当前位置:文档之家› 2016-2017学年高中生物 第3章 第2节 DNA分子的结构课时作业 新人教版必修2

2016-2017学年高中生物 第3章 第2节 DNA分子的结构课时作业 新人教版必修2

2016-2017学年高中生物 第3章 第2节 DNA分子的结构课时作业 新人教版必修2
2016-2017学年高中生物 第3章 第2节 DNA分子的结构课时作业 新人教版必修2

第2节 DNA分子的结构

【目标导航】 1.阅读教材图文,了解DNA双螺旋结构模型的构建过程。2.结合教材图3-11和相关模型,概述DNA分子的双螺旋结构模型的特点。3.通过制作DNA双螺旋结构模型,进一步理解其结构特点并掌握有关的计算规律。

一、DNA双螺旋结构模型的构建(阅读P47-48)

1.构建者

美国生物学家沃森和英国物理学家克里克。

2.构建过程

3.新模型的特点及意义

(1)特点:A-T碱基对与G-C碱基对具有相同的形状和直径,这样组成的DNA分子具有稳定的直径。

(2)意义:

①能解释A、T、G、C的数量关系;

②能解释DNA的复制;

③模型与X射线衍射照片完全相符。

二、DNA分子的结构(阅读P49)

1.填图

右图为DNA分子的双螺旋结构模型图,试着完成相关内容。

(1)写出图中各部分的名称:

①胸腺嘧啶(T);②脱氧核糖;③磷酸;④胸腺嘧啶脱氧核苷酸;⑤碱

基对;⑥腺嘌呤(A);⑦鸟嘌呤(G);⑧胞嘧啶(C)。

(2)图中可以看出,和A配对的一定是T,和G配对的一定是C,碱基对

之间靠氢键连接。其中A-T之间是2个氢键,G-C之间是3个氢键。

2.双螺旋结构特点

(1)DNA分子是由两条链构成的,这两条链按反向平行方式盘旋成双螺旋结构。

(2)DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。

(3)两条链上的碱基通过氢键连接成碱基对。碱基配对的规律是:A与T配对,G与C配对。碱基之间的这种一一对应的关系,叫做碱基互补配对原则。

判断正误:

(1)DNA分子由四种脱氧核苷酸组成,这四种脱氧核苷酸含有的碱基是A、U、C、G。( )

(2)A—T碱基对和G—C碱基对具有相同的形状和直径,使DNA分子具有稳定的直径。( )

(3)DNA的两条核糖核苷酸链反向平行盘旋成双螺旋结构。( )

(4)DNA双螺旋结构的基本骨架是由脱氧核糖和磷酸交替连接而成的。( )

(5)两条链上的碱基通过氢键连接成碱基对。( )

(6)DNA上碱基对的形成遵循碱基互补配对原则,即A与T配对,G与C配对。( )

答案(1)×(2)√(3)×(4)√(5)√(6)√

一、DNA双螺旋结构模型的构建

1.DNA分子结构层次

基本组成元素:C、H、O、N、P

基本组成物质:磷酸、脱氧核糖、含氮碱基

基本组成单位:脱氧核苷酸(4种)

DNA单链:脱氧核苷酸链

DNA双链

空间结构:DNA分子双螺旋结构

2.制作DNA双螺旋结构模型

(1)制作原理

DNA的脱氧核苷酸双链反向平行,磷酸与脱氧核糖交替连接,排列在外侧。碱基排列在内侧,碱基对通过氢键连接,碱基互补配对。

(2)制作程序

①使用各种材料分别“制作”若干个磷酸、脱氧核糖、碱基;将各种配件整合在一起,并连接成脱氧核苷酸链;连接两条脱氧核苷酸链,拼成DNA分子平面结构图;再“旋转”成双螺旋结构。

②根据设计计划,对制作的DNA分子双螺旋结构模型进行检查,对模型的不足加以修正。

1.写出脱氧核苷酸的化学元素组成、及种类。

答案脱氧核苷酸的基本组成元素是C、H、O、N、P,脱氧核苷酸有4种。

2.根据沃森和克里克的模型,你认为DNA分子的空间结构是怎样的?

答案两条链反向平行盘旋成的双螺旋结构。

1.下列关于威尔金斯、沃森和克里克、富兰克林、查哥夫等人在DNA分子结构构建方面的突出贡献的说法中,正确的是( )

A.威尔金斯和富兰克林提供了DNA分子的电子显微镜图像

B.沃森和克里克提出了DNA分子的双螺旋结构模型

C.查哥夫提出了A与T配对、C与G配对的正确关系

D.富兰克林和查哥夫发现A量等于T量、C量等于G量

【问题导析】(1)在DNA分子结构构建方面,威尔金斯和富兰克林提供了DNA的衍射图谱;

(2)查哥夫发现了A量等于T量、C量等于G量。

(3)沃森和克里克在以上基础上提出了DNA分子的双螺旋结构模型。

答案 B

【一题多变】

在制作DNA双螺旋结构模型时,如图为两个脱氧核苷酸的模型,其中圆圈代表磷酸,下列说法正确的是( )

A.方形可能代表A、T、C、U四种含氮碱基

B.两个圆圈可用曲别针(代表化学键)连接,以形成DNA的单链

C.曲别针(代表化学键)应该连接在一个核苷酸的五边形和另一个核苷酸的圆圈上

D.如果两个脱氧核苷酸分别位于链的两侧,两个模型方向相同

答案 C

解析方形代表含氮碱基,在DNA中有A、T、C、G四种,没有U,A错误;DNA中一个核苷酸的五边形和另一个核苷酸的圆圈相连接以形成DNA单链,而不是两个圆圈之间,B错误、

C 正确;两条DNA 单链的位置关系是反向平行,

D 错误。

二、DNA 分子的结构

1.DNA 分子的空间结构分析

2.巧记DNA 分子的组成及结构的“五、四、三、二、一”

3.DNA 分子结构中的碱基计算

(1)共性:不因生物种类的不同而不同。

A T =T A =1;G C =C G =1;A +C T +G =A +G T +C

=1。 (2)特异性:A +T G +C

的值在不同DNA 分子中是不同的,是DNA 分子多样性和特异性的表现。 (3)相关计算

①腺嘌呤与胸腺嘧啶相等,鸟嘌呤与胞嘧啶相等,即A =T ,G =C 。因此,嘌呤总数与嘧啶总数相等,即A +G =T +C 。一条链中的A 和另一条链中的T 相等,可记为A 1=T 2,同样:T 1=A 2,G 1=C 2,C 1=G 2。

②设在双链DNA 分子中的一条链上A 1+T 1=n%,因为A 1=T 2,A 2=T 1,则:A 1+T 1=T 2+A 2=n%。整个DNA 分子中:A +T =n%。

在双链DNA 分子中,互补碱基之和所占比例在任意一条链及整个DNA 分子中都相等。 ③设双链DNA 分子中,一条链上:

A 1+G 1T 1+C 1=m ,则:T 2+C 2A 2+G 2=A 1+G 1T 1+C 1=m ,所以互补链上A 2+G 2T 2+C 2=1m

。 双链DNA 分子中,非互补碱基之和的比值在两条互补链中互为倒数。

④DNA 分子中共有4种类型的碱基对,若某个DNA 分子具有n 个碱基对,则DNA 分子可有4n

种碱基对排列方式。

1.在一个双链DNA 分子中,脱氧核糖、磷酸和含氮碱基的数量比例关系如何?

答案 脱氧核糖∶磷酸∶碱基=1∶1∶1。

2.双链DNA 分子中,嘌呤碱基数与嘧啶碱基数有什么关系?

答案 嘌呤碱基数=嘧啶碱基数。

2.如图是DNA 分子的部分平面结构示意图,下列有关叙述不正确的是( )

A .图中4的全称是腺嘌呤脱氧核苷酸

B .构成DNA 的核苷酸种类的不同与2有关

C .N 元素存在于图中的含氮碱基中

D .从主链上看,两条脱氧核苷酸链反向平行

【问题导析】 (1)构成DNA 分子的基本单位是脱氧核苷酸;

(2)DNA 分子中脱氧核苷酸种类的不同与含氮碱基有关,与脱氧核糖无关,图中2为脱氧核糖,3为含氮碱基。

答案 B

【一题多变】

(1)从主链上看,两条单链__________平行;从碱基关系看,两条单链____________。

(2)__________和__________相间排列,构成了DNA 分子的基本骨架。

(3)图中有________种碱基,________种碱基对。

(4)含有200个碱基的某DNA片段中碱基间的氢键共有260个。请回答:

①该DNA片段中共有腺嘌呤________个,C和G构成的碱基对共________对。

②在DNA分子稳定性的比较中,________碱基对的比例越高,DNA分子稳定性越高。

答案(1)反向碱基互补配对(2)脱氧核糖磷酸

(3)4 3 (4)①4060 ②G与C

1.

由50个脱氧核苷酸构成的DNA分子,按其碱基的排列顺序不同,决定了DNA的种类及特性分别是( )

①504种②450种③425种④遗传性⑤多样性

⑥特异性

A.①④B.②⑤

C.②⑥ D.③⑤

答案 D

解析50个脱氧核苷酸共构成了25个碱基对,共有排列顺序425种,由此说明由于碱基对(或脱氧核苷酸对)的排列顺序的多样性,决定了DNA分子的多样性。

2.

某DNA分子中A+T占整个DNA分子碱基总数的44%,其中一条链(a)上的G占该链碱基总数的21%,那么,对应的另一条互补链(b)上的G占该链碱基总数的比例是( )

A.35% B.29%

C.28% D.21%

答案 A

解析整个DNA中的A+T占整个DNA碱基总数的44%,则G+C占整个DNA碱基总数的56%,

又因为其中一条链(a)上的G占该链碱基总数的21%,所以与G对应的互补链(b)上的C占b 链碱基总数的21%,则G(a链上)+C(b链上)占DNA分子碱基总数的21%。因为总的G+C占整个DNA分子碱基总数的56%,所以G(b链上)+C(a链上)占DNA整个分子碱基总数的35%,推得G占b链碱基总数的35%,所以答案选A。

3.

分析以下材料,回答有关问题。

材料一在沃森和克里克提出DNA的双螺旋结构模型之前,人们已经证实了DNA分子是由许多脱氧核苷酸构成的长链,自然界中的DNA并不以单链形式存在,而是由两条链结合形成的。材料二在1949年到1951年期间,科学家查哥夫(E.Chargaff)研究不同生物的DNA时发现,DNA分子中的嘧啶核苷酸的总数始终等于嘌呤核苷酸的总数,即A的总数等于T的总数,G 的总数等于C的总数,但(A+T)与(G+C)的比值是不固定的。

材料三根据富兰克林(R.E.Franklin)等人对DNA的X射线衍射分析表明,DNA分子由许多“亚单位”组成,每一层的间距为0.34 nm,而且整个DNA分子长链的直径是恒定的。

以上科学研究成果为1953年沃森和克里克提出DNA的双螺旋结构模型奠定了基础。请分析回答:

(1)材料一表明DNA分子是由两条____________组成的,其基本单位是____________。

(2)嘧啶核苷酸的总数始终等于嘌呤核苷酸的总数,说明__________________________。

(3)A的总数等于T的总数,G的总数等于C的总数,说明____________________________。

(4)A与T的总数和G与C的总数的比值不固定,说明________________________________。

(5)富兰克林等人提出的DNA分子中的亚单位事实上是________;亚单位的间距都为0.34 nm,而且DNA分子的直径是恒定的,这些特征表明____________。

(6)基于以上分析,沃森和克里克提出了各对应碱基之间的关系是__________________________,并成功地构建了DNA分子的双螺旋结构模型。

答案(1)脱氧核苷酸长链脱氧核苷酸

(2)DNA分子中嘌呤与嘧啶之间一一对应

(3)A与T一一对应,C与G一一对应

(4)A与T之间的对应和C与G之间的对应互不影响

(5)碱基对DNA分子的空间结构非常规则

(6)A与T配对,C与G配对

解析材料一表明了当时科学界对DNA的认识是:DNA分子是以4种脱氧核苷酸为单位连接而成的双链结构。嘧啶核苷酸的总数始终等于嘌呤核苷酸的总数,即A的总数等于T的总数,G的总数等于C的总数,说明二者可能是一种对应关系,而A与T的总数和G与C的总数的

比值不固定则说明A 与T 之间的对应和C 与G 之间的对应是互不影响的,所以沃森和克里克提出了各对应碱基之间的关系是A 与T 配对,C 与G 配对,结果发现与各种事实相符,从而获得了成功。

【基础巩固】

1.下列各项中,能正确表示DNA 分子中脱氧核苷酸对的是( )

答案 A

解析 DNA 分子中的碱基互补配对原则为A 与T 配对,G 与C 配对,A 与T 之间形成两个氢键,G 与C 之间形成三个氢键,两条链反向平行,所以A 项正确;B 、D 两项配对方式不对,C 项两条链方向不对。

2.DNA 的一条单链中A +G T +C

=0.4。上述比例在其互补单链和整个DNA 分子中分别为( ) A .0.4、0.6 B .2.5、1.0

C .0.4、0.4

D .0.6、1.0

答案 B

解析 根据碱基互补配对原则,在整个DNA 分子中,因为A =T ,G =C ,所以A +G T +C

比值为1.0。在双链DNA 分子中,一条链上的A +G T +C 与另一条链上T +C A +G 相等为0.4,因而互补链中A +G T +C

=2.5,互为倒数。

3.下面为DNA 分子的结构示意图,对该图的正确描述是( )

A .②和③相间排列,构成了DNA 分子的基本骨架

B .①②③构成胞嘧啶脱氧核苷酸

C .④占的比例越大,DNA 分子越稳定

D .DNA 分子中⑤⑥⑦⑧依次代表A 、G 、C 、T

答案 D

解析 DNA 分子的基本骨架是由脱氧核糖和磷酸交替连接而成,选项A 错误;胞嘧啶脱氧核苷酸由②③⑨组成,B 项错误;④是A 与T 之间的氢键,G 、C 对含量越多,DNA 分子越稳定,

选项C错误;根据碱基互补配对原则,⑤、⑥、⑦、⑧依次代表A、G、C、T,D项正确。4.下图是制作DNA双螺旋结构模型的过程图,请回答下面的问题。

(1)在制作模型前进行的设计中,甲处应考虑具备______种材料,它们分别是________________________;其中五边形材料表示____________。

(2)乙表示的物质是____________,a位置的元素是________。制作一个乙用到了________种材料。

(3)由乙连接成丙的过程,需考虑的主要有:两条链中五边形材料的顶角应呈________(填“同向”或“反向”)关系;若一条链的下端是磷酸,则另一条链的上端应该是________,这样制作的目的是体现DNA双链________的特点。

(4)随机将班里某两位同学制作的单链连接成双链,不合理的地方最可能是__________________________。

(5)丙到丁过程体现了DNA分子________的特点,丁中排在外侧的物质是______________________。

答案(1)6 磷酸、脱氧核糖、四种碱基脱氧核糖

(2)脱氧核苷酸氧 3 (3)反向磷酸反向平行(4)双链间的碱基配对不遵循碱基互补原则(5)螺旋交替连接的脱氧核糖和磷酸

【巩固提升】

5.某生物核酸的碱基组成是嘌呤碱基占58%,嘧啶碱基占42%,此生物不可能是( ) A.噬菌体 B.大肠杆菌

C.人或酵母菌 D.烟草

答案 A

解析噬菌体由DNA和蛋白质构成,DNA为双链,嘌呤数与嘧啶数应相等;在人、酵母菌、大肠杆菌、烟草中既有DNA,也有RNA,且RNA为单链,因此嘌呤数与嘧啶数可能不相等。6.某双链DNA分子中,鸟嘌呤与胞嘧啶之和占全部碱基的54%。其中α链上的碱基中,22%是腺嘌呤,28%是胞嘧啶,则β链中腺嘌呤占该链上所有碱基的比例和β链中的胞嘧啶占整个DNA分子中所有碱基的比例分别为( )

A.24%、13% B.23%、27%

C.48%、26% D.22%、28%

答案 A

解析假设该DNA分子中碱基总数为200个,则G+C=108(个),又因G=C,所以G=C=

54(个);已知A α=100×22%=22(个),C α=28个,又因C α+C β=C ,所以C β=54-28=26(个),则β链中C 占整个DNA 分子中所有碱基的比例为26÷200=13%。关于腺嘌呤的计

算,因为T =A =200-1082

=46(个),A β=46-22=24(个),则在β链中腺嘌呤占该链上所有碱基的比例为24%。

7.如图是DNA 片段的结构图,请据图回答:

(1)图甲是DNA 片段的________结构,图乙是DNA 片段的____________结构。

(2)填出图中部分结构的名称:[2]________________、[5]________________。

(3)从图中可以看出:DNA 分子中的两条长链是由____________和________交替连接的。

(4)碱基对之间通过________连接,碱基配对的方式为:______________与______________配对;____________与____________配对。

(5)从图甲可以看出:组成DNA 分子的两条链的方向是________的;从图乙可以看出:组成DNA 分子的两条链相互缠绕成________的________结构。

答案 (1)平面 立体(或空间) (2)一条脱氧核苷酸长链的片段 腺嘌呤脱氧核苷酸 (3)脱氧核糖 磷酸 (4)氢键 A(腺嘌呤) T(胸腺嘧啶) G(鸟嘌呤) C(胞嘧啶) (5)反向 规则 双螺旋

解析 (1)从图中可以看出:甲表示的是DNA 分子的平面结构,而乙表示的是DNA 分子的立体(空间)结构。(2)图中2表示的是一条脱氧核苷酸长链的片段,而5表示的是腺嘌呤脱氧核苷酸。(3)从甲图的平面结构可以看出:DNA 分子中脱氧核糖和磷酸交替连接,排列在外侧构成了基本骨架。(4)DNA 分子两条链上的碱基通过氢键连接成碱基对,且有一定规律:A 与T 配对,G 与C 配对。(5)根据图甲可以判断:组成DNA 分子的两条脱氧核苷酸链是反向平行的;从图乙可以看出组成DNA 分子的两条脱氧核苷酸链相互缠绕成规则的双螺旋结构。

8.根据相关知识回答下列问题。

(1)已知在DNA 分子的一条单链中A +C T +G

=m ,则另一条互补链中这种比例是 ________,这个比例关系在整个DNA 分子中是________。

(2)若DNA 分子的一条单链中A +T C +G

=k ,则另一条互补链中这种比例是 __________,而在整个DNA 分子中是________。

(3)如果DNA 分子的一条链中的A 占15%,互补链中的A 占25%,则整个DNA 分子中A 占

________。

答案 (1)1m

1 (2)k k (3)20% 【走进高考】

9.(2011·上海卷,27,改编)某双链DNA 分子含有200个碱基,一条链上A∶T∶G∶C=1∶2∶3∶4,则该DNA 分子( )

A .含有4个游离的磷酸基团

B .含有腺嘌呤脱氧核苷酸20个

C .四种含氮碱基A∶T∶G∶C=3∶3∶7∶7

D .碱基排列方式共有4100种

答案 C

解析 A 错误:一个双链DNA 分子中含有2个游离的磷酸基团。由一条链上A∶T∶G∶C=1∶2∶3∶4,计算得一条链上100个碱基中含A 、T 、G 、C 依次是10、20、30、40,另一条链上含A 、T 、G 、C 则依次是20、10、40、30。故该DNA 中含腺嘌呤脱氧核苷酸数为10+20=30个,故B 项错误。C 项正确:四种含氮碱基的比例是A∶T∶G∶C=(10+20)∶(20+

10)∶(30+40)∶(40+30)=3∶3∶7∶7。D 项错误:含200个碱基的DNA 不考虑每种碱基比例关系的情况下,可能的碱基排列方式共有4100种。但因碱基数量比例已确定,故碱基排列方式肯定少于4100种,且一个DNA 分子只有一种特定的碱基排列顺序。

10.(2010·江苏卷,1)下列关于核酸的叙述中,正确的是( )

A .DNA 和RNA 中的五碳糖相同

B .组成DNA 与ATP 的元素种类不同

C .T 2噬菌体的遗传信息贮存在RNA 中

D .双链DNA 分子中嘌呤数等于嘧啶数

答案 D

解析 本题主要考查核酸的组成、结构和功能。DNA 含有脱氧核糖,RNA 含有核糖,A 项错误。DNA 和ATP 都是由C 、H 、O 、N 、P 五种元素组成,B 项错误。T 2噬菌体遗传物质为DNA ,故其遗传信息也储存在DNA 中,C 项错误。双链DNA 嘌呤总和嘧啶碱基互补配对,故两者数量相等,D 项正确。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

人教版必修二第2节《DNA分子的结构》学案1

人教版必修二第2节《DNA 分子的结构》学案13章 第2节 DNA 分子的结构 训练案 DNA 碱基计算的一般规律 1. DNA 双链中,互补碱基的数量相等 (A=T 、C=G) ; DNA 单链中,互补碱基的数量不一定相等 (A ≠ T 、C ≠ G ) 2. 双链DNA 分子中两组不互补碱基对的碱基之和的比值为1,即嘌呤碱基总数等于嘧啶碱基总数。 (A+G )/(T+C )=1 即 A+G = T+C 将C 跟G 等量替换得到:(A+C )/(T+G )=1 即 A+C = T+G ①双链DNA 分子中,两互补碱基相等;任意两个不互补碱基之和恒等,各占碱基总数的50%,且不互补碱基之和的比值等于1 ∵A=T , C=G ∴ A+G=T+C =A+C=T+G= 50% ( A+G)/(T+C)=(A+C)/(T+G)=(T+C)/(A+G)=(T+G)/(A+C)=1 ②双链DNA 分子中A+T/G+C 值等于其中任何一条单链中的 A+T/G+C 值。 n C G T A C G T A C G T A =++=++=++22221111 推断过程: ③双链DNA 分子中,互补的两条单链中的A+G/T+C 值互为倒数。即两组不互补碱基之和的比值等于另一互补链中这一 比值的倒数。 n C T G A =++1111 n C T G A 12222=++ 推断过程: ④双链DNA 分子中,A+T 占整个双链DNA 分子碱基总数的百分比等于其中任何一条单链中A+T 占该单链碱基总数的百分比。 %222222111111m C G T A T A C G T A T A C G T A T A =++++=++++=++++ %222222111111m C G T A C G C G T A C G C G T A C G =++++=++++=++++ 推断过程 一、单项选择题:

DNA分子结构和特点-教学设计

DNA的分子结构和特点(1课时) 一、教学理念 本节内容的知识较为基础,又是分析讲解结构及特点,因此运用数学中常用的“点、线、面、体”的方法来逐步进入,层层递进地引导学生认识DNA的分子结构和特点。通过小组合作探究的方式,使学生能在此过程中体验科学探究的过程,最后在小组间的交流、比较和归纳中水到渠成地得出DNA分子结构的主要特点。 再辅以物理模型的展示,给学生一个感性认识,使学生对知识有了更深的理解。 二、学习者分析 本节课的教授对象是高二年级的学生,他们已经学习了核酸的元素组成等基础知识,掌握了生物的生殖过程、染色体的化学组成等相关知识,在上节课中也懂得了DNA是生物主要的遗传物质,这些都为本节课新知识的学习提供了必要的知识储备。学生在上节课学习了DNA是主要遗传物质之后,自然会产生类似“DNA凭什么可以成为遗传物质?”的疑问,这就激发了学生学习本节内容甚至学习生物的兴趣。 然而高二的学生尽管具备了一定的认知能力,但其思维的目的性、连续性和逻辑性还不完善,因此需要教师正确适时地加以引导;其次,学生更容易接受形象直观的知识,其空间想象力不足,所以在学习本节内容是有必要通过直观的模型构建或辅以动画、视频来帮助学生理解。 群体特征:异质程度高,规模为一个班级,整体印象积极好表现。 三、教材分析 本节课选自浙科版高二《生物学》必修二第三章第二节,内容包括DNA的分子结构、DNA分子的结构特点以及DNA的特性。本节课在学生学习了DNA是主

要的遗传物质之后,进一步阐述DNA分子作为主要的遗传物质到底如何携带遗传信息,引发学生对科学本质的探究。虽然学生对这一方面的知识没有过多接触,但知识结构较为清晰,具有一定逻辑性。同时,本节课的学习也为接下去了解DNA 分子的复制、遗传信息的表达打下基础,因此,本节课对于学生的知识框架而言具有承上启下的作用。 四、教学目标 1、知识目标:简述DNA的分子组成;概述DNA分子结构及其特点;举例说 出DNA的特性在生活中的运用; 2、能力目标:通过对DNA双螺旋模型建立科学研究方法的学习能够独立自主 地建立模型,提高观察、探索以及动手操作能力;养成看图分析问题的能力; 3、情感目标:认识到多学科合作探究的重要性,体会科学探索的艰辛,树立科 学的价值观。 五、重点与难点分析 1、教与学重点:概述DNA分子的结构及其特点;理解DNA双螺旋结构; 2、教与学难点:DNA分子结构特点的分析;尝试解释DNA分子的特性。 六、教与学的方法 以讲授法为主,多媒体与物理模型辅助,小组讨论,独立思考,真题复习加深理解。 七、教学准备 收集与DNA相关的时事资料或生活实事,DNA双螺旋结构的物理模型,制作与课题相关的多媒体课件。 八、教学过程

基因与分子生物学第二章复习题

《基因与分子生物学》第二章复习题 一、名词解释 1. 核小体:指由DNA链缠绕一个组蛋白核构成的念珠状结构,是用于包装染色体的结构单位。 2. DNA的高级机构:DNA双螺旋结构进一步扭曲盘绕形成的超螺旋结构。 3. DNA拓扑异构酶:通过改变DNA互绕值引起拓扑异构反应的酶。 4. 启动子:能被RNA聚合酶识别,结合并启动基因转录的一段DNA序列。 5. 复制叉:双链DNA在复制起点解开成两股链,分别进行复制。这时在复制起点呈现叉子 的形式,被称为复制叉。 6. 半不连续复制:前导链的连续复制和后随链不连续复制的DNA复制现象。 7. C值:一种生物单倍体基因组DNA的总量值称为C值。 8. 冈崎片段:DNA合成过程中,后随链的合成是不连续进行的,先合成许多片段,最后各 段再连接成为一条长链。这些小的片段叫做冈崎片段。 9. DNA二级结构:两条多核苷酸链反向平行盘绕所生成的双螺旋结构。 10. 半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。 11 C值矛盾:C值指一种生物单倍体基因组DNA的总量。一种生物单倍体的基因组DNA 的总量与其种族进化的复杂程度不一致的现象称为C值矛盾。 12 复制子:DNA复制从起点开始双向进行直到终点为止,每一个这样的DNA单位称为复制子或复制单元。 13 重叠基因:指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列为两个 或两个以上基因的组成部分。 14. 染色体: 由核蛋白组成、能用碱性染料染色、有结构的线状体,是DNA的主要载体 15. DNA的修复: 是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样, 重新能执行它原来的功能"或"使细胞能够耐受DNA的损伤而能继续生存 16. DNA的一级结构:就是指4种核苷酸的连接及排列顺序,表示了该DNA分子的化学结 构。 17. 基因:一段有功能的DNA序列。 18. 基因组:特定生物体的整套(单倍体)遗传物质的总和

人教版必修2第3章第2节 DNA分子的结构作业

2019-2020学年人教版必修2 第3章第2节DNA分子的结构作业 1.下列关于威尔金斯、富兰克林、沃森和克里克、查哥夫等人在DNA分子结构构建方面的突出贡献的说法中,正确的是() A.威尔金斯和富兰克林提供了DNA分子的电子显微镜图像 B.沃森和克里克构建了DNA分子的双螺旋结构模型 C.查哥夫提出了A与T配对、C与G配对的正确关系 D.富兰克林和查哥夫发现A的量等于T的量、C的量等于G 的量 解析:威尔金斯和富兰克林提供了DNA衍射图谱,查哥夫发现腺嘌呤的量总是等于胸腺嘧啶的量,鸟嘌呤的量总是等于胞嘧啶的量。沃森和克里克构建了DNA的双螺旋结构模型。 答案:B 2.DNA的一条单链中(A+G)/(T+C)=0.4。上述比例在其互补单链和整个DNA分子中分别为() A.0.4、0.6B.2.5、1.0 C.0.4、0.4 D.0.6、1.0 解析:在整个DNA分子中,因A=T,G=C,所以(A+G)/(T +C)=1.0。在双链DNA分子中,一条链上的(T+C)/(A+G)与另一条链上(A+G)/(T+C)相等,均为0.4,因而互补链中(A+G)/(T+C)=2.5。 答案:B 3.某同学在制作DNA双螺旋结构模型的实验中,按要求制作含20个碱基对的DNA片段。那么该同学需要制作长方形、五边形、圆形塑料片的数量依次为() A.20,20,20 B.30,30,30

C .40,40,40 D .20,30,40 解析:含20个碱基对的DNA 片段包括40个脱氧核苷酸,长方形、五边形、圆形依次代表碱基、脱氧核糖、磷酸,所以都需要40个。 答案:C 4.经检测得知,一双链DNA 分子中鸟嘌呤的数目为x ,其占碱基总数量的比例是y ,以下推断正确的是( ) A .与鸟嘌呤互补的碱基占碱基总数的比例是1-y B .该DNA 分子的嘌呤和嘧啶的比值是x y C .该DNA 分子的碱基之间的氢键数是x (1+2y ) D .与鸟嘌呤不互补的碱基数目是x (1-2y )y 答案:D 5.下列关于DNA 分子结构的叙述不正确的是( ) A .每个DNA 分子一般都含有4种脱氧核苷酸 B .一个DNA 分子中的碱基、磷酸、脱氧核苷酸、脱氧核糖的数目是相等的 C .每个脱氧核糖上均连着一个磷酸和一个碱基 D .若一个双链DNA 分子中有40个腺嘌呤,就一定同时含有40个胸腺嘧啶 答案:C 6.如图是DNA 片段的结构图,请据图回答问题:

分子生物学历年大题

2012年1月分子生物学自考试卷大题 26.半不连续复制 27.上游启动子元件 28.遗传密码 29.报告基因 30.锌指结构 31.简述DNA双螺旋结构模型 32.简述启动子的作用特点 33.简述原核生物蛋白质生物合成的起始过程 34.简述半乳糖操纵子的结构特点 35.简述在原核生物翻译水平上影响基因表达调控的因素 36.试述利用λ噬菌体构建基因组DNA文库的方法 37.试述真核生物基因表达调控的主要特点 2011年7月分子生物学自考试卷大题 26.SOS反应 27.RNA再编码 28.cDNA文库 29.RNA干扰 30.物理图谱 31.比较原核生物与真核生物在复制过程中的差异。 32.简述增强子的作用特点。

33.简述CAP对gal操纵子的作用。 34.真核生物在转录前对基因表达调控的方式有哪些? 35.反式作用因子有哪些结构特征。 https://www.doczj.com/doc/b113347174.html,c操纵子的调控机理。 37.试述蛋白质合成的基本过程,并比较原核与真核生物在蛋白质合成过程中的差异。 2010年10月: 26.C值反常 27.同工Trna 28.释放因子 29.细菌转化 30.选择性剪接 31.简述DNA复制的特点 32.核糖体上与翻译有关的位点有哪些? 33.简述操纵子的一般结构 34.简述真核生物DNA甲基化抑制基因表达的原因 35.简述细胞内癌基因的激活方式。 36.色氨酸操纵子在高色氨酸浓度和低色氨酸浓度时表达水平相差约600倍,但阻遏作用仅只能使转录水平降低70倍,请利用色氨酸操纵子的调控机制解释上述现象。 37.试比较原核生物与真核生物转录产物mRNA的异同。

2010年7月: 名词解释:同源域基因、基因定点突变、基因、遗传密码、冈崎片段简答:1.简述细胞中原癌基因转变为癌基因的主要途径。 2.简述sanger双脱氧链终止法测序基本原理。 3.简述原核生物蛋白质合成具体步骤。 4.简述大肠杆菌RNA聚合酶中a因子生物学功能。 简单应用:色氨酸操纵子调节作用。 论述:真核生物与原核生物在基因结构、转录和翻译主要差异。 2010年1月部分大题: 名词解释:中心法则、转座子、基因敲除、增强子、基因治疗 简单:1.简述原核生物RNA转录终止信号分类、结构特点。 2.简述tRNA mRNA tRNA各自生物学功能。 3.简述聚合酶链式反应(PCR)基本原理。 简单应用:乳糖操纵子的调节功能。 论述:真核生物基因表达可在多个层次上进行调控,根据发生先后顺序,叙述真核生物基因表达调控过程。 09年10月部分大题: 名词解释:半不连续复制、基因家族、基因扩增 简答:1.RNA编辑生物学意义。 2.转录与翻译不同点

河南工业大学 基因分子与生物学 基因与分子生物学第三章复习题

一、名词解释: 1. 转录单元:是指一段从启动子开始至终止子结束的DNA序列,RNA聚合酶 从转录起始位点开始沿着模板前进,直到终止子为止,转录出一条RNA链。 2. 单顺反子:只编码一个蛋白质的mRNA分子称为单顺反子。 3. 多顺反子:编码多个蛋白质的mRNA分子。 4. 基因:一段有功能的DNA序列。 5. 编码链:与mRNA序列相同的那条DNA链称为编码链。 6. 内含子的变位剪接:在高等真核生物中,内含子通常是有序或组成性地从 mRNA前体中被剪接,然而,在个体发育或细胞分化时可以有选择性地越过某些外显子或某个剪接点进行变位剪接,产生出组织或发育阶段特异性mRNA,称为内含子的变位剪接。 7. 转录的不对称性:在RNA的合成中,DNA的二条链中仅有一条链可作为转 录的模板。 8. 启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。 9. 核心启动子:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序 列,包括转录起始位点及转录起始位点上游TATA区 10. 因子:六聚体蛋白,通过水解核苷三磷酸、DNA\RNA解链,促使新生RNA 链从三元转录复合物中解离出来,从而终止转录 11. RNA的编辑:是指转录后的RNA在编码区发生碱基的突变、加入或丢失等 现象 12. SD序列:mRNA中用于结合原核生物核糖体的序列。 13. 转录:转录是以DNA中的一条单链为模板,游离碱基为原料,在DNA 依赖的RNA聚合酶催化下合成RNA链的过程。 14. 终止子:在一个基因的末端往往有一段特定顺序,它具有转录终止的功能, 这段DNA序列称为终止子。 15. mRNA帽子:真核细胞中mRNA 5' 端的一个特殊结构。它是由甲基化鸟苷 酸经焦磷酸与mRNA的5' 端核苷酸相连,形成5',5'—三磷酸连接的结构。 16. 模板链:双链DNA分子中,可作为模板转录为RNA的DNA链,该链与转 录的RNA链的碱基互补。 17. 基因表达:遗传信息从DNA到RNA再到蛋白质的过程。

DNA的分子结构和特点

DNA 的分子结构和特点 目标导航 1.结合图例分析,概述DNA 分子的双螺旋结构及特点。2.阅读教材图文,学会制作DNA 双螺旋结构模型的构建过程。3.通过制作DNA 双螺旋结构模型,进一步理解其结构特点并掌握有关的计算规律。 一、两种核酸在结构上的异同 1.结构 (1)该模型构建者:美国学者沃森和英国学者克里克。 (2)写出图中①②③④的结构名称。

①__A__,②__G__,③腺嘌呤脱氧核苷酸,④氢键。 2.DNA分子结构的三个主要特点: (1)两条链的位置及方向:反向平行。 (2)主链的基本骨架:脱氧核糖与磷酸基团交替连接,排列在外侧。 (3)主链的内侧:碱基排列在内侧,且遵循碱基互补配对原则。 3.卡伽夫法则: (1)在DNA分子中,A与T的分子数相等,G与C的分子数相等,有A+G=T+C。 (2)A+T不一定等于G+C。 三、制作DNA双螺旋结构模型 1.原理:DNA分子双螺旋结构的主要特点。 2.实验目的:通过制作DNA双螺旋结构模型,加深对DNA分子结构特点的理解和认识。3.制作步骤: 选择材料制作若干个磷酸、脱氧核糖、碱基 ↓连接 多个脱氧核苷酸 ↓连接 脱氧核苷酸长链 ↓形成 一个DNA分子 ↓ DNA双螺旋结构 4.注意事项 (1)选材时,用不同形状、不同大小和颜色的材料分别代表脱氧核糖、磷酸和不同的碱基。 (2)要选用有一定强度和韧性的支架和连接材料。 判断正误: (1)DNA分子由四种脱氧核苷酸组成,这四种脱氧核苷酸含有的碱基是A、U、C、G。( ) (2)A—T碱基对和G—C碱基对具有相同的形状和直径,使DNA分子具有稳定的直径。( ) (3)DNA的两条核糖核苷酸链反向平行盘旋成双螺旋结构。( ) (4)DNA双螺旋结构的基本骨架是由脱氧核糖和磷酸交替连接而成的。( ) (5)两条链上的碱基通过氢键连接成碱基对。( ) (6)DNA上碱基对的形成遵循碱基互补配对原则,即A=T,G=C。( ) 答案(1)×(2)√(3)×(4)√(5)√(6)√

河南工业大学 基因分子与生物学 第四章基因与分子生物学习题(全)

一、名词解释 1. 翻译:将mRNA链上的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表一个氨基酸的原则,依次合成一条多肽链的过程。 2. 三联子密码:mRNA链上每三个核苷酸翻译成蛋白质多肽链上的一个氨基酸, 这三个核苷酸就称为密码子或三联子密码。 3. SD序列:原核生物mRNA上起始密码子上游7-12个核苷酸处一个富含嘌呤 的区域,这个区域在翻译过程中能与16S rRNA3’端富含嘧啶的区域相互补。 这个序列称为SD序列,也叫核糖体结合位点(RBS)。 4. 简并性:由一种以上密码子编码同一个氨基酸的现象,称为密码子的简并性。 5. 同工tRNA:由于一种氨基酸可能有多个密码子,因此有多个tRNA来识别这 些密码子,即多个tRNA代表一种氨基酸。这种代表相同氨基酸的tRNA称为同工tRNA。 6. 信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移的N-末端氨基酸序列(有时不一定在N端),至少含有一个带正电荷的氨基酸,中部有一高度疏水区以通过细胞膜。 7. 摆动假说:tRNA上反密码子的第一个碱基与密码子的第三位碱基由于非Waston-Crick配对,使tRNA上反密码子识别不止一个密码子。这就是密码子摆动假说的主要内容。 8. 编码链与反义链:在转录过程中,把与mRNA序列相同的那条称为编码链或有意链,另一条根据碱基互补配对原则指导mRNA合成的DNA链称为模板链或称反义链。 9. 错意突变:是指翻译过程中,由于一个碱基的改变而引起了氨基酸的改变,即一个正常意义的密码子变成错意密码子,从而使多肽链上相应位置上的氨基酸发生了改变。 10. 单顺反子:只编码一条多肽链的mRNA被称为单顺反子。 11. 同工tRNA:代表同一种氨基酸的tRNA称为同工tRNA。 12. 无义突变:在蛋白质的结构基因中,一个核苷酸的改变可能使代表某个氨基 酸的密码子变成终止密码子(UAG、UGA、UAA),使蛋白质合成提前终止,

第2节DNA分子的结构

第2节DNA分子的结构 【典例导悟】 【典例1】如图为DNA分子的平面结构,虚线表示碱基间的氢键。请据图回答: (1)从主链上看,两条单链__________平行;从碱基关系看,两条单链___________。 (2)________和_______相间排列,构成了DNA分子的基本骨架。 (3)图中有_____种碱基,__________种碱基对。 (4)含有200个碱基的某DNA片段中碱基间的氢键共有260个。请回答: ①该DNA片段中共有腺嘌呤_____个,C和G构成的碱基对共________对。 ②在DNA分子稳定性的比较中,_________碱基对的比例越高,DNA分子稳定性越高。 【规范解答】(1)从主链上看,两条单链是反向平行的;从碱基关系看,两条单链遵循碱基互补配对原则。(2)脱氧核糖与磷酸交替连接排列在外侧,构成DNA分子的基本骨架。 (3)图中涉及到4种碱基,4种碱基之间的配对方式有两种,但碱基对的种类有4种,即A—T、T—A、G —C、C—G。 (4)假设该DNA片段只有A、T两种碱基,则200个碱基,100个碱基对,含有200个氢键,而实际上有260个氢键,即G—C或C—G碱基对共60个,所以该DNA中腺嘌呤数为×(200-2×60)=40个。C 和G共60对,由于G与C之间有三个氢键,A与T之间有两个氢键,因此,G与C构成的碱基对的比例越高,DNA分子稳定性越高。 答案:(1)反向碱基互补配对(2)脱氧核糖磷酸 (3)4 4 (4)①40 60 ②G与C 【互动探究】(1)图中的A与ATP中的A有何不同? (2)该图中的DNA片段最多可形成几种? 提示:(1)图中A为腺嘌呤,而ATP中的A为腺苷。 (2)44种。

分子生物学与基因工程原理

分子生物学与基因工程原理复习资料 一、名词解释 1. 分子生物学:是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学;是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 2. 染色体:是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。 3. DNA 多态性:是指DNA 序列中发生变异而导致的个体间核苷酸序列的差异,主要包 括单核苷酸多态性(single nucleotide polymorphism , SNP)和串联重复序列多态性 ( tandem repeats polymorphism )两类。 4. DNA 的半保留复制:DNA 复制过程中,由亲代DNA 生成子代DNA 时,每个新形成的子代DNA 中,一条链来自亲代DNA ,另一条链则是新合成的,这种复制方式称半保留复制。 5. 冈崎片段:在DNA 复制过程中,前导链能连续合成,而滞后链只能是断续的合成5 3 的多个短片段,这些不连续的小片段称为冈崎片段。 6.SNP:single nucleotide polymorphism ,单核苷酸多样性,是基因组DNA 序列中单个核苷酸的突变引起的多态性。 7. “基因”的分子生物学定义:产生一条多肽链或功能RNA 所必需的全部核甘酸序列。 8. 获得性遗传:是有机体在生长发育过程中由于环境的影响而不是基因突变所形成的新的遗传性状。 9. DNA 甲基化:是基因的表观修饰方式之一,指生物体在(DNA methyltransferase ,DNMT)的催化下,以S-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移到特定的碱基上的过程。 10. CDNA文库:以mRNA为模板,经反转录酶催化,体外合成cDNA,与适当的载体 (常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖 扩增。这样包含着细胞全部mRNA 信息的cDNA 克隆集合称为该组织细胞cDNA 文库。11. 基因组:是指一个细胞或者生物体所携带的全部遗传信息。生物个体的所有细胞的基因组是固定的。 12. 蛋白质组学:指在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。 13. 转录组:广义上指某一生理条件或环境下,一个细胞、组织或生物体内所有转录产 物的总和,包括信使RNA、核糖体RNA、转运RNA及非编码RNA ;狭义上指细胞中转录出来的所有mRNA 的总和。 14. 基因定点突变技术:通过改变基因特定位点核苷酸序列来改变所编码的氨基酸序列的一

高考生物必备知识点:DNA分子结构及特点

高考生物必备知识点:DNA分子结构及特点 1953年4月25日发表在英国《自然》杂志上的一篇论文《核酸的分子结构—— 脱氧核糖核酸的一个结构模型》,揭开了DNA的结构之迷。沃森、克里克和维尔金斯三人也因此共同获得了1962年的诺贝尔生理学或医学奖。那么,DNA分子的结构到底是怎样的呢? 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2.分子结构 DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T 通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: (1)DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 (2)5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。

(3)反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'——5',另一条为5'——3'。 (4)碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出: ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等; ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等; ③A%+C%=T%+G%= A%+ G%= T%+ C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%; ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C= T/ G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值; ⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。 根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。 3.结构特点 (1)稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。 (2)多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。 (3)特异性:对一个具体的DNA分子而言,其碱基对特定的排列顺序可使其携带特定的遗传信息,决定该DNA分子的特异性。

基因工程与分子生物学

基因工程与分子生物学重点 1.限制性核酸内切酶:凡是识别切割双链的DNA分子内特定核苷酸序列的酶称为限制性核酸内切酶,简称为限制性酶。 2.限制性核酸内切酶的一般性质:37℃,pH为7.2~7.6,用Tris—HCl,Gly—NaOH两种缓冲液,Mg2+Buffer,5mM,盐浓度,巯基试剂:β-ME,DTT,BSA(牛血清白蛋白,稳定酶的作用);决定生产的特定的DNA片段的大小,识别顺序具有180°的旋转对称,识别顺序一般是4~6个碱基,也有6个以上的,但是没有4个以下的,产生三种不同的切口:形成平头末端(SmalⅠ):连接困难,效率较低;形成5’粘性末端(EcoRⅠ):相对而言,5’突出尾,3’凹末端;形成3’粘性末端(PstⅠ)相对而言,3’突出尾,5’凹末端。 3.星活性:在非标准条件下(低盐和高pH,高甘油浓度>5%),限制酶识别顺序与切割顺序发生改变的现象。 4.大肠杆菌DNA聚合酶I大片段(Klenow片段):将Pol1切下一个小片段失去5’到3’外切酶活性。补平限制酶切割DNA产生3’凹槽(5’到3’合成),用[32p]dNTP补平3’凹端,对DNA片段进行末端标记,对带3’突出端的DNA进行末端标记(利用置换活性),在cDNA 克隆中,用对和陈那个cDNA的第二条链,在体外诱变中用于从单链模版合成双链DNA,应用Sanger双脱氧末端终止法进行DNA测序,消化限制酶产生的3’突出端,应用于PCR 技术。 5.基因工程的工具酶:T7噬菌体DNA聚合酶,修饰的T7噬菌体DNA聚合酶,TaqDNA 聚合酶(没有校正功能),大肠杆菌DNA聚合酶Ⅰ,大肠杆菌DNA聚合酶Ⅰ大片段,T4噬菌体DNA聚合酶。 6.末端转移酶:将相同的核苷酸依次连接到3’末端,然后两条DNA通过同源多聚尾巴连接在一起,在表达前将ploy(G)切除,否则影响蛋白质的生物活性。 7.T4噬菌体多核苷酸激酶:使DNA的5’端磷酸化,也可以使DNA的5’端去磷酸化。可以发生正向反应,也可发生交换反应。正向反应:5’CTGCAG在酶和ATP(ATP具有α,β,γ磷酸基团,其中γ可给出)的作用下,生成5’pCTGCAG;交换反应:5’pCTGACG在酶和ADP的共同作用下,去磷酸化,将DNA链上的磷酸基团给出,生成5’CTGCAG和ATP,在酶和被标记的A TP作用下使得DNA再次被磷酸化同时被标记,生成ADP和5’*pCTGCAG。 8.基因工程载体种类:质粒,噬菌体的衍生物,科斯质粒或粘粒,噬菌体质粒,单链DNA 噬菌体M13,真核病毒载体,酵母质粒载体,杆状病毒。 9.质粒:在细菌细胞内作为与宿主染色体有别的复制子而进行复制,并且在细胞分裂时能恒定传递给子代细胞的独立遗传因子。 10.质粒作为基因工程载体所必备的条件:1)具有较小的分子量和松弛的复制子,2)基因组上有1~2个筛选标记,便于在平板中区分重组体和非重组体,3)DNA链上有1到几个限制酶的单一识别与切割位点,便于外源DNA的插入,4)具有插入失活(或是插入表达)的筛选标记,便于从平板中直接筛选阳性重组体。 11.Ti质粒:引起植物形成肿瘤—冠瘿瘤的质粒称为诱导肿瘤的质粒。 12.Ti质粒的优点:宿主范围广泛,Ti质粒能过转化所有的双子叶植物,并将外源基因导入植物细胞;整合到宿主细胞ch—DNA上的T—DNA成了染色体的正常遗传成分,永远居留,代代相传;T—DNA上的Opine合成酶基因有一个强大的启动子,能启动外源基因在植物细胞中高效表达。 13.分子杂交(杂交,hybrdization):核酸研究中一项最基本的实验技术,它是指在一定条件下互补核酸链复性形成双链的过程。 14.分子杂交的原理:(一)DNA的变性:指分子有稳定的双螺旋结构松解为无规则线性结

第2节DNA子的结构

第2节DNA 分子的结构 【典例导悟】 1】如图为DNA 分子的平面结构,虚线表示碱基间的氢键。请据图回答: 相间排列,构成了 DNA 分子的基本骨架。 含有200个碱基的某DNA 片段中碱基间的氢键共有 260个。请回答: 【规范解答】(1)从主链上看,两条单链是反向平行的; 从碱基关系看,两条单链遵循碱基互补配对原则。 脱氧核糖与磷酸交替连接排列在外侧,构成 DNA 分子的基本骨架。 图中涉及到4种碱基,4种碱基之间的配对方式有两种,但碱基对的种类有 (3) 4 4 (4 )◎ 40 60 ②G 与 C 【互动探究】(1)图中的A 与ATP 中的A 有何不同? (2)该图中的DNA 片段最多可形成几种? 提示:(1)图中A 为腺嘌呤,而ATP 中的A 为腺苷。 (2) 44 种。 从主链上看,两条单链 A 1 .平行;从碱基关系看,两条单 链 【典例 图中有 种碱基, 种碱基对。 (4) ①该 DNA 片段中共有腺嘌呤 .个,C 和G 构成的碱基对共 对。 ②在 DNA 分子稳定性的比较中, 碱基对的比例越高, DNA 分子稳定性越高。 (2) 4 种,即 A — T 、T — A 、G —C 、 C — Go (4) 假设该DNA 片段只有A 、T 两种碱基,则200个碱基,100个碱基对, 含有200个氢键,而实际上有 260个氢键,即G —C 或C — G 碱基对共60个,所以该DNA 中腺嘌呤数为 X( 200-2 X 60) =40 个。C 和G 共60对,由于G 与C 之间有三个氢键,A 与T 之间有两个氢键,因此, G 与C 构成的碱基对的比例 越高,DNA 分子稳定性越高。 答案:(1)反向 碱基互补配对 (2)脱氧核糖 磷酸

DNA分子的结构及其特点.pdf

DNA分子的结构及其特点 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷 酸和一分子脱氧核糖通过脱水缩合而成。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷 酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2.分子结构 DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。 ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出: ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等; ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等; :即任意两不互补碱基含量之和相等,占碱基总 ③A%+C%=T%+G%=A%+G%=T%+C%=50% 数的50%; ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C=T/G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值; ⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。 根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。

基因分子生物学

病毒、原核生物及真核生物基因组 第一节基因组和基因的一般概念 基因组:细胞或生物体中,一套完整单体的遗传物质的总和称为基因组(genmome)。 人类基因组包含细胞核中的24个线性DNA分子以及胞浆线粒体上的遗传物质(一个长16569bp的环状DNA分子,又称线粒体基因组)。 基因组的结构:主要指不同的DNA功能区域在DNA分子中的分布和排列情况。 基因: 经典概念:按照经典的遗传学概念,基因是控制生物性状的遗传物质的功能和结构单位。 一般概念:基因是携带一定遗传信息的特定DNA片段,它可以通过转录和翻译等过程表达具有一定生物功能的多肽链或转录出在蛋白质生物合成过程中起重要作用的tRNA和rRNA 及其它RNA。 最新概念:基因是合成多肽或RNA顺序所必需的完全核酸顺序。一个基因不仅包含编码蛋白质或RNA的核酸顺序,而且包括获得一个特殊的初级转录物所需的全部顺序。 操纵子:operon, 在细菌中,一些功能相关的酶的基因常一个紧接一个的串联排列,受同一操纵区控制,这种由多个结构基因及其共同的转录操纵区组成的单一转录单位称作操纵子。顺反子:cistron, 及结构基因,为编码一个多肽的遗传单位。 多顺反子:polycistronic, 多顺反子见于原核生物(但原核生物也有单顺反子作用单位),意指一个mRNA分子编码多个多肽链,这些多肽链对应的DNA片段则位于同一转录单位内,享用同一对起点和终点。 单顺反子:monocistronic, 多见于真核生物,一个转录完毕的mRNA内含有外显子和内含子对应的转录产物,经剪接后,该mRNA只编码一条多肽链。 简单转录单位:产生单一多肽的单一类型的mRNA的真核基因称简单转录单位。 复杂转录单位:被复杂转录单位编码的初级RNA转录物能够通过使用不同的切接位点或poly(A)位点以多于一种方式加工,导致包含不同外显子的mRNA。 填空 1.真核生物的核基因组包含至少2个线性DNA分子,此外还有线粒体基因组和叶绿体基因组。 2.真核基因中,转录控制区甚至在编码区上游50kb 3.基因组大小:痘病毒300kb,大肠杆菌4.64×103 kb,酿酒酵母12.1×103 kb,人3000×103 kb,家鼠3300×103 kb,SV-40 5.2kb,噬菌体46kb 4.色氨酸操纵子包含5个与合成Ser有关基因,转录产生单一9kb的mRNA 5.外显子跳跃产生相同的5,和3,外显子,不同的内部外显子 6.包含2个或更多polyA位点的转录单位产生不同mRNA,每个都有相同5,外显子不同的3,外显子 7.同一基因的不同启动子在不同类型细胞中活化,产生mRNAs具有相同3,外显子,不同5,外显子 第二节病毒基因组结构的一般特点及部分重要的病毒基因组 病毒基因组的一般特点? 1.不同病毒基因组大小相差较大 2.病毒基因组可由DNA组成,也可以由RNA组成 3.DNA病毒的基因组均由连续的DNA分子组成,多数RNA病毒基因组也由连续的核糖核酸 链组成,有些以不连续的核糖核酸链组成。 4.常见基因重叠现象 5.重叠基因虽然RNA顺序大部分相同,但是转录成的mRNA的读框不同,因此产生的蛋白

《分子生物学》试卷(基因与基因组)

《分子生物学》试卷(基因与基因组) (课程代码) 班级姓名学号 一、名词解释(每小题﹡分,共﹡分) 1. 基因 2. 断裂基因 3.结构基因 4.非结构基因 5. 内含子 6. 外显子 7.启动子 8.增强子 9. 沉默子 10. 反应元件 11. 基因组 12. 质粒 13.操纵子 14. 单顺反子 15. 多顺反子 16. 转座因子17.转座子 18. 基因家族 19.基因超家族 20.假基因 21. 自私DNA 22. 反向重复 23. 串联重复 24. 卫星DNA 25. 微卫星DNA 26. DNA指纹 27.基因组学 28. 短串联重复 29. 基因型 30. 重叠基因 31. 分段基因组 32. 逆转录病毒 33. 等基因 34. 共价闭合环状DNA 35. 复制起点 二、单项选择题(从下列各题所给备选答案中选出一个正确的答案,并将其序号填在题干后的括号内。 1. 以下哪项属于真核生物基因的顺式作用元件:( C ) A.内含子 B. 外显子 C.增强子 D.操纵子 E.转座子 2. 以下哪种病毒的基因组是单股负链RNA:( B ) A.SARS冠状病毒 B.H5N1禽流感病毒 C.呼肠孤病毒 D.人类免疫缺陷病毒 E.乙型肝炎病毒 3. 原核生物与真核生物基因组比较,以下哪项是原核生物的特点:( A ) A.基因密度高 B.无操纵子结构 C.有多基因家族和假基因 D.多复制起点品 E.有大量重复序列 4. 以下哪项是真核生物基因组结构特点?( B )

A.只有一个复制起点 B. 有大量重复序列 C. 大部分是编码序列 D. 有操纵子结构 E.转录的RNA为多顺反子 5.增强子的作用是( B ) A.增强DNA复制 B.增强基因转录 C.增强基因稳定性 D.增强RNA的稳定性 E.被RNA聚合酶识别结合 6.以下哪项是原核生物基因组的结构特点( C ) A.由DNA或RNA组成 B.有单链、双链之分 C.操纵子结构 D.与组蛋白结合 E. 基因重叠 7.以下哪项属于启动子元件( C ) A.内含子 B. 外显子 C.TATA盒 D.终止子 E.CAAT 盒 8.下列关于启动子的论述正确的是下列关于启动子的描述正确的是: ( C ) A.可以表达基因产物 B.能专一地与阻遏蛋白结合 C.是RNA聚合酶的结合部位 D.是DNA聚合酶的结合部位 E. 是结构基因 9. 不属于真核基因表达调控的顺式作用元件的是:( C ) A.启动子 B.增强子 C.操纵子 D.沉默子 E. 反应元件 10.由AATAAA和富含GT或T序列共同组成的顺式作用元件是 ( D s ) A.启动子 B. 增强子 C. 反应元件 D. 加尾信号 E. 沉默子 三、多项选择题(从下列各题所给备选答案中选出一个或多个正确的答案,并将其序号填在题干后的括号内。多选、少选、选错或未选者不得分。每小题﹡分,共﹡分) 1. 以下哪些是病毒基因组的特点(A C E) A.基因重叠 B.大部分是非编码区 C.分段基因组 D.由双链环状DNA组成 E.单倍体基因组 F.基因没在内含子基因中不含内含子 2. 以下哪些是原核生物基因组的特点(A B C E) A.只有一个复制起点 B.有操纵子结构 C.基因中没有不含内含子 D.基因重叠 E.有编码同工酶的等基因 F.由线性双链DNA组成 3. 以下哪些是真核生物基因组的特点(B C) A.编码区大于非编码区 B.有大量重复序列 C.转录产物为单顺子 D.没有基因家族不存在基因家族 E.有含质粒基因组 F.有操纵子结构 4. 以下属于上游启动子元件的是(A D E) A.CAAT盒 B.TATA盒 C.poly(A) D.GC盒 E.CACA盒 F. SD序列 5. 以下属于顺式作用元件的是(A B D E F) A.启动子 B.反应元件 C.外显子 D.增强子 E.沉默子 F. poly(A)加尾信号 6. 以下属于单倍体基因组的是(A B C D F) A.腺病毒 B.呼肠孤病毒 C.乳头瘤病毒 D.噬菌体 E.反转录病毒 F.乙肝病毒 7. 以下是转座因子的是以下属于转座因子的是(A B) A.插入序列 B.Mu噬菌体 C.质粒 D.卫星DNA E.回文序列 F.反向重复序列 8. 以下是高度重复序列的是(C D E F) A.Alu序列 B.KpnI序列 C.串联重复序列 D.短散在重复片段 E.卫星DNA F.回文序列 9. 以下是中度重复序列的是(A B C D E) A.rRNA编码基因 B.tRNA编码基因 C.免疫球蛋白基因 D.组蛋白基因 E.Alu家族 F.大卫星DNA 10. 以下哪些是反转录病毒的基本结构基因(B D E) A.Rev B.gag C.tat D.pol E.env F.Vpr 四、简答题(回答要点,并简明扼要作解释。每小题﹡分,共﹡分) 1.上游启动子元件是什么 2.什么是转座 3.什么是高度重复序列 4.GT-AG法则是什么 5.病毒基因组有哪些特点 6.原核生物基因组有哪些特点 7.真核生物基因组有哪些特点 8.人类基因组有哪些特点 9.基因重叠有什么意义 10.质粒有哪些特性 11.什么是基因多态性 12.什么是中度重复序列

相关主题
文本预览
相关文档 最新文档