当前位置:文档之家› 《2.2函数的定义域和值域》 学案

《2.2函数的定义域和值域》 学案

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

人教版高中物理必修二:《曲线运动》学案(含答案)

第一节曲线运动 1.了解曲线的切线。 2.知道曲线运动速度的方向。 3.理解并掌握曲线运动的条件。 ★自主学习 1.曲线运动速度的方向:质点在某一点的速度,沿曲线在这一点的方向。 2.速度是矢量,它既有,又有。不管速度的大小是否改变,只要速度的发生变化,就表示速度矢量发生了变化。3.曲线运动的性质:曲线运动中速度的方向时刻(填“不变”、“改变”);也就是具有。所以,曲线运动是运动。 4.物体做匀速直线运动的条件:合力为,速度矢量(填“不变”、“改变”);当物体所受的方向与它的方向在上时,物体做直线运动;物体做曲线运动的条件:当物体所受的方向与它的方向不在同一直线上时,物体做曲线运动。 ★新知探究 一、曲线运动中速度方向的确定 1.曲线运动的几个实例 体育活动中的例子: 日常生活中的例子: 自然现象中的例子: 2.切线的理解 (1)数学上曲线的割线:过曲线上的A、B两点所作的这一条叫做曲线的割线。 (2)数学上曲线的切线:当曲线跟其割线的两个交点时,这条就叫这条曲线的切线。 (3)曲线运动质点速度的方向:沿曲线在这一点的。 (4)数学上曲线的切线与物理上曲线运动在某点的轨迹的切线方向的异同: 同:二者都是曲线上的两点之间所作的。 不同:前者是一条没有方向的直线,后者是一条有的。 二、曲线运动的性质

曲线运动中质点速度的方向时刻在,也就具有了,所以曲线运动是。 三、曲线运动的条件 1.规律发现 (1)演示实验: (2)观察结果: 2.规律内容 当物体受的的方向与它的方向上时,物体作曲线运动。 ★例题精析 【例题1】下列说法正确的是( ) A.只要速度大小不变,物体的运动就是匀速运动B.曲线运动的加速度一定不为零 C.曲线运动的速度方向,就是它的合力方向 D.曲线运动的速度方向为曲线上该点的切线方向 【训练1】关于曲线运动,下列说法正确的是( ) A.曲线运动一定是变速运动 B.变速运动不一定是曲线运动 C.曲线运动是变加速运动 D.加速度大小及速度大小都不变的运动一定不是曲线运动 【例题2】关于曲线运动,下列说法错误 ..的是( ) A.物体在恒力作用下可能做曲线运动 B.物体在变力作用下一定做曲线运动 C.做曲线运动的物体,其速度大小一定变化 D.做曲线运动的物体,其速度方向与合外力方向不在同一直线上 参考答案 ★自主学习 1.切线 2.大小方向方向 2. 3.改变加速度变速 3. 4.0 不变合力速度同一直线合力速度 ★新知探究 一、1.略 2.(1)直线 (2)非常非常接近割线(3)切线方向(4)非常非常接近割线方向线段 二、变化加速度变速运动 三、1.略2.合力速度不在同一直线 ★例题精析 例题1 BD 训练1 AB

微元法及定积分的几何应用教案

教案 教学目的与要求: 1.正确理解和掌握定积分微元法的基本思想; 2.掌握用定积分解决平面图形面积的问题; 3.培养学生分析问题解决问题的能力和数形结合的观念 重点:1、微元法及其基本思想;2、求平面图形的面积 难点:微元法的基本思想 教学内容与教学组织设计(45分钟): 第6.5节:定积分的几何应用 1 复习定积分的概念,引入微元法的思想 ………………………..15分钟 定积分的概念 ? b a dx x f )(0 1 lim ()n i i i f x λξ→==?∑. 教学安排 课 型:理论 教学方式:讲授 教学资源 多媒体、板书 授课题目(章、节) 第6.5节:定积分的几何应用

2 介绍微元法 …………………………………..5分钟 通过对求曲边梯形面积问题的回顾、分析、提炼,可得用定积分计算某个量U 的步骤: (1) 选取积分变量,并确定它的变化区间[,]a b ; (2) 求微元:将区间[,]a b 分成若干小区间,取其中的任一小区间[,]x x dx +,求出它所对应的部分量的近似值: ()U f x dx ?≈ (()f x 为[,]a b 上的连续函数 ) 则称()f x dx 为量U 的微元,且记作()dU f x dx =; (3) 列积分:以U 的微元dU 作被积表达式,以[,]a b 为积分区间,得()b a U f x dx =? . 这个方法叫做微元法。 微元法实质:找出U 的微元dU 的微分表达式dU=f(x)dx 。 3 求平面图形的面积 …………………………………..17分钟 类型一:D1型区域 (教师主导并详细讲解) 如图1,由曲线()y f x =及直线x a =、()x b a b =<与x 轴 所围成的曲边梯形面积A. 讲解:(板书) (1) 选变量:选x 为积分变量 (2) 求微元:在区间微元[,]x x dx +上,取x ξ=,则 ()dA f x dx = 图1 (3) 列积分:()b a A f x dx = ? 练习:(学生自主根据微元法进行分析,然后教师讲解) 如图2,求由曲线 ()y f x = 与 ()y g x = 及直线 x a =、()x b a b =<且 ()()f x g x ≥所围成的图形面积A 。

正多边形的概念及正多边形与圆的关系

24.6 正多边形与圆 第1课时正多边形的概念及正多边形与圆的关系 [学习目标] 1.理解正多边形与圆的关系及正多边形的有关概念; 2.理解并掌握正多边形的有关概念; 3.会应用正多边形和圆的有关知识画正多边形. [学法指导] 本节课的学习重点是理解正多边形与圆的关系及正多边形的有关概念,并能进行计算,学习难点是探索正多边形和圆的关系. [学习流程] 一、导学自习 1. 如果一个多边形的顶点都在圆上,这个多边形叫做圆的内接多边形,这个圆叫做这个多边形的 . 2.各边,各角也的多边形叫做正多边形. 思考: 正多边形的定义中“各边,各角”是正多边形的两个特征,缺一不可. 3.举例说出生活中常见的正多边形. 二、研习展评 活动1:思考:(1)你知道正多边形和圆有什么关系吗?你能借助圆做出一个正多边形吗? (2)将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论. 证明:如图1,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE. ?????, AB BC CD DE EA ==== Q ______________________, ∴ (3)如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗? (4)结论:正多边形和圆的关系:只要把一个圆分成的一些弧,就可以作出这个圆的,这个圆就是这个正多边形的 . 活动2:阅读教材,思考:如何利用等分圆弧的方法来作正n边形? 方法一、任何正n边形的作法:用量角器作一个等于的圆心角,再等分圆; 方法二、特殊正多边形的作法:正六边形和正方形等的尺规作法. (在此基础上,还可以进一步作出正三角形、正八边形、正十二边形) 做一做:在右图2中,用尺规作图画出圆O的内接正三角形. [当堂达标] 1.如图5所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是() A、60° B、45° C、30° D、22.5° 2.中华人民共和国国旗上的五角星的画法通常是先把圆五等分,然后连接五等分点 E A C D B O (图1) O (图2) (图5)

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

人教版高中物理必修二《曲线运动》教学设计

人教版高中物理必修二《曲线运动》教学 设计 人教版高中物理必修二《曲线运动》教学设计 一、教学目标 1.知识与技能 (1)知道曲线运动是一种变速运动,它在某点的瞬时速度方向在曲线这一点的切线上; (2)理解物体做曲线运动的条件是所受合外力与初速度不在同一直线上. 2.方法与过程 (1)类比直线运动认识曲线运动、瞬时速度方向的判断和曲线运动的条件; (2)通过实验观察培养学生的实验能力和分析归纳的能力. 3.情感态度与价值观 激发学生学习兴趣,培养学生探究物理问题的习惯. 二、教学重难点 1.曲线运动中瞬时速度方向的判断 2.理解物体做曲线运动的条件 三、教学过程 1.新课导入,引入曲线运动

教师:在必修一里我们学习了直线运动,我们知道物体做直线运动时他的运动轨迹是直线,需要满足的条件是物体所受的合力与速度的方向在同一条直线上。但在现实生活中,很多物体做的并非是直线运动,比如玩过山车的游客的运动、火车在其轨道上的运动、风中摇曳着的枝条的运动、人造地球围绕地球的运动(图片)。 问题1:在这几幅图片中,物体的运动轨迹有什么特点? (运动的轨迹是一条曲线) 教师:我们把像这样运动轨迹是曲线的运动叫做曲线运动。 设计意图:通过复习直线运动引入生活中更为常见的曲线运动,并借助实例归纳出曲线运动的概念,帮助学生认识曲线运动。 2.曲线运动的方向 问题2:我们知道物体在做直线运动时,物体的速度方向始终是保持不变的,那么在做曲线运动时,物体的速度的方向又有什么特点呢? (方向时刻在改变) 问题3:那么,我们该如何确定物体做曲线运动时每时每刻所对应速度的方向呢? 教师:我们猜想一下,钢珠从弯曲的玻璃管中滚落出,

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

高一物理学案(必修二全册)

一、曲线运动 【要点导学】 1、物体做曲线运动的速度方向是时刻发生变化的,质点经过某一点(或某一时刻)时的速度方向沿曲线上该点的。 2、物体做曲线运动时,至少物体速度的在不断发生变化,所以物体一定具有,所以曲线运动是运动。 3、物体做曲线运动的条件:物体所受合外力的方向与它的速度方向。 4、力可以改变物体运动状态,如将物体受到的合外力沿着物体的运动方向和垂直于物体的运动方向进行分解,则沿着速度方向的分力改变物体速度的;垂直于速度方向的分力改变物体速度的。速度大小是增大还是减小取决于沿着速度方向的分力与速度方向相同还是相反。做曲线运动的物体,其所受合外力方向总指向轨迹侧。 匀变速直线运动只有沿着速度方向的力,没有垂直速度方向的力,故速度的改变而不变;如果没有沿着速度方向的力,只有垂直速度方向的力,则物体运动的速度不变而不断改变,这就是今后要学习的匀速圆周运动。 【范例精析】 例1、在砂轮上磨刀具时可以看到,刀具与砂轮接触处有火星沿砂轮的切线飞出,为什么由此推断出砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向? 解析火星是从刀具与砂轮接触处擦落的炽热微粒,由于惯性,它们以被擦落时具有的速度做直线运动,因此,火星飞出的方向就表示砂轮上跟刀具接触处的质点的速度方向。火星沿砂轮切线飞出说明砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向。 例2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,则质点() A.一定做匀变速运动B.一定做直线运动 C.一定做非匀变速运动D.一定做曲线运动 解析:质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。由题意可知,当突然撤去F1时,质点受到的合力大小为F1,方向与F1相反,故A正确,C错误。在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是:F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是:F1的方向和速度方向不在一条直线上)。故B、D的说法均是错误的。 拓展:不少同学往往错误认为撤去哪个力,合力就沿哪个力的方向。物体在三个不在同一直线上的力的作用下保持静止,处于受力平衡状态,合力为零,任

定积分教学设计

定积分的简单应用 一、教学目标 1、 知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、 过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、 情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 二、 教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题,正确计算。 三、教学过程 (一)创设问题情境: 复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 引入:.计算 dx x ? --2 2 2 4 2.计算 ?-22 sin π πdx x 思考:用定积分表示阴影部分面积 选择X 为积分变量,曲边梯形面积为 (二)研究开发新结论 1计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成图形的面积S. 2计算由抛物线2 y x =在[]0,1上与X 轴在第一象限围成的图形的面积S. 总结解题步骤:1找到图形----画图得到曲边形. 2曲边形面积解法----转化为曲边梯形,做出辅助线. dx x f dx x f s b a b a ??-=)()(21

3定积分表示曲边梯形面积----确定积分区间、被积函数. 4计算定积分. (三)巩固应用结论 例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积. 分析:两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得 到。 解:2 01y x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、 (1,1),面积 S=1 20 x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象; 2.求交点; 3.用定积分表示所求的面积; 4.微积分基本定理求定积分。 巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y =x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =- 与曲线y =的横坐标,直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线y = 的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组4 y y x ?=?? =-?? 得直线4y x =-与曲线y =8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 28 4 4 [(4)]x dx = +--? ? ? -1

24.3 正多边形与圆 教学设计

24.3 正多边形和圆 一、【教学目标】 知识与能力:了解正多边形与圆的关系,以及正多边形的中心、半径、边心距、中心角等概念.经历探索正多边形与圆的关系过程,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题. 过程与方法:学生在探讨正多边形和圆的关系的学习过程中,体会到要善于发现和解决问题,提升学生的观察、比较、分析、概括及归纳的思维能力和推理能力. 情感态度与价值观:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又应用于生活,体会到事物之间是相互联系,相互作用的. 重点:了解正多边形与圆的关系,了解正多边形的有关概念. 难点:探索正多边形与圆的关系. 二、【教学过程】 一、巩固基础,复习回顾 问题1:什么是多边形? 问题2:多边形的内角和、外角和分别是多少? 问题3:什么样的多边形是正多边形? 问题4:正多边形都有哪些性质?(数量关系和对称性) 教师演示课件,提出问题,引导学生观察、思考. 学生独立思考,发表各自见解. 二、情景引入,探索新知 1、提出问题 你知道正多边形与圆的关系吗? 正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 例题:以圆内接正五边形为例证明:如图,把⊙O分成相等的5段弧,依次连接 各分点得到正五边形ABCDE. 问题:如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗? 定义:把圆分成n(n≥3)等份:依次连结各分点所得的多边形是这个圆的内 接正多边形. 教师演示课件,把圆分成相等的5段弧,依次连接各个分点得到五边形. 教师引导学生从正多边形的定义入手,证明多边形各边都相等,各角都相等,引导学生观察、分析.

第一章 学案2步步高高中物理必修二

学案2运动的合成与分解 [目标定位] 1.知道什么是运动的合成与分解,理解合运动与分运动等有关物理量之间的关系.2.会确定互成角度的两分运动的合运动的运动性质.3.会分析小船渡河问题. 一、位移和速度的合成与分解 [问题设计] 1.如图1所示,小明由码头A出发,准备送一批货物到河对岸的码头B.他驾船时始终保持船头指向与河岸垂直,但小明没有到达正对岸的码头B,而是到达下游的C处,此过程中小船参与了几个运动? 图1 答案小船参与了两个运动,即船垂直河岸的运动和船随水向下的漂流运动. 2.小船的实际位移、垂直河岸的位移、随水向下漂流的位移有什么关系? 答案如图所示,实际位移(合位移)和两分位移符合平行四边形定则. [要点提炼] 1.合运动和分运动 (1)合运动和分运动:一个物体同时参与两种运动时,这两种运动叫做分运动,而物体的实际运动叫做合运动. (2)合运动与分运动的关系 ①等时性:合运动与分运动经历的时间相等,即同时开始,同时进行,同时停止. ②独立性:一个物体同时参与了几个分运动,各分运动独立进行、互不影响,因此在研究某个分运动时,就可以不考虑其他分运动,就像其他分运动不存在一样. ③等效性:各分运动的相应参量叠加起来与合运动的参量相同.

2.运动的合成与分解 (1)已知分运动求合运动叫运动的合成;已知合运动求分运动叫运动的分解. (2)运动的合成和分解指的是位移、速度、加速度的合成和分解.位移、速度、加速度合成和分解时都遵循平行四边形定则. 3.合运动性质的判断 分析两个直线分运动的合运动的性质时,应先根据平行四边形定则,求出合运动的合初速度v 0和合加速度a ,然后进行判断. (1)判断是否做匀变速运动 ①若a =0时,物体沿合初速度v 0的方向做匀速直线运动. ②若a ≠0且a 恒定时,做匀变速运动. ③若a ≠0且a 变化时,做非匀变速运动. (2)判断轨迹的曲直 ①若a 与初速度共线,则做直线运动. ②若a 与初速度不共线,则做曲线运动. 二、小船渡河问题 1.最短时间问题:可根据运动等时性原理由船对静水的分运动时间来求解,由于河宽一定,当船对静水速度v 1垂直河岸时,如图2所示,垂直河岸方向的分速度最大,所以必有t min =d v 1 . 图2 2.最短位移问题:一般考察水流速度v 2小于船对静水速度v 1的情况较多,此种情况船的最短航程就等于河宽d ,此时船头指向应与上游河岸成θ角,如图3所示,且cos θ=v 2 v 1;若v 2> v 1,则最短航程s =v 2v 1d ,此时船头指向应与上游河岸成θ′角,且cos θ′=v 1 v 2 . 图3 三、关联速度的分解 绳、杆等连接的两个物体在运动过程中,其速度通常是不一样的,但两者的速度是有联系的(一般两个物体沿绳或杆方向的速度大小相等),我们称之为“关联”速度.解决此类问题的一般

定积分在几何学上的应用(比赛课教案)

教学题目: 选修2-2 1.7.1定积分在几何中的应用 教学目标: 一、知识与技能: 1.让学生深刻理解定积分的几何意义以及微积分的基本定理; 2.通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法 3.初步掌握利用定积分求曲边梯形的几种常见题型及方法 二、过程与方法: 1. 探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。 三、情感态度与价值观: 探究式的学习方法能够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神; 教学重点: 应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。 教学难点: 如何恰当选择积分变量和确定被积函数。 课型、课时: 新课,一课时 教学工具: 常用教具,多媒体,PPT课件 教学方法: 引导法,探究法,启示法 教学过程

积分?b a f (x )dx 在几何上表示 x =a 、x =b 与x 轴所围成的曲边梯形 的面积。 当f (x )≤0时由y =f (x )、x =a 、x =b 与 x 轴所围成的曲边梯形面积的负值 类型1.求由一条曲线y=f(x)和直线x=a,x=b(a

24.3正多边形和圆教案

24.3 正多边形和圆教案 教学内容 1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,?正多边形的半径,正多边形的中心角,正多边形的边心距. 2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系. 3.正多边形的画法. 教学目标 了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形. 复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容. 重难点、关键 1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、?边长之间的关系. 2.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、?弦心距、边长之间的关系. 教学过程 一、复习引入 请同学们口答下面两个问题. 1.什么叫正多边形? 2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、?中心对称吗?其对称轴有几条,对称中心是哪一点? 老师点评:1.各边相等,各角也相等的多边形是正多边形. 2.实例略.正多边形是轴对称图形,对称轴有无数多条;?正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点. 二、探索新知 如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线 为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,?正六边形ABCDEF ,连结AD 、CF 交于一点,以O 为圆心,OA 为半径作圆,那么肯定B 、C 、?D 、E 、F 都在这个圆上. 因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆. 我们以圆内接正六边形为例证明. 如图所示的圆,把⊙O ?分成相等的6?段弧,依次连接各分点得到六边ABCDEF ,下面证明,它是正六边形. ∵AB=BC=CD=DE=EF ∴AB=BC=CD=DE=EF 又∴∠A= 12BCF=1 2(BC+CD+DE+EF )=2BC ∠B=12CDA=1 2 (CD+DE+EF+FA )=2CD ∴∠A=∠B 同理可证:∠B=∠C=∠D=∠E=∠F=∠A

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

高中物理必修二知识点整理

德胜学校高一物理校本学案 粤教版高中物理必修二知识点汇总 时间 班级 姓名 第一章 抛体运动 一、曲线运动 1.曲线运动的速度方向 做曲线运动的物体,在某点的速度方向,就是通过这一点的轨迹的切线方向.物体在曲线运动中 的速度方向时刻在改变,所以曲线运动一定是变速运动.(说明:曲线运动是变速运动,只是说明物 体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) 2.物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直 线上.当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物 体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合 外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. 3.曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受 合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向. 二、运动的合成与分解的方法 1.运动的合成与分解:平行四边形定则,等效分解。 2.运动分解的基本方法 (1)根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解. (2)两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定. ①根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变 速运动;若合加速度变化(包括大小或方向)则为非匀变速运动. ②根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速 度的方向在同一直线上则为直线运动,否则为曲线运动. ③小船过河的两类问题:最短时间过河以及最短路程过河。 如图所示,用v 1表示船速,v 2表示水速.我们讨论几个关于渡河的问题. θ sin 11s v d t v == ,船渡河的位移短直河岸),渡河时间最垂直河岸时(即船头垂当以最小位移渡河:当船在静水中的速度 1v 大于水流速度2v 时,小船可以垂直渡河,显然渡河的最小位移s 等于河宽d ,船头

定积分的应用教案

第六章定积分的应用 教学目的 1、理解元素法的基本思想; 2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体 积及侧面积、平行截面面积为已知的立体体积)。 3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。教学重点: 1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知 的立体体积。 2、计算变力所做的功、引力、压力和函数的平均值等。 教学难点: 1、截面面积为已知的立体体积。 2、引力。 §6. 1 定积分的元素法 回忆曲边梯形的面积: 设y=f (x)≥0 (x∈[a,b]).如果说积分, ?=b a dx x f A) (是以[a,b]为底的曲边梯形的面积,则积分上限函数 ?=x a dt t f x A)( ) ( 就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值?A≈f (x)dx, f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以 [a,b]为积分区间的定积分: ?=b a dx x f A) (. 一般情况下,为求某一量U,先将此量分布在某一区间[a,b]上,分布在[a,x]上的量用函数U(x)表示,再求这一量的元素dU(x),设dU(x)=u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区间求定积分即得 ?=b a dx x f U) (.用这一方法求一量的值的方法称为微元法(或元素法).

§6. 2 定积分在几何上的应用 一、平面图形的面积 1.直角坐标情形 设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S b a ?-=)]()([下上. 类似地, 由左右两条曲线x =?左(y )与x =?右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为 ?-=d c dy y y S )]()([左右??. 例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积. 解 (1)画图. (2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分 31]3132[)(10323102=-=-=?x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图. (2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,2 1)(2+==y y y y 右左??. (4)计算积分 ?--+=422)2 14(dy y y S 18]61421[4232=-+=-y y y . 例3 求椭圆12222=+b y a x 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以 ?=a ydx S 04. 椭圆的参数方程为: x =a cos t , y =b sin t , 于是 ?=a ydx S 04?=0 )cos (sin 4πt a td b

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

相关主题
文本预览
相关文档 最新文档