当前位置:文档之家› 圆票证明

圆票证明

圆票证明

圆票证明

地税局:

兹有公司在我单位承接消防安装工程,需圆票金额,现由该公司前来办理圆票手续,请贵局给予办理为谢!

业主单位名称

年月日

中考《圆》有关的证明和计算

半径,证垂直”,难点在于如何证明两线垂直 例1 如图,在△ ABC中,AB=AC,以AB为直径的O O交BC于D,交AC于E, B为切点的切线交OD延长线于F. 求证:EF与O O相切. 例2 如图,AD是/ BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与O O相切. 证明一:作直径AE,连结EC. ?/ AD是/ BAC的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2=Z 1+ / DAC. ???/ 2=Z B+ / DAB , ???/ 仁/ B. 又???/ B= / E, ???/ 仁/ E ?/ AE是O O的直径, ?AC 丄EC,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA丄PA. ? PA与O O相切. 证明二:延长AD交O O于E,连结OA , OE. ?/ AD是/ BAC的平分线, ?BE=C1E, c ? OE 丄BC. ?/ E+/ BDE=900. ?/ OA=OE , ? / E=/ 1.

例5 如图,AB 是O O 的直径,CD 丄AB ,且 OA 2=OD ? OP. 求证:PC 是O O 的切线. 说明: 求证: ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, ???/ 1 + Z PAD=90 0 即OA 丄PA. ? PA 与O O 相切 此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用 如图,AB=AC , AB 是O O 的直径,O O 交BC 于D , DM 与O O 相切. 例4 如图,已知:AB 是O O 的直径,点 C 在O O 上,且/ CAB=30°, BD=OB , D 在AB 的延长线上 求证:DC 是O O 的切线

圆中的证明与计算

圆中的证明与计算及圆与三角形、四边形 知识点圆中的重要知识点 【知识梳理】 1、圆中的重要概念 2、圆中的重要定理 3、易与圆结合的其他知识 【例题精讲一】垂径定理 例1.1、如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°。(1)求证:弧CF=弧BC;(2)若CD=6,分别求BE、GF的长。

(1)求证:AD=AN;(2)若AB=2 4,ON=1,求⊙O的半径。 3、如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5。 (1)如图(1),若点P是弧AB的中点,求PA的长;(2)如图(2),若点P是弧BC的中点,求PA的长。

【课堂练习】 1、如图,AB为⊙O的直径,弦CD⊥AB于点H,E为AB延长线上一点,CE交⊙O于F,连接BF。 (1)求证:BF平分∠DFE;(2)若EF=DF,BE=5,CH=3,求⊙O半径。 2、如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF。 (1)求证:∠BAD=∠F;(2)若EF=25,AC=4,求⊙O的半径。

【例题精讲二】圆周角定理 例2.1、如图,CD为⊙O的直径,AB、AC为弦,且∠ADC=∠DAB+∠ACD,AB交CD于E。 (1)求证:AB=AC;(2)若DE=2,CE=10,求AC的长。 2、在△ABC中,以AC边为直径的⊙O交BC于点D,在AD上取一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H。 (1)求证:AC⊥BH;(2)若∠ABC=45°,AC=10,BD=8,求CE的长。

与圆有关的证明

老师 姓名 汪小勇学生姓名李亿兴教材版本北师大 学科 名称 数学年级9 上课时间2014.04.05(08:00-10:00) 课题 名称 圆的有关证明 教学 重点 圆的切线证明 教学过程知识梳理 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 变式1 如图,AD是∠BAC平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.

例2 如图,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于D ,DM ⊥AC 于M 求证:DM 与⊙O 相切. 变式2、如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线 方法二:若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径”(一般用于函数与几何综合题) 例3:如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 与圆有关的计算典型基本图型: 图形1:如图:Rt ⊿ABC 中,∠ACB=90°。点O 是AC 上一点,以OC 为半径作⊙O 交AC 于点E ,基本结论有: 图2E G O F D C B A 图1 E O D C B A

圆的有关证明及计算

2015圆的有关证明及计算 1.如图,直线AB与O O相切于点A,弦CD // AB,E,F为圆上的两点,且/ CDE= / ADF .若 O 0的半径为2j2 , CD=4.求弦EF的长. 2.如图,直线I与半径为4的O 0相切于点A, P是O 0上的一个动点(不与点A重合),过点P作PB丄I,垂足为B,连接PA.设PA=x, PB=y. 求(X- y)的最大值. 3.如图,已知AB为O 0的直径,AB=2, AD和BE是圆0的两条切线,A、B为切点,过 圆上一点C作O 0的切线CF,分别交AD、BE于点M、N, 求AM的长. 4.如图,O O的直径AB为10cm,弦BC为5cm, D、E分别是/ ACB的平分线与O 0, AB 的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长;

(2)试判断直线PC与O 0的位置关系,并说明理由. P

5.如图,点D在O O的直径AB的延长线上,点C在O O上,AC=CD , / ACD=120 ° (1)求证:CD是O O的切线; (2)若O O的半径为2,求图中阴影部分的面积. 6.如图,O O与RtA ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE , 已知/ B=30 ° O O的半径为12,弧DE的长度为4 n 求证:DE // BC; (2) 若AF=CE,求线段BC的长度. 7.如图,在RtA ABC中,/ ACB=90 °以AC为直径作O O交AB于点D,连接CD . (1)求证:/ A=/ BCD ; (2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与O O相切?并说明理由.

圆的证明与计算

以圆为背景的证明、动态探究题 1. 如图,在Rt△ABC中,ZABC=90 °,点M是AC的中点,以AB为直径作O O 分别交AC, BM于点D , E. (1) 求证:MD=ME (2) _______________________________________________ 填空:①若 AB=6,当AD=2DM 时,DE= __________________________ ; ②连接0D,OE,当/A的度数为_____________ 时,四边形ODME是菱形. 2. 如图,CD是GO的直径,且CD=2cm,点P为CD的延长线上一点,过点P 作GO的切线PA,PB,切点分别为点A,B. (1)连接AC,若GAPO=30。,试证明CACP是等腰三角形; (2)填空: ①当DP= cm时,四边形AOBD是菱形; ②当DP= _______ cm时,四边形AOBP是正方形.

3?如图,AB是半圆0的直径,点P是半圆上不与点A, B重合的一个动点,延长BP到点C,使PC= PB, D是AC的中点,连接PD, P0. (1)求证:△CDP^△OB; (2)填空: ①若AB = 4,则四边形AOPD的最大面积为__________________ ; ②连接0D,当Z PBA的度数为_______ 时,四边形BPDO是菱形. 4. 如图,在。0中,AB是。0的直径,AC是。0的弦,过点C作。0的切线

交BA 的延长线于点P ,连接BC. (1)求证:/ PCA= ZB; (2)已知Z P=40 °,AB=12cm,点Q 在优弧AC 上,从点A 开始以n cm/s 的速度 逆时针运动到点C 停止(点Q 与点A 、C 不重合),设运动时间为ts. 5. 如图,在 Rt △ABC 中,Z ACB=90 °以AC 为直径的。O 与AB 边交于点D,过 点D 作。O 的切线交BC 于点E 连接OE,。O 的半径为 3 。 (1)求证:OE//AB; ① 当t= ② 当t= 时,以点A 、Q 、B 、C 为顶点的四边形面积最大 时,△ABQ 与A ABC 全等。 (2)①当BC= ________ 时, ②当BC= _______ 时, 四边形ODEC 是正方形 AD=3DE.

圆的证明和计算

圆的证明和计算 题型一:图形主要以圆和三角形(多为等腰三角形或直角三角形)组成; 依据所给条件判定圆的切线或已知圆的切线,求图中线段长度或角的度数; 主要考查知识有切线的判定、切线的性质、勾股定理、等腰三角形性质、直角三角形性质(斜边中线等于斜边一半、30°所对直角边等于斜边一半等)及解决圆的问题中常加辅助线(已知切线连半径、见直径想直角等)等等。 教材原型题:(基本图形为圆和等腰三角形) 1、(P45页例1)已知:如图,直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB 。 求证:直线AB 是⊙O 的切线。 2、(P73页第4题)如图,AB 与⊙O 相切于点C ,OA=OB ,⊙O 的直径为8cm ,AB=10cm ,求OA 长. 3、(P45页练习1)如图,AB 是⊙O 的直径,∠ABT=45°,AT=AB , 求证:AT 是⊙O 的切线。 配套练习:(1、2、3、4题针对原型题1、2; 5、6、7、8针对原型题3) 1、(2009新疆乌鲁木齐市)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N . (1)求证MN 是O ⊙的切线; (2)若1202BAC AB ∠==° ,,求图中阴影部分的面积. 2、(2009年漳州)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°, (1)求证:CD 是O ⊙的切线; (2)若O ⊙的半径为3,求BC 的长.(结果保留π) 3、(08福建厦门23题)已知:如图,ABC △中,AB AC =,以AB 为直 径的O 交BC 于点P ,PD AC ⊥于点D . (1)求证:PD 是O 的切线; (2)若1202CAB AB ∠==,,求BC 的值. O B A B

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

与圆有关的证明与计算

与圆有关的证明与计算 1.如图,在Rt △ABC 中,∠C =90°,点D 、E 、F 分别在AC 、BC 、AB 的边上,以AF 为直径的⊙O 恰好经过点D 、E ,且DE =EF . (1)求证:BC 是⊙O 的切线; (2)若∠B =30°,求CE CD 的值. 第1题图 (1)证明:如解图,连接OD ,OE ,DF , ∵AF 是⊙O 的直径, ∴∠ADF =90°, ∵∠C =90°, ∴DF ∥BC , ∵DE =EF , ∴DE ︵=EF ︵, ∴OE ⊥DF , ∴OE ⊥BC , ∵OE 是⊙O 的半径, ∴BC 是⊙O 的切线; 第1题解图 (2)解:∵∠B =30°,且OE ⊥BC , ∴∠BOE =60°, ∵OE =OF , ∴△OEF 是等边三角形, ∴∠OEF =60°, 又∵DE =EF ,OE ⊥DF , ∴∠OED =∠OEF =60°, ∴∠CED =30°, ∴∠CDE =60°, 在Rt △CDE 中, ∵tan ∠CDE =tan60°=CE CD =3,

∴ CE CD = 3. 2.如图,在Rt △BGF 中,∠F =90°,AB 是⊙O 的直径,⊙O 交BF 于点E ,交GF 于点D ,AE ⊥OD 于点C ,连接BD . (1)求证:GF 是⊙O 的切线; (2)若OC =2,AE =43,求∠DBF 的度数. 第2题图 (1)证明:∵AB 是⊙O 的直径,∴∠AEB =90°, 又∵∠F =90°, ∴∠AEB =∠F ,∴AE ∥GF , ∵AE ⊥OD ,∴OD ⊥GF , ∵OD 是⊙O 的半径, ∴GF 是⊙O 的切线; (2)解:∵OD ⊥AE , ∴AC =CE =1 2AE =23, ∵OA =OB , ∴OC 是△ABE 的中位线, ∴BE =2OC =4, ∴在Rt △AOC 中,OA =OC 2+AC 2=22+(23)2=4, ∵∠CEF =∠DCE =∠F =90°, ∴四边形CDFE 是矩形, ∴DF =CE =23,EF =CD =OD -OC =4-2=2, ∴BF =BE +EF =4+2=6, ∴tan ∠DBF =DF BF =236=3 3, ∴∠DBF =30°. 3.如图,点C 是⊙O 的直径AB 的延长线上一点,点D 在⊙O 上,且∠DAC =30°,∠BDC =1 2∠ABD . (1)求证:CD 是⊙O 的切线; (2)若OF ∥AD 分别交BD 、CD 于点E 、F ,BD =2,求OE 、CF 的长.

圆的证明与计算 专 题

2012中考数学复习《圆的证明与计算》专题 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,圆与相似圆与面积圆与切线动态圆 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数. (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。 (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。

《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例: 方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延

与圆有关的证明问题(含答案)

与圆有关的证明问题 (时间:100分钟总分:100分) 一、选择题(本大题共10小题,每小题3分,共30分,在每小题给 出的四个选项中,只有一个是符合题目要求的) 1.已知AB、CD是⊙O的两条直径,则四边形ADBC一定是() A.等腰梯形B.正方形C.菱形 D.矩形 2.如图1,DE是⊙O的直径,弦AB⊥ED于C,连结AE、BE、AO、BO, 则图中全等三角形有() A.3对B.2对C.1对D.0对 (1)(2) (3) (4) 3.垂径定理及推论中的四条性质:①经过圆心;②垂直于弦;③平 分弦;④平分弦所对的弧.由上述四条性质组成的命题中,假命题 是() A.①②?③④B.①③?②④

C.①④?②③D.②③?①④ 4.Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心,?长为半径的圆与AB相离;②以点C为圆心,长为半径的圆与AB相切;?③以点C为圆心,长为半径的圆与AB 相交,则上述结论正确的有() A.0个B.1个C.2个D.3个 5.在⊙O中,C是AB的中点,D是AC上的任意一点(与A、C不重合),则() A.AC+CB=AD+DB B.AC+CBAD+DB D.AC+CB与AD+DB的大小关系不确定 6.如图2,梯形ABCD内接于⊙O,AD∥BC,EF切⊙O于点C,则图中与∠ACB相等的角(不包括∠ACB)共有(). A.1个B.2个C.3个D.4个 7.如图3,在△ABC中,AD是高,AE是直径,AE交BC于G,有下列四个结论:?①AD2=BD·CD;②BE2=EG·AE;③AE·AD=AB·AC; ④AG·EG=BG·CG.其中正确结论的有() A.1个B.2个C.3个D.4个

圆的证明与计算

以圆为背景的证明、动态探究题 1.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E. (1)求证:MD=ME (2)填空:①若AB=6,当AD=2DM时,DE=___________; ②连接OD,OE,当∠A的度数为____________时,四边形ODME是菱形. 2.如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P 作⊙O的切线PA,PB,切点分别为点A,B. (1)连接AC,若⊙APO=30°,试证明⊙ACP是等腰三角形; (2)填空: ①当DP= cm时,四边形AOBD是菱形; ②当DP=________cm时,四边形AOBP是正方形.

3.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO. (1)求证:△CDP≌△POB; (2)填空: ①若AB=4,则四边形AOPD的最大面积为_________________; ②连接OD,当∠PBA的度数为________时,四边形BPDO是菱形. 4.如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线

交BA的延长线于点P,连接BC. (1)求证:∠PCA=∠B; (2)已知∠P=40°,AB=12cm,点Q在优弧AC上,从点A开始以πcm/s的速度逆时针运动到点C停止(点Q与点A、C不重合),设运动时间为ts. ①当t=________时,以点A、Q、B、C为顶点的四边形面积最大。 ②当t=________时,△ABQ与△ABC全等。 5.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线交BC于点E,连接OE,⊙O的半径为3。 (1)求证:OE∥AB; (2)①当BC=_________时,四边形ODEC是正方形。 ②当BC=_________时,AD=3DE.

圆的计算与证明

圆的计算与证明 1.如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC (1)求证:PC是⊙O的切线; (2)若∠BPC=60°,PB=3,求阴影部分面积. 2.如图,已知AB为⊙O的直径,CD切⊙O于C点,弦CF⊥AB于E点,连结AC.(1)求证:∠ACD=∠ACF; (2)当AD⊥CD,BE=2cm,CF=8cm,求AD的长. 3.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D. (1)求证:AB为⊙O的切线; (2)若BC=6,tan∠ABC=,求AD的长.

4.如图,直线MN交⊙O于A,B两点,AC是⊙O直径,∠CAM的平分线交⊙O于点D,过点D 作DE⊥MN于点E. (1)求证:DE是⊙O的切线; (2)若DE=6cm,AE=3cm,求⊙O的半径. 5.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO.若DE=2,∠DP A=45°. (1)求⊙O的半径; (2)求图中阴影部分及△PBF的面积. 6.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC. (1)求证:AC=CG; (2)若CD=8,OG=10,求⊙O的半径.

7.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE. (1)求证:AP=AO; (2)若弦AB=24,求OP的长. 8.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC 于D、E、F、G. (1)求证:CD=EF; (2)若⊙O的半径为4,AE=2,求AB的长. 9.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E. (1)求线段DE的长; (2)点O到AB的距离为3,求圆O的半径.

圆的相关定理及其几何证明(含答案)

圆的相关定理及其几何证明 典题探究 例1:如图,圆是的外接圆,过点C 作圆的切线交的延长线于点.若 O ABC ?O BA D ,,则线段的长是 ;圆的半径是 . CD =2AB AC ==AD O 例2:如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E (E 在A ,O 之间),EF BC ^,垂 足为F .若6AB =,5CF CB × =,则AE =

例3:如图已知与圆相切于,半径,交于,若, PA O A OC OP ⊥AC PO B 1OC =,则 , . 2OP =PA ==PB 例4:如图,从圆外一点引圆的切线和割线,已知, O P O PA PBC 30BPA ∠=?,, 则 ,圆的半径等于 11BC =1PB =PA =O 演练方阵 A 档(巩固专练) 1.如图,已知直线PD 切⊙O 于点D ,直线PO 交⊙O 于点E,F.若,则⊙O 的21PF PD =+=半径为 ; . EFD ∠=A B C O P

D C B P A O

C B A 5.如图所示,以直角三角形的直角边为直径作⊙,交斜边于点,过点 ABC AC O AB D 作⊙的切线,交边于点.则 . D O BC E =BC BE 6.如图,直线AM 与圆相切于点M, ABC 与ADE 是圆的两条割线,且BD ⊥AD ,连接MD 、EC 。则下面结论中,错误的结论是( ) A .∠ECA = 90o B .∠CEM=∠DMA+∠DBA C .AM 2 = AD·AE D .AD·D E = AB·BC 7.如图,切圆O 于点,为圆O 的直径,交圆O 于点,为的中点,AB A AC BC D E CD 且则__________;__________. 5,6,BD AC ==CD =AE =

四点共圆练习题

作业16 1、锐角ABC ?的三条高AD 、BE 、CF 交于H ,在A 、B 、C 、D 、E 、F 、H 七个点中.能组成四点共圆的组数是( ) A 、4组 B 、5组 C 、6组 D 、7组 2、已知点)02(,A ,)53(,B ,直线l 过点B 与y 轴交于点)0(c ,C ,若 O 、A 、B 、C 四点共圆,则c 的值为( ) A 、 522 B 、5 28 C 、17 D 、无法求出 3.如图, AB 是⊙O 的直径, 弦CD ⊥AB, P 是弧CAD 上一点(不与C 、D 重合) . (1) 求证:∠CPD =∠COB ; (2) 若点P 在劣弧CD 上(不与C 、D 重合), ∠CPD 与∠COB 的数量关系是否发生变化?若不变, 请画图并证明;若变化, 请写出新的关系式并画图证明. 4、如图,在平行四边形ABCD 中,BAD ∠为钝角,且BC AE ⊥,CD AF ⊥. (1)求证:A 、E 、C 、F 四点共圆; (2)设线段BD 与(1 )中的圆交于M 、N .求证:ND BM =. 5、如图所示, I 为ABC ?的内心,求证:BIC ?的外心O 与A 、B 、C 四点共圆. B

B A 6.如图, ⊙O 的内接△ABC 的外角∠AC B 的平分线交⊙O 于E, EF ⊥BD 于F. (1) 探索EO 与AB 的位置关系, 并予以证明; (2) 当△AB C 的形状发生改变时, AC CF BF +的值是否发生改变?若不变, 请求出该值;若改变, 请求出其变化范围. 7.如图,已知AB 是⊙O 的直径,D 是弧AB 上一点,C 是弧AD 的中点,AD 、BC 相交于E ,CF ⊥AB ,F 为垂足,CF 交AD 于G ,求证:CG=EG. 8、如图,已知ABC ?中的两条角平分线AD 和CE 相交于H ,?=∠60B ,F 在AC 上,且AF AE =. (1)证明:B ,D ,H ,E 四点共圆; (2)证明:CE 平分DEF ∠. B

关于圆的证明题

关于圆的证明题 一、1、直线和圆的位置关系有三种:相交、相切、相离. 用数量关系表示是:如果⊙O的半径为r,圆心O到直线l的距离为d,那么: (1)直线l和⊙O相交dr. 2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线. 3、切线的性质定理及其推论切线的性质定理圆的切线垂直于经过切点的半径. 推论1经过圆心且垂直于切线的直线必经过切点. 推论2经过切点且垂直于切线的直线必经过圆心. 二、1、直线和圆的位置关系 2、切线的判定定理 例1、已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线. 例2、已知如图所示,AB为⊙O的直径,C、D是直径AB同侧圆周上两点,且,过D作DE⊥AC于点E,求证:DE是⊙O的切线.

例3、(1)如图所示,△ABC内接于⊙O,如果过点A的直线AE和AC所成的角∠EAC=∠B,那么EA是⊙O的切线. 3、切线的性质及其推论 例3如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB?的延长线于点D, ∠ACD=120°,BD=10.(1)求证:CA=CD;(2)求⊙O的半径. 例4、已知:如图所示,AB为半圆O的直径,直线MN切半圆于点C,AD⊥MN于点D,BE⊥MN于点E,BE交半圆于点F,AD=3cm,BE=7cm, (1)求⊙O的半径; (2)求线段DE的长. 例5、如图所示,AB为⊙O的直径,BC、CD为⊙O的切线,B、D为切点, 求证:AD∥OC,.

例6、已知如图所示,在梯形ABCD中,AD∥BC,∠D=90°,AD+BC=AB,以AB为直径作⊙O,求证:⊙O和CD相切. 例7如图,AB是半圆O的直径,AD为弦,∠DBC=∠A. (1)求证:BC是半圆O的切线; (2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长. 例9如图,AB为⊙O的直径,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上. 求证:PE 是⊙O的切线.

(完整版)圆的证明与计算(精编版)

《圆的证明与计算》专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周

角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例: 方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需

复习专题4圆的有关计算与证明

1、如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD, 作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9 (1)求证:△COD∽△CBE;(2)求半圆O的半径r的长 2.如图,已知RtΔABC,∠C=90°,D为BC的中点.以AC为直径的圆O交AB于点E. (1)求证:DE是圆O的切线. (2)若AE:EB=1:2,BC=6,求AE的长. 3.如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C. (1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标; (2)若D为线段NB的中点,求证:直线CD是⊙M的切线.

4.如图,在菱形ABCD 中,点P 在对角线AC 上,且PA PD =, O 是PAD ?的外接圆. (1)求证:AB 是O 的切线; (2)若28,tan ,AC BAC =∠= 求O 的半径. 5.如图,AB 是⊙O 的直径,C 是⊙O 上一点,OD ⊥BC 于点D ,过点C 作⊙O 的切线,交 OD 的延长线于点E ,连接BE . (1)求证:BE 与⊙O 相切; (2)设OE 交⊙O 于点F ,若DF =1,BC =23,求阴影部分的面积. 6.(2017福建第21题)如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD ∠=. (Ⅰ)若4AB =,求弧CD 的长; (Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O 的切线.

7.如图,已知BC是O ⊙的直径,点D为BC延长线上的一点,点A为圆上一点,且AB AD,AC CD. (1)求证:ACD BAD △∽△; (2)求证:AD是O ⊙的切线. 8.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE 平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G. (1)求证:BC是⊙F的切线; (2)若点A、D的坐标分别为A(0,-1),D(2,0),求⊙F的半径; (3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.

中考数学专题训练圆的证明与计算

圆的证明与计算 1.如图,已知△ABC内接于⊙O,P是圆外一点,PA为⊙O的切线,且PA =PB,连接OP,线段AB与线段OP相交于点D. (1)求证:PB为⊙O的切线; (2)若PA=4 5 PO,⊙O的半径为10,求线段PD的长. 第1题图(1)证明:如解图,连接OA、OB, 第1题解图∵PA=PB,OA=OB,OP=OP, ∴△OAP≌△OBP(SSS), ∴∠OAP=∠OBP, ∵PA为⊙O的切线, ∴∠OAP=90°, ∴∠OBP=90°, ∵OB为⊙O的半径,

(2)解:∵PA =4 5PO ,⊙O 的半径为10, ∴在Rt △AOP 中,OA =PO 2-(45 PO )2=10, 解得PO = 503 , ∴cos ∠AOP =AO OP =OD AO , ∴OD =6, ∴PD =PO -OD =32 3 . 2. 如图,在△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连接DE . (1)求证:AC 是⊙O 的切线; (2)若cos C =3 5 ,AC =24,求直径AE 的长. 第2题图 (1)证明:∵AB =AC ,AD =DC , ∴∠C =∠B ,∠DAC =∠C , ∴∠DAC =∠B , 又∵∠E =∠B , ∴∠DAC =∠E , ∵AE 是⊙O 的直径, ∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠DAC +∠EAD =90°,

∴AE ⊥AC , ∵OA 是⊙O 的半径, ∴AC 是⊙O 的切线; (2)解:如解图,过点D 作DF ⊥AC 于点F , 第2题解图 ∵DA =DC , ∴CF =1 2 AC =12, 在Rt △CDF 中,∵cos C =CF CD =3 5 , ∴DC =20, ∴AD =20, 在Rt △CDF 中,由勾股定理得1622==CF CD DF -, ∵∠ADE =∠DFC =90°,∠E =∠C , ∴△ADE ∽△DFC , ∴AE DC =AD DF , 即 AE 20=16 20 ,解得AE =25, 即⊙O 的直径AE 为25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E ,过点E 作⊙O 的切线EF ,交BC 于点F . (1)求证:EF ⊥BC ; (2)若CD =2,tan C =2,求⊙O 的半径.

圆有关的证明题(附答案)

圆有关的证明题 1.如图,已知直线MN 与以AB 为直径的半圆相切于点C ,∠A=28°. (1)求∠ACM 的度数.(2)在MN 上是否存在一点D ,使AB ·CD=AC ·BC ,说明理由. 2.如图,在Rt △ABC 中,∠C=90°,AC=5,BC=12,⊙O 的半径为3. (1)若圆心O 与C 重合时,⊙O 与AB 有怎样的位置关系? (2)若点O 沿CA 移动,当OC 等于多少时,⊙O 与AB 相切? 3.(苏州市)已知:如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C . ①求证:AB =AC ; ②若tan ∠ABE = 21,(ⅰ)求BC AB 的值;(ⅱ)求当AC =2时,AE 的长. 4.(广州市)如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.

5.(河北省)已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰ DB =2︰3,AC =10,求sin B 的值. 6.(北京市海淀区)如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB 于 点D ,若tan B =2 1,PC =10cm ,求三角形BCD 的面积. 7.(宁夏回族自治区)如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积. 8.(四川省)已知,如图,以△ABC 的边AB 作直径的⊙O ,分别并AC 、BC 于点D 、E ,弦FG ∥AB ,S △CDE ︰S △ABC =1︰4,DE =5cm ,FG =8cm ,求梯形AFGB 的面积. 9.(贵阳市)如图所示:PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线, PA =10,PB =5,求: (1)⊙O 的面积(注:用含π的式子表示); (2)cos ∠BAP 的值.

四点共圆两个判定定理的证明

四点共圆两个判定定理的证明 1,当∠A=∠C=90·时,可以在答题中仅增加两行说明A、B、C、D四点共圆 连BD,设BD的中点为O′ ∵∠A = ∠C =90· ∴AO′ = BO′ = DO′ = CO′ ∴A、B、C、D在以O′为圆心,B O′为半径的圆上。 2,当那两个角不是直角时 一、附:已知∠A + ∠C = 180·,则A、B、C、D 四点共圆 证:设△ABD 的外接圆为⊙O ①假设C 在⊙O 内 则∠C >∠C′ 又因∠A + ∠C′= 180· ∴∠A + ∠C > 180·与已知矛盾 ②假设C 在⊙O 外 则∠C <∠C′ 又因∠A + ∠C′= 180· ∴∠A + ∠C < 180·与已知矛盾 综合以上点C在⊙O上

上述证明可压缩为6行: 证:设△ABD 的外接圆为⊙O 假设C 在⊙O 内或外时 则∠C ≠∠C′ 又因∠A + ∠C′= 180· ∴∠A + ∠C ≠ 180·与已知矛盾,故假设不成立,即点C 在⊙O上∴A、B、C、D四点共圆 二、附:已知∠A = ∠C ,则A、B、C、D 四点共圆 证:设△ABD 的外接圆为⊙O ①假设C 在⊙O 内 则∠C >∠C′ 又因∠A = ∠C′ ∴∠A <∠C 与已知矛盾 ②假设C 在⊙O 外 则∠C <∠C′ 又因∠A = ∠C′ ∴∠A >∠C 与已知矛盾 综合以上点C在⊙O上 上述证明可压缩为6行: 证:设△ABD 的外接圆为⊙O 假设C 在⊙O 内或外时 则∠C ≠∠C′ 又因∠A = ∠C′ ∴∠A ≠∠C 与已知矛盾,故假设不成立,即点C 在⊙O上 ∴A、B、C、D四点共圆

相关主题
文本预览
相关文档 最新文档