt 4 ] && exit 1 // 小于4个参数则退出

[ $# -gt 6 ] && exit 1 // 大于6个参数则退出

if [ "${ARCH}" -a "${ARCH}" != "$2" ]; then // 判断ARCH变量值是否为BULL ,-a是and的意思,并且ARCH!= $2

echo "Failed: \$ARCH=${ARCH}, should be '$2' for ${BOARD_NAME}" 1>&2

exit 1

fi

echo "Configuring for ${BOARD_NAME} board..."

// 建立

asm连接

// Create link to architecture specific headers

//

if [ "$SRCTREE" != "$OBJTREE" ] ; then // 都为null,相等,所以运行else后面

mkdir -p ${OBJTREE}/include

mkdir -p ${OBJTREE}/include2

cd ${OBJTREE}/include2

rm -f asm

ln -s ${SRCTREE}/include/asm-$2 asm

LNPREFIX="../../include2/asm/"

cd ../include

rm -rf asm-$2

rm -f asm

mkdir asm-$2

ln -s asm-$2 asm

else

cd ./include

rm -f asm

ln -s asm-$2 asm

fi

rm -f asm-$2/arch

if [ -z "$6" -o "$6" = "NULL" ] ; then // -z的意思是判断字符串是否为"" -o是或的意思, 判断语句意思是$6=="" 或者$6==NULL

ln -s ${LNPREFIX}arch-$3 asm-$2/arch

else

ln -s ${LNPREFIX}arch-$6 asm-$2/arch // asm-arm下建立连接文件arch,link到arch-s3c24x0

fi

if [ "$2" = "arm" ] ; then

rm -f asm-$2/proc

ln -s ${LNPREFIX}proc-armv asm-$2/proc

fi

# 把芯片信息输出到config.mk文件中

# Create include file for Make

#

echo "ARCH = $2" > config.mk

echo "CPU = $3" >> config.mk

echo "BOARD = $4" >> config.mk

[ "$5" ] && [ "$5" != "NULL" ] && echo "VENDOR = $5" >> config.mk

[ "$6" ] && [ "$6" != "NULL" ] && echo "SOC = $6" >> config.mk

# Assign board directory to BOARDIR variable

if [ -z "$5" -o "$5" = "NULL" ] ; then

BOARDDIR=$4

else

BOARDDIR=$5/$4

fi

/*************************************************************************** ************************

* u-boot支持go命令的方法

* 在cmd_boot.c文件中(没有就自己创建)增加以下内容

*/

/* 1、添加call_linux函数*/

void call_linux(long a0, long a1, long a2){

__asm__(

" mov r1, #0\n"

" mov r1, #7 << 5\n" /* 8 segments */

"1: orr r3, r1, #63 << 26\n" /* 64 entries */

"2: mcr p15, 0, r3, c7, c14, 2\n" /* clean & invalidate D index */

" subs r3, r3, #1 << 26\n"

" bcs 2b\n" /* entries 64 to 0 */

" subs r1, r1, #1 << 5\n"

" bcs 1b\n" /* segments 7 to 0 */

" mcr p15, 0, r1, c7, c5, 0\n" /* invalidate I cache */

" mcr p15, 0, r1, c7, c10, 4\n" /* drain WB */

);

__asm__(

"mov r0, #0\n"

"mcr p15, 0, r0, c7, c10, 4\n" /* drain WB */

"mcr p15, 0, r0, c8, c7, 0\n" /* invalidate I & D TLBs */

);

// 以上的内容可以不要

// r0、r1、r2三个寄存器的参数是传递到内核head.S文件中,r0:0,r1:体系结构号,r2地址

__asm__(

"mov r0, %0\n" // 获取0号,也就是第一个(a0)的数据

"mov r1, #0x0c1\n" // 查芯片相关资料,mini2440的为1999

"mov r2, %2\n" // 启动地址mini2440=0x30008000

"mov ip, #0\n"

"mcr p15, 0, ip, c13, c0, 0\n" /* zero PID */

"mcr p15, 0, ip, c7, c7, 0\n" /* invalidate I,D caches */

"mcr p15, 0, ip, c7, c10, 4\n" /* drain write buffer */

"mcr p15, 0, ip, c8, c7, 0\n" /* invalidate I,D TLBs */

"mrc p15, 0, ip, c1, c0, 0\n" /* get control register */

"bic ip, ip, #0x0001\n" /* disable MMU */

"mcr p15, 0, ip, c1, c0, 0\n" /* write control register */

"mov pc, r2\n""nop\n""nop\n"

: /* no outpus */

: "r" (a0), "r" (a1), "r" (a2));

}

/*************************************************************************** *

2、添加setup_linux_param函数

*************************************************************************** */

static void setup_linux_param(ulong param_base){

struct param_struct *params = (struct param_struct *)param_base;

char *linux_cmd;

// 获取bootargs参数

linux_cmd = getenv("bootargs");

memset(params, 0, sizeof(struct param_struct));

params->u1.s.page_size = 0x00001000; // DDR的页大小

params->u1.s.nr_pages = (0x04000000 >> 12); // 页数

/* set linux command line */

memcpy(params->commandline, linux_cmd, strlen(linux_cmd) + 1);

}

/*************************************************************************** ************************

* u-boot中MAC地址设置及往内核中传递

*

*/

//1.解决uboot命令行中不能设置ethaddr的问题,经常会提示:Can't overwrite "ethaddr":

common/cmd_nvedit.c中函数_do_setenv中找到

189 #ifndef CONFIG_ENV_OVERWRITE

190

191 /*

192 * Ethernet Address and serial# can be set only once,

193 * ver is readonly.

194 */

195 #ifdef CONFIG_HAS_UID

196 /* Allow serial# forced overwrite with 0xdeaf4add flag */

197 if ( ((strcmp (name, "serial#") == 0) && (flag != 0xdeaf4add)) ||

198 #else

199 if ( (strcmp (name, "serial#") == 0) ||

200 #endif

201 ((strcmp (name, "ethaddr") == 0)

202

203 #if defined(CONFIG_OVERWRITE_ETHADDR_ONCE) && defined(CONFIG_ETHADDR)

204 && (strcmp ((char *)env_get_addr(oldval),MK_STR(CONFIG_ETHADDR)) != 0)

205 #endif /* CONFIG_OVERWRITE_ETHADDR_ONCE && CONFIG_ETHADDR */ 206 ) ) {

207 printf ("Can't overwrite \"%s\"\n", name);

208 return 1;

209 }

210 #endif

把201行替换成(0 即可;

2.为了让uboot命令行中设置的参数ethaddr传递到内核,必须修改uboot和linux内核两个地方:

(1)uboot修改:lib_arm/armlinux.c

在247 #ifdef CONFIG_CMDLINE_TAG

248 setup_commandline_tag (bd, commandline);

下面添加如下语句:

char *buf1 = malloc(1024);

sprintf(buf1, "%s mac=%s", getenv ("bootargs"), getenv ("ethaddr"));

setup_commandline_tag (bd, buf1);

(2)linux内核修改:drivers/net/davinci_emac.c

static int emac_eth_setup(void)

1899 {

前面添加:

static char davinci_mac_addr_uboot[20] = "";

1887 static int __init param_mac_setup(char *str)

1888 {

1889 strncpy

(davinci_mac_addr_uboot, str, sizeof(davinci_mac_addr_uboot)); 1890 }

1891 __setup("mac=", param_mac_setup);

并在函数emac_eth_setup内部语句printk("TI DaVinci EMAC: MAC address is %s\n", emac_eth_string);前面添加:

strncpy(emac_eth_string, davinci_mac_addr_uboot, sizeof(emac_eth_string));

/*************************************************************************** ************************

* u-boot一些特殊错误

*

*/

1、当一个已经编译过的u-boot,再次配置编译,发送无法编辑板级信息也无法编译,提示:

$make ok2440_config

configuring for ok2440 board ...

rm:无法删除"asm-arm/arch":是一个目录等信息

解决方法。

1、手动删除源码根目录下的include/asm 文件夹

分析:

原因:linux/include/asm 文件夹是内核编译过程中创建的,创建结果就是一个指向文件夹asm-arm的链接,表明该系统的平台是arm架构的,而编译系统内核之前,是没有asm这个链接的,所以,在编译过程中,创建该链接时文件名字与asm文件夹的名字发生冲突,报错了

2、在Uboot顶层有个mkconfig文件,你打开后在里面所有rm后面都加上-r

比如源代码是rm -d asm-arm/arch改成rm -rd asm- arm/arch即可意思就是强行删除

2、本来make时时正常的,但make clean之后再make就出错了

原因:

主要是出现在源码没有写好和配置不对,本来正常是因为没有make clean导致u-boot 内部很多信息都没有重新检查,只是检查一些修改的更新,所以有些错误无法检查到,而make clean之后再make所有的规则都要重新检查,有错误就检查出来了

3、u-boot拷贝到其他机器编译时,往往会出现没有规则文件的错误,这时首先要执行: make distclean ----> make 板级号_config(如:make mini2440_config) ---> make

UBOOT命令详解

常用U-boot命令详解(z) 2010-09-30 15:05:52| 分类:学习心得体会|字号订阅 U-boot发展到现在,他的命令行模式已经非常接近Linux下的shell了,在我编译的 U-boot-2009.11中的命令行模式模式下支持“Tab”键的命令补全和命令的历史记录功能。而且如果你输入的命令的前几个字符和别的命令不重复,那么你就只需要打这几个字符即可,比如我想看这个U-boot的版本号,命令就是“ version”,但是在所有的命令中没有其他任何一个的命令是由“v”开头的,所以只需要输入“v”即可。 [u-boot@MINI2440]# version U-Boot 2009.11 ( 4月04 2010 - 12:09:25) [u-boot@MINI2440]# v U-Boot 2009.11 ( 4月04 2010 - 12:09:25) [u-boot@MINI2440]# base Base Address: 0x00000000 [u-boot@MINI2440]# ba Base Address: 0x00000000 由于U-boot支持的命令实在太多,一个一个细讲不现实,也没有必要。所以下面我挑一些烧写和引导常用命令介绍一下,其他的命令大家就举一反三,或者“help”吧! (1)获取帮助 命令:help 或? 功能:查看当前U-boot版本中支持的所有命令。 [u-boot@MINI2440]#help ?- alias for'help' askenv - get environment variables from stdin base - print or set address offset bdinfo - print Board Info structure bmp - manipulate BMP image data boot - boot default, i.e., run 'bootcmd' bootd - boot default, i.e., run 'bootcmd' bootelf - Boot from an ELF image in memory bootm - boot application image from memory bootp - boot image via network using BOOTP/TFTP protocol

UBoot移植详解

u-boot 移植步骤详解 1 U-Boot简介 U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。从FADSROM、8xxROM、PPCBOOT逐步发展演化而来。其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是相应的Linux内核源程序的简化,尤其是一些设备的驱动程序,这从U-Boot源码的注释中能体现这一点。但是U-Boot不仅仅支持嵌入式Linux 系统的引导,当前,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。就目前来看,U-Boot对PowerPC系列处理器支持最为丰富,对Linux的支持最完善。其它系列的处理器和操作系统基本是在2002年11 月PPCBOOT 改名为U-Boot后逐步扩充的。从PPCBOOT向U-Boot的顺利过渡,很大程度上归功于U-Boot的维护人德国DENX软件工程中心Wolfgang Denk[以下简称W.D]本人精湛专业水平和持着不懈的努力。当前,U-Boot项目正在他的领军之下,众多有志于开放源码BOOT LOADER移植工作的嵌入式开发人员正如火如荼地将各个不同系列嵌入式处理器的移植工作不断展开和深入,以支持更多的嵌入式操作系统的装载与引导。 选择U-Boot的理由: ①开放源码; ②支持多种嵌入式操作系统内核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS; ③支持多个处理器系列,如PowerPC、ARM、x86、MIPS、XScale; ④较高的可靠性和稳定性; ④较高的可靠性和稳定性; ⑤高度灵活的功能设置,适合U-Boot调试、操作系统不同引导要求、产品发布等; ⑥丰富的设备驱动源码,如串口、以太网、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、键盘等; ⑦较为丰富的开发调试文档与强大的网络技术支持; 2 U-Boot主要目录结构 - board 目标板相关文件,主要包含SDRAM、FLASH驱动; - common 独立于处理器体系结构的通用代码,如内存大小探测与故障检测;

Tiny6410_Uboot移植步骤详解

Uboot_for_Tiny6410_移植步骤详解 一、设计要求 1.目的 1)掌握U-boot剪裁编写 2)掌握交叉编译环境的配置 3)掌握U-boot的移植 2.实现的功能 1)U-boot编译成功 2)移植U-boot,使系统支持从NAND FLASH启动 二、设计方案 1.硬件资源 1)ARM处理器:ARM11芯片(Samsung S3C6410A),基于ARM1176JZF-S核设 计,运行频率533Mhz,最高可达 667Mhz 2)存储器:128M DDR RAM,可升级至 256M;MLC NAND Flash(2GB) 3)其他资源:具有三LCD接口、4线电阻 触摸屏接口、100M标准网络接口、标准DB9 五线串口、Mini USB2.0接口、USB Host 1.1、3.5mm音频输入输出口、标准TV-OUT

接口、SD卡座、红外接收等常用接口;另外 还引出4路TTL串口,另1路TV-OUT、 SDIO2接口(可接SD WiFi)接口等;在板的 还有蜂鸣器、I2C-EEPROM、备份电池、A D 可调电阻、8个中断式按键等。 2.软件资源 1)arm-linux-gcc-4.5.1(交叉编译) 2)u-boot-2010.09.tar.gz arm-linux-gcc-4.5.1-v6-vfp-20101103.t gz 三、移植过程 1.环境搭建 1)建立交叉编译环境 2)去这2个网站随便下载都可以下载得到最 新或者你想要的u-boot。( https://www.doczj.com/doc/b16731243.html,/batch.viewl ink.php?itemid=1694 ftp://ftp.denx.de/pub/u-boot/ )

u-boot启动分析

背景: Board →ar7240(ap93) Cpu →mips 1、首先弄清楚什么是u-boot Uboot是德国DENX小组的开发,它用于多种嵌入式CPU的bootloader程序, uboot不仅支持嵌入式linux系统的引导,当前,它还支持其他的很多嵌入式操作系统。 除了PowerPC系列,还支持MIPS,x86,ARM,NIOS,XScale。 2、下载完uboot后解压,在根目录下,有如下重要的信息(目录或者文件): 以下为为每个目录的说明: Board:和一些已有开发板有关的文件。每一个开发板都以一个子目录出现在当前目录中,子目录存放和开发板相关的配置文件。它的每个子文件夹里都有如下文件(以ar7240/ap93为例): Makefile Config.mk Ap93.c 和板子相关的代码 Flash.c Flash操作代码 u-boot.lds 对应的链接文件 common:实现uboot命令行下支持的命令,每一条命令都对应一个文件。例如bootm命令对应就是cmd_bootm.c cpu:与特定CPU架构相关目录,每一款Uboot下支持的CPU在该目录下对应一个子目录,比如有子目录mips等。它的每个子文件夹里都有入下文件: Makefile Config.mk Cpu.c 和处理器相关的代码s Interrupts.c 中断处理代码 Serial.c 串口初始化代码 Start.s 全局开始启动代码 Disk:对磁盘的支持

Doc:文档目录。Uboot有非常完善的文档。 Drivers:Uboot支持的设备驱动程序都放在该目录,比如网卡,支持CFI的Flash,串口和USB等。 Fs:支持的文件系统,Uboot现在支持cramfs、fat、fdos、jffs2和registerfs。 Include:Uboot使用的头文件,还有对各种硬件平台支持的汇编文件,系统的配置文件和对文件系统支持的文件。该目下configs目录有与开发板相关的配置文件,如 ar7240_soc.h。该目录下的asm目录有与CPU体系结构相关的头文件,比如说mips 对应的有asm-mips。 Lib_xxx:与体系结构相关的库文件。如与ARM相关的库放在lib_arm中。 Net:与网络协议栈相关的代码,BOOTP协议、TFTP协议、RARP协议和NFS文件系统的实现。 Tools:生成Uboot的工具,如:mkimage等等。 3、mips架构u-boot启动流程 u-boot的启动过程大致做如下工作: 1、cpu初始化 2、时钟、串口、内存(ddr ram)初始化 3、内存划分、分配栈、数据、配置参数、以及u-boot代码在内存中的位置。 4、对u-boot代码作relocate 5、初始化malloc、flash、pci以及外设(比如,网口) 6、进入命令行或者直接启动Linux kernel 刚一开始由于参考网上代码,我一个劲的对基于smdk2410的板子,arm926ejs的cpu看了N 久,启动过程和这个大致相同。 整个启动中要涉及到四个文件: Start.S →cpu/mips/start.S Cache.S →cpu/mips/cache.S Lowlevel_init.S →board/ar7240/common/lowlevel_init.S Board.c →lib_mips/board.c 整个启动过程分为两个阶段来看: Stage1:系统上电后通过汇编执行代码 Stage2:通过一些列设置搭建了C环境,通过汇编指令跳转到C语言执行. Stage1: 程序从Start.S的_start开始执行.(至于为什么,参考u-boot.lds分析.doc) 先查看start.S文件吧!~ 从_start标记开始会看到一长串莫名奇妙的代码:

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本)

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本) ?开发平台:i.MX 6UL ?最新系统: u-boot2015.04 + Linux4.1.15_1.2.0 ?交叉编译工具:dchip-linaro-toolchain.tar.bz2 源码下载地址: U-Boot: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.doczj.com/doc/b16731243.html,/git/cgit.cgi/imx/uboot-imx.git/ Kernel: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.doczj.com/doc/b16731243.html,/git/cgit.cgi/imx/linux-2.6-imx.git/ 源码移植过程: 1、将linux内核及uBoot源码拷贝到Ubuntu12.04系统中的dchip_imx6ul目录下; 2、使用tar命令分别将uboot和kernel解压到dchip_imx6ul目录下; 3、解压后进入uboot目录下,新建文件make_dchip_imx6ul_uboot201504.sh,且文件内容如下: ################################################################### # Build U-Boot.2015.04 For D518--i.MX6UL By FRESXC # ################################################################### #!/bin/bash export ARCH=arm export CROSS_COMPILE=/dchip-linaro-toolchain/bin/arm-none-linux-gnueabi - make mrproper # means CLEAN make mx6ul_14x14_evk_defconfig make2>&1|tee built_dchip_imx6ul_uboot201504.out 4进入kernel目录下,新建文件make_dchip_imx6ul_linux4115120.sh,且文件内容如下: ###################################################################

UBoot源码分析1

?UBoot源码解析(一)

主要内容 ?分析UBoot是如何引导Linux内核 ?UBoot源码的一阶段解析

BootLoader概念?Boot Loader 就是在操作系统内核运行之前运行 的一段小程序。通过这段小程序,我们可以初始 化硬件设备、建立内存空间的映射图,从而将系 统的软硬件环境带到一个合适的状态,以便为最 终调用操作系统内核准备好正确的环境 ?通常,Boot Loader 是严重地依赖于硬件而实现 的,特别是在嵌入式世界。因此,在嵌入式世界 里建立一个通用的Boot Loader 几乎是不可能的。 尽管如此,我们仍然可以对Boot Loader 归纳出 一些通用的概念来,以指导用户特定的Boot Loader 设计与实现。

UBoot来源?U-Boot 是 Das U-Boot 的简称,其含义是 Universal Boot Loader,是遵循 GPL 条款的开放源码项目。最早德国 DENX 软件工程中心的 Wolfgang Denk 基于 8xxROM 和 FADSROM 的源码创建了 PPCBoot 工程项目,此后不断 添加处理器的支持。而后,Sysgo Gmbh 把 PPCBoot 移 植到 ARM 平台上,创建了 ARMBoot 工程项目。最终, 以 PPCBoot 工程和 ARMBoot 工程为基础,创建了 U- Boot 工程。 ?而今,U-Boot 作为一个主流、通用的 BootLoader,成功地被移植到包括 PowerPC、ARM、X86 、MIPS、NIOS、XScale 等主流体系结构上的百种开发板,成为功能最多、 灵活性最强,并且开发最积极的开源 BootLoader。目前。 U-Boot 仍然由 DENX 的 Wolfgang Denk 维护

uboot移植步骤介绍

uboot移植过程 1.修改Makefile 首先给要建立的S3C2410开发板取名为TE2410, 移植uboot时以smdk2410为模板, 修改Makefile #tar xvjf u-boot-1.1.3.tar.bz2 #cd u-boot-1.1.3 #vi Makefile scb9328_config : unconfig @./mkconfig $(@:_config=) arm arm920t scb9328 NULL imx smdk2400_config : unconfig @./mkconfig $(@:_config=) arm arm920t smdk2400 NULL s3c24x0 smdk2410_config : unconfig @./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0 SX1_config : unconfig @./mkconfig $(@:_config=) arm arm925t sx1 te2410_config : unconfig @./mkconfig $(@:_config=) arm arm920t te2410 NULL s3c24x0 蓝色字体是添加的内容。其中,te2410_config : unconfig意思是为TE2410建立一个编译项,@./mkconfig $(@:_config=) arm arm920t te2410 NULL s3c24x0中的arm表示CPU的架构是基于ARM体系结构的;arm920t表示CPU类型是arm920t;te2410是开发板的型号;NULL表示开发商或经销商的名称为空;s3c24x0表示是基于s3c24x0的片上系统。 2.在uboot的board目录下建立te2410开发板子目录 #cp –fr board/smdk2410 /board/te2410 #cd board/te2410 #mv smdk2410.c te2410.c 还要修改board/te2410/Makefile文件, OBJS := smdk2410.o flash.o -------- OBJS := te2410.o flash.o 3.在include/configs目录下建立te2410.h头文件 #cd include/configs #cp –fr smdk2410.h te2410.h 4.指定交叉编译器的路径 选择支持softfloatpoint的交叉编译器,在etc/bashrc文件中添加一行 export PATH=/home/newdisk/toolchain/gcc-3.4.5-glibc-2.3.6/arm-softfloat-linu x-gnu/bin:$PATH 其中, /home/newdisk/toolchain/gcc-3.4.5-glibc-2.3.6/arm-softfloat-linux-gnu /bin是交叉编译器路径

iTop4412的uboot第一阶段

2 uboo t 源码分析 2.5.1.star t.S 2.5.1.star t.S 引入引入 2.5.1.1、u-boot.lds中找到start.S入口 (1)在C语言中整个项目的入口就是 main函数(这是 个.c文件的项目,第一个要分析的文件就是包含了C语言规定的),所以譬如说一 个有 main函数的那个文件。 10000 ( 2 方。ENTRY(_start)因此 _start 符号所在的文件就是整个程序的起始文 件, _sta rt 所在处的 代码就是整个程序的起始代码。 2.5.1.2、SourceInsight中如何找到 文件 (1)当前状况:我们知道在uboot中的1000多个文件中有一个符号 叫 _start,但是我们不知道 这个符号在哪个文件中。这种情况下要查找一个符号在所有项目中文件中的引用,要使用SourceInsight的搜索功能。 (2)start.s 在cpu/arm_cortexa9/start.s (3)然后进入start.S文件中,发现 个uboot的入口代码,就是第57 57行中就 是行。_sta rt 标号的定义处,于是乎我们就找到了整 2.5.1.3、SI中找文件技巧 (1)以上,找到了start.S文件,下面我们就从start.S文件开始分析uboot第一阶段。 (2)在SI中,如果我们知道我们要找的文件的名字,但是我们又不知道他在哪个目录下,我 们要怎样找到并打开这个文件?方法是在 SI中先打开右边的工程项目管理栏目,然后点击 最左边那个(这个是以文件为单位来浏览的),然后在上面输入栏中输入要找的文件的名 字。我们在输入的时候,SI在不断帮我们进行匹配,即使你不记得文件的全名只是大概记 得名字,也能帮助你找到你要找的文件。 2.5.2.start.S解析1 2.5.2.1、不简单的头文件包含

uboot移植实验

一、移植环境 ?主机:UBUNTU ?开发板:飞凌2440 ?编译器:arm-linux-gcc-4.3.2.tgz ?u-boot:u-boot-2009.03.tar.bz2

3)修改u-boot根目录下的Makefile文件。查找到smdk2410_config的地方,在他下面按照smdk2410_config的格式建立mini2440_config的编译选项,另外还要指定交叉编译器 4)测试编译新建的mini2440开发板项目

到此为止,u-boot对自己的mini2440开发板还没有任何用处,以上的移植只是搭建了一个mini2440开发板u-boot的框架,要使其功能实现,还要根据mini2440开发板的具体资源情况来对u-boot源码进行修改。 3. 根据u-boot启动流程图的步骤来分析或者修改添加u-boot源码,使之适合mini2440开发板(注:修改或添加的地方都用红色表示)。 1)mini2440开发板u-boot的stage1入口点分析。 一般在嵌入式系统软件开发中,在所有源码文件编译完成之后,链接器要读取一个链接分配文件,在该文件中定义了程序的入口点,代码段、数据段等分配情况等。那么我们的my2440开发板u-boot的这个链接文件就是cpu/arm920t/u-boot.lds,打开该文件部分代码如下:

知道了程序的入口点是_start,那么我们就打开mini2440开发板u-boot第一个要运行的程序cpu/arm920t/start.S(即u-boot的stage1部分),查找到_start的位置如下: 从这个汇编代码可以看到程序又跳转到start_code处开始执行,那么再查找到start_code 处的代码如下:

嵌入式Linux之我行 史上最牛最详细的uboot移植,不看别后悔

嵌入式Linux之我行——u-boot-2009.08在2440上的移植详解(一) 嵌入式Linux之我行,主要讲述和总结了本人在学习嵌入式linux中的每个步骤。一为总结经验,二希望能给想入门嵌入式Linux 的朋友提供方便。如有错误之处,谢请指正。 ?共享资源,欢迎转载:https://www.doczj.com/doc/b16731243.html, 一、移植环境 ?主机:VMWare--Fedora 9 ?开发板:Mini2440--64MB Nand,Kernel:2.6.30.4 ?编译器:arm-linux-gcc-4.3.2.tgz ?u-boot:u-boot-2009.08.tar.bz2 二、移植步骤 本次移植的功能特点包括: ?支持Nand Flash读写 ?支持从Nor/Nand Flash启动 ?支持CS8900或者DM9000网卡 ?支持Yaffs文件系统 ?支持USB下载(还未实现) 1.了解u-boot主要的目录结构和启动流程,如下图。

u-boot的stage1代码通常放在cpu/xxxx/start.S文件中,他用汇编语言写成;u-boot的stage2代码通常放在lib_xxxx/board.c文件中,他用C语言写成。各个部分的流程图如下:

2. 建立自己的开发板项目并测试编译。 目前u-boot对很多CPU直接支持,可以查看board目录的一些子目录,如:board/samsung/目录下就是对三星一些ARM 处理器的支持,有smdk2400、smdk2410和smdk6400,但没有2440,所以我们就在这里建立自己的开发板项目。 1)因2440和2410的资源差不多,主频和外设有点差别,所以我们就在board/samsung/下建立自己开发板的项目,取名叫my2440 2)因2440和2410的资源差不多,所以就以2410项目的代码作为模板,以后再修改

uboot移植笔记

u-boot-2015-01移植笔记 一、修改编译器路径 修改顶层Makefile文件,查找CROSS_COMPILE =,注释掉if判断,增加一行CROSS_CMPILE = arm-linux- (根据编译器不同这个自行添加,在这里感谢胡茂晓同学)。 二、复制平台相近board 1、进入board子目录下的samsung子目录,复制trats2文件夹为自己平台名字的文件夹(这里笔者使用iTop4412)。 2、进入iTop4412子目录,修改为。 3、修改Makefile,将trats2改为iTop4412。 三、修改板子相应配置 1、从源码根目录下进入include/configs目录,复制为。 2、从源码根目录下进入configs目录,复制trats2_defconfig为iTop4412_defconfig。 3、修改iTop4412_defconfig,将CONFIG_DEFAULT_DEVICE_TREE="exynos4412-trats2"改为CONFIG_DEFAULT_DEVICE_TREE="exynos4412-iTop4412"。

四、增加自己的Device Tree Source 1、从源码根目录下进入arch/arm/Dts目录,复制 exynos4412- 。 2、修改当前目录下的Makefile文件,将 dtb-$(CONFIG_EXYNOS4) += \ \ \ \ \ 修改成 dtb-$(CONFIG_EXYNOS4) += \ \ \ \ \ \

五、制作顶层.config文件 1、在源码根目录下使用命令make menuconfig(貌似刚支持图形界面配置)。 2、先配置基本的,Architecture select 选项选择ARM architecture,architecture选项的子选项Target select选择Samsun EXYNOS;EXYNOS board select选项选择Exynos4412 Trat2 board。 3、在Device Tree Control选项下,y(yes)Run-time configuration via Device Tree,选择Provider of DTB for control 为Embedded DTB for DT control,在Default Device Tree for DT control选项下输入exynos4412-iTop4412,退出。 4、保存退出,在源码根目录下会生成.config文件,需要用命令ls –a 查看。 5、在源码根目录下使用命令vim .config,修改.config文件。将CONFIG_SYS_BOARD="trats2" 修改成CONFIG_SYS_BOARD="iTop4412";将CONFIG_SYS_CONFIG_NAME="trats2"修改成CONFIG_SYS_CONFIG_NAME="iTop4412";将CONFIG_DEFAULT_DEVICE_TREE=""修改成CONFIG_DEFAULT_DEVICE_TREE="exynos4412-iTop4412"。(注意:每次使用make menuconfig后都要修改本条)

UBOOT分析移植

ARM 平台下的U-boot 移植 u-boot 移植 嵌入式BootLoader 的引导过程 图 1-1给出了嵌入式系统中的一般的引导过程,一般来说,引导程序都是保存在非易失的存储介质(如Flash 等)中,因为引导程序运行的时候需要对数据进行读写操作,所以引导程序的RW 段必须放到RAM 中,所以一般的引导程序初始化的第一件事情就是要在初始化完内存控制器后将其RW 段拷贝到RAM 中,同时开辟一段内存用于其ZI 段。如果引导过程是放置在不可原位执行的存储介质,如NAND Flash 上的时候,引导程序还必须将其自身也拷贝到RAM 中。 一般来说大概的步骤可以分为两个步骤: Stage1 ? 硬件设备初始化(内存控制器的设置); ? 为加载BootLoader 的stage2部分的代码准备RAM 空间; ? 拷贝BootLoader 的stage2部分的代码到RAM 空间中,并跳转执行; ? 设置好堆栈,Heap 等; ? 跳转到 stage2 的 C 入口点; Stage2 ? 初始化本阶段要使用到的硬件设备(net ,flash 等); ? 将OS 映像从 flash 上读到 RAM 空间中; ? 为OS 设置启动参数; ? 跳转到OS 内核image 的入口点。 图1-1 嵌入式系统引导

u-boot简介 U-Boot是由开源项目PPCBoot发展起来的,ARMboot并入了PPCBoot,和其他一些arch 的Loader合称U-Boot。2002年12月17日第一个版本U-Boot-0.2.0发布,同时PPCBoot 和ARMboot停止维护。 U-Boot支持的处理器构架包括PowerPC(MPC5xx, MPC8xx, MPC82xx, MPC7xx,MPC74xx, 4xx), ARM(ARM7,ARM9,StrongARM,Xscale),MIPS (4Kc,5Kc),x86等等,U-Boot (Universal Bootloader)是在GPL下资源代码最完整的一个通用Boot Loader。 U-Boot提供两种操作模式:启动加载(Boot loading)模式和下载(Downloading)模式,并具有大型Boot Loader的全部功能。主要特性为: ●SCC/FEC以太网支持 ●BOOTP/TFTP引导 ●IP,MAC预置功能 ●在线读写FLASH,DOC, IDE,IIC,EEROM,RTC ●支持串行口kermit,S-record下载代码 ●识别二进制、ELF32、pImage格式的Image,对Linux引导有特别的支持 ●监控(minitor)命令集:读写I/O,内存,寄存器、内存、外设测试功能等 ●脚本语言支持(类似BASH脚本) ●支持WatchDog,LCD logo,状态指示功能等 U-Boot的功能是如此之强大,涵盖了绝大部分处理器构架,提供大量外设驱动,支持多个文件系统,附带调试、脚本、引导等工具,特别支持Linux,为板级移植做了大量的工作。U-Boot的完整功能性和后续不断的支持,使系统的升级维护变得十分方便。 u-boot的目录树结构 1.1.1 Borad目录 包括大量的Board dependent files的代码文件,每一个开发板都以一个子目录出现在当前目录中,每个board目录下至少包括这样几个文件 1.config.mk:其中至少包括TEXT_BASE这个一个Makefile的变量,这个变量指出了被编译的可执行uboot image应该放在RAM中的位置,也就是该image的执行位置;2.flash.c:这里主要还是对NorFlash的操作,flash的基本操作; 3.lowlevel_init.S:提供lowlevel_init函数供u-boot在第一阶段调用,一般是针对SDRAM 控制器的初始化,如设置SDRAM的刷新率,等待时钟等,一般来说,如果需要将第二阶段代码和数据拷贝到SDRAM中,这个操作是必须的; 4.Makefile:编译board目录下的代码所使用的makefile; 5.board.c:和板级相关的初始化函数,如设置GPIO,设置时钟,设置总线时序等;6.u-boot.lds:针对开发板的情况编写的连接脚本,通过连接脚本,一般应该将u-boot的stage1的代码放在image的开始的地方; 1.1.2Common目录 该目录下实现uboot支持的命令和公用函数,每一条命令都对应一个文件。例如bootm 命令对应就是cmd_bootm.c。

uboot启动代码详解

·1 引言 在专用的嵌入式板子运行GNU/Linux 系统已经变得越来越流行。一个嵌入式Linux 系统从软件的角度看通常可以分为四个层次: 1. 引导加载程序。固化在固件(firmware)中的boot 代码,也就是Boot Loader,它的启动通常分为两个阶段。 2. Linux 内核。特定于嵌入式板子的定制内核以及内核的启动参数。 3. 文件系统。包括根文件系统和建立于Flash 内存设备之上文件系统,root fs。 4. 用户应用程序。特定于用户的应用程序。有时在用户应用程序和内核层之间可能还会包括一个嵌入式图形用户界面。常用的嵌入式GUI 有:MicroWindows 和MiniGUI 等。 引导加载程序是系统加电后运行的第一段软件代码。回忆一下PC 的体系结构我们可以知道,PC 机中的引导加载程序由BIOS(其本质就是一段固件程序)和位于硬盘MBR 中的OS Boot Loader(比如,LILO 和GRUB 等)一起组成。BIOS 在完成硬件检测和资源分配后,将硬盘MBR 中的Boot Loader 读到系统的RAM 中,然后将控制权交给OS Boot Loader。Boot Loader 的主要运行任务就是将内核映象从硬盘上读到RAM 中,然后跳转到内核的入口点去运行,也即开始启动操作系统。 而在嵌入式系统中,通常并没有像BIOS 那样的固件程序(注,有的嵌入式CPU 也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由Boot Loader 来完成。比如在一个基于ARM7TDMI core 的嵌入式系统中,系统在上电或复位时通常都从地址 0x00000000 处开始执行,而在这个地址处安排的通常就是系统的Boot Loader 程序。·2 bootloader简介 简单地说,Boot Loader (引导加载程序)就是在操作系统内核运行之前运行的一段小程序,它的作用就是加载操作系统, 实现硬件的初始化,建立内存空间的映射图,为操作系统内核准备好硬件环境并引导内核的启动。如上图所示的那样在设备的启动过程中bootloader位于最底层,首先被运行来引导操作系统运行,很容易可以看出bootloader是底层程序所以它的实现严重地依赖于硬件,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的BootLoader几乎是不可能的。尽管如此,一些功能强大、支持硬件环境较多的BootLoader也被广大的使用者和爱好者所支持,从而形成了一些被广泛认可的、较为通用的的bootloader实现。 2.1 Boot Loader 所支持的CPU 和嵌入式板 每种不同的CPU 体系结构都有不同的Boot Loader。有些Boot Loader 也支持多种体系结构的CPU,比如U-Boot 就同时支持ARM 体系结构和MIPS 体系结构。除了依赖于CPU 的体系结构外,Boot Loader 实际上也依赖于具体的嵌入式板级设备的配置。这也就是说,对于两块不同的嵌入式板而言,即使它们是基于同一种CPU 而构建的,要想让运行在一块板子上的Boot Loader 程序也能运行在另一块板子上,通常也都需要修改Boot Loader 的源程序。 2.2 Boot Loader 的安装媒介(Installation Medium)

Uboot_for_mini6410_移植步骤详解

这是u-boot-2010.09 针对友善之臂MINI6410移植的最基础版本,只包含了就基本的系统引导,NAND读写,DM9000网卡等等。但是这个足够开发的方便使用。今后会陆续添加原先我为mini2440添加的所有功能。 但是此次移植并非我的功劳,首先基本的移植是由Alex Ling 完成的,你可以在这里看到他提交的补丁,但是编译后无法使用,可能是因为host系统不同,对脚本的解析不同,使得spl部分的生成出现问题,只需修改一下nand_spl目录下目标板目录的中config.mk中的 PAD_TO := $(shell expr $$[$(TEXT_BASE) + 4096]) 即可。 DM9000的驱动没有太大的问题(修改了一点可能出现问题的地方,感谢肖工指教),但是原本的u-boot并没有调整所有SROM控制器的配置(其中包括连接DM9000所使用的bank1的总线),我使用了友善带的u-boot的参数配置了一下就好了。 一:https://www.doczj.com/doc/b16731243.html,/batch.viewlink.php?itemid=1694 ftp://ftp.denx.de/pub/u-boot/ 去这2个网站随便下载都可以下载得到最新或者你想要的u-boot。现在我将下载u-boot-2010-09,这个也就是最新的版本啦。 下载后把它解压,然后得到u-boot-2010-09的文件夹,然后进去,并且做下面几件事情:1:进入arch这个文件夹,把出arm外的前部文件夹删掉 2:进入board这个文件夹,把除samsung外前部文件夹删掉 3:进入include/configs,把除smdk6400.h外的所有文件删除。 4: 把顶层目录下有一个叫onenand_ipl的文件夹删除掉,因为没有用到。 5:进入nand_spl/board,把除samsung外全部文件删除掉。 6:再进入arch/arm/cpu文件夹,把除arm1176外其他文件夹删除掉。 7:再进入arch/arm/include/asm文件夹,把除arch-s3c64xx文件外带arch-XX的文件夹删除8:再进入board/samsung文价夹下,把除smdk6400外其他文价夹删除掉。 至此已经把没用到或者不想见到它的文件夹跟文件删除掉了。爽吧。 二: 1:在顶层的目录下找到Makefile文件,并且打开,因为vi或者vim没用习惯而是改用gedit。lwf@lwf-desktop:/home/u-boot-2010.12$ sudo gedit Makefile 在这个Makefile你会找到: ######################################################################### ## ARM1176 Systems ######################################################################### smdk6400_noUSB_config \ smdk6400_config : unconfig @mkdir -p $(obj)include $(obj)board/samsung/smdk6400 @mkdir -p $(obj)nand_spl/board/samsung/smdk6400

UBOOT详细解读

大多数bootloader都分为stage1和stage2两部分,u-boot也不例外。依赖于CPU体系结构的代码(如设备初始化代码等)通常都放在stage1且可以用汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现复杂的功能,而且有更好的可读性和移植性。 1、Stage1 start.S代码结构 u-boot的stage1代码通常放在start.S文件中,他用汇编语言写成,其主要代码部分如下:(1)定义入口。由于一个可执行的Image必须有一个入口点,并且只能有一个全局入口,通常这个入口放在ROM(Flash)的0x0地址,因此,必须通知编译器以使其知道这个入口,该工作可通过修改连接器脚本来完成。 (2)设置异常向量(Exception Vector)。 (3)设置CPU的速度、时钟频率及终端控制寄存器。 (4)初始化内存控制器。 (5)将ROM中的程序复制到RAM中。 (6)初始化堆栈。 (7)转到RAM中执行,该工作可使用指令ldr pc来完成。 2、Stage2 C语言代码部分 lib_arm/board.c中的start arm boot是C语言开始的函数也是整个启动代码中C语言的主函数,同时还是整个u-boot(armboot)的主函数,该函数只要完成如下操作: (1)调用一系列的初始化函数。 (2)初始化Flash设备。 (3)初始化系统内存分配函数。 (4)如果目标系统拥有NAND设备,则初始化NAND设备。 (5)如果目标系统有显示设备,则初始化该类设备。 (6)初始化相关网络设备,填写IP、MAC地址等。 (7)进去命令循环(即整个boot的工作循环),接受用户从串口输入的命令,然后进行相应的工作。 3、U-Boot的启动顺序(示例,其他u-boot版本类似) cpu/arm920t/start.S @文件包含处理 #include @由顶层的mkconfig生成,其中只包含了一个文件:configs/<顶层makefile中6个参数的第1个参数>.h #include #include

黄刚--uboot在mini2440上的移植

u-boot-2009.08在2440上的移植详解(黄刚) u-boot-2009.08在2440上的移植详解(一) 嵌入式Linux之我行,主要讲述和总结了本人在学习嵌入式linux中的每个步骤。一为总结经验,二希望能给想入门嵌入式Linux的朋友提供方便。如有错误之处,谢请指正。 共享资源,欢迎转载: 一、移植环境 主机:VMWare--Fedora 9 开发板:Mini2440--64MB Nand, 编译器: u-boot: 二、移植步骤 本次移植的功能特点包括: 支持Nand Flash读写 支持从Nor/Nand Flash启动 支持CS8900或者DM9000网卡 支持Yaffs文件系统 支持USB下载(还未实现) 1. 了解u-boot主要的目录结构和启动流程,如下图。

u-boot的stage1代码通常放在cpu/xxxx/start.S文件中,他用汇编语言写成; u-boot的stage2代码通常放在lib_xxxx/board.c文件中,他用C语言写成。 各个部分的流程图如下:

2. 建立自己的开发板项目并测试编译。 目前u-boot对很多CPU直接支持,可以查看board目录的一些子目录,如:board/samsung/目录下就是对三星一些ARM处理器的支持,有smdk2400、smdk2410和smdk6400,但没有2440,所以我们就在这里建立自己的开发板项目。 1)因2440和2410的资源差不多,主频和外设有点差别,所以我们就在board/samsung/下建立自己开发板的项目,取名叫my2440 #tar -jxvf u-boot-2009.08.tar.bz2 //解压源码

U_Boot第一启动阶段Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解)

Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解) Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解) 1 u-boot.lds 首先了解uboot的链接脚本board/my2410/u-boot.lds,它定义了目标程序各部分的链接顺序。OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm") /*指定输出可执行文件为ELF格式,32为,ARM小端*/ OUTPUT_ARCH(arm) /*指定输出可执行文件为ARM平台*/ ENTRY(_start) /*起始代码段为_start*/ SECTIONS { /* 指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置*、. = 0x00000000;从0x0位置开始 . = ALIGN(4); 4字节对齐 .text : {

cpu/arm920t/start.o (.text) board/my2440/lowlevel_init.o (.text) *(.text) } . = ALIGN(4); .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) } . = ALIGN(4); .data : { *(.data) } /* 只读数据段,所有的只读数据段都放在这个位置*/ . = ALIGN(4); .got : { *(.got) } /*指定got段, got段式是uboot自定义的一个段, 非标准段*/ . = .; __u_boot_cmd_start = .; /*把__u_boot_cmd_start赋值为当前位置, 即起始位置*/ .u_boot_cmd : { *(.u_boot_cmd) } /* u_boot_cmd段,所有的u-boot命令相关的定义都放在这个位置,因为每个命令定义等长,所以只要以__u_boot_cmd_start为起始地址进行查找就可以很快查找到某一个命令的定义,并依据定义的命令指针调用相应的函数进行处理用户的任务*/ __u_boot_cmd_end = .; /* u_boot_cmd段结束位置,由此可以看出,这段空间的长度并没有严格限制,用户可以添加一些u-boot的命令,最终都会在连接是存放在这个位置。*/

相关主题
文本预览
相关文档 最新文档