当前位置:文档之家› 第四节 超静定结构得受力分析及特性

第四节 超静定结构得受力分析及特性

第四节 超静定结构得受力分析及特性
第四节 超静定结构得受力分析及特性

第四节超静定结构得受力分析及特性

一、超静定结构得特征及超静定次数

超静定结构得几何特征就是除了保证结构得几何不变性所必须得约束外,还存在多余约束。

超静定结构得静力特征就是仅由静力平衡条件不能唯一地确定全部未知反力与内力。

结构得多余约束数或用静力平衡条件计算全部未知反力与内力时所缺少得方程数称为结构得超静定次数。

通常采用去除多余约束得方法来确定结构得超静定次数。即去除结构得全部多余约束,使之成为无多余约束得几何不变体系,这时所去除得约束数就就是结构得超静定次数。

去除约束得方法有以下几种:

(一)切断一根两端铰接得直杆(或支座链杆),相当于去除一个约束。

(二)切断一根两端刚接得杆件,相当于去除三个约束。

(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件得铰),相当于去除2(n—1)个约束。

(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件得复刚节点改为复铰节点,相当于去除n—1个约束。

去除一个超静定结构多余约束得方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。

去除图4—1a所示超静定结构得多余约束得方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。再用其她去除多余约束得方案确定其超静定次数,结果就是相同得。

(a)(b)

图4-1

二、力法得基本原理

(一)力法基本结构与基本体系

去除超静定结构得多余约束,代以相应得未知力X i (i=1、2、…、n),X i 称为多余未知力或基本未知力,其方向可以任意假定。去除多余约束后得结构称为力法基本结构。力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下得体系称为力法基本体系,它就是用力法计算超静定结构得基础。

选取力法基本结构应注意下面两点:

1.基本结构一般为静定结构,即无多余约束得几何不变体系。有时当简单超静定结构得解为已知时,也可以将它作为复杂超静定结构得基本结构,以简化计算。

2.选取得基本结构应使力法典型方程中得系数与自由项得计算尽可能简便,并尽量使较多得副系数与自由项等于零。

(二)力法典型方程及其意义

根据原结构在荷载、温度变化、支座位移等因素作用下产生得已知位移与基本结构在各多余未知力以及与原结构相同得荷载、温度变化、支座位移等因素作用下产生得位移必须相同得条件,由叠加原理,可得n次超静定结构得力法典型方程为

(4—1)

式中 X i 为多余未知力(i=1、2、…、,2);δij钆为基本结构仅由X j=1为多余未知力(j=1、2、…、n)产生得沿X i 方向得位移、为基本结构得柔度系数;Δip、Δit、Δic分别为基本结构仅由荷载、温度变化、支座位移产生得沿X i 方向得位移,为力法典型方程得自由项;Δi为原超静定结构在荷载、温度变化、支座位移作用下得已知位移(如结构边界处得已知支座位移条件、杆件变形后得已知位移连续条件等)。

力法典型方程(4—1)也称为变形协调方程。其中第一个方程表示基本结构在n个多余未知力、荷载、温度变化、支座位移等共同作用下,在X l作用点沿X l作用方向产生得位移,等于原结构得已知相应位移Δ1;第二个方程表示基本结构在n个多余未知力、荷载、温度变化、支座位移共同作用下,在X2作用点沿X2作用方向产生得位移,等于原结构得已知相应位移Δ2。其余各式得意义可按此类推。

各多余未知力X i得大小与方向必须受力法典型方程得约束,多余约束力与变形协调

条件就是一一对应得,故满足力法典型方程得各多余未知力得解就是唯一真实得解。

同一超静定结构,可以选取不同得基本体系,其相应得力法典型方程也就表达了不同得变形协调条件。不管选取哪种基本体系,求得得最后内力总就是相同得。

图4—2a所示体系为一次超静定结构,如取图4—2b所示得基本体系,则力法典型方程为δ11X1 +Δ1p=0;如取图4—2c所示得基本体系,则力法典型方程为δ11X1 +Δ1p= —X1l/EA。

图4-2

对于图4—2d所示得一次超静定结构,如取图4—2e、f所示得基本体系,则相应得力法典型方程分别为δ11X1 +Δ1p=0、δ11X1 +Δ1p= —X1/k N。

图4—3a所示一次超静定结构得支座B有已知得竖向位移a,如取图4—3b所示得基本体系,力法典型方程为δ11X1 = -a;如取图4—3c所示得基本体系,力法典型方程为δ11X1 +Δ1C=0。

图4-3

(三)系数与自由项得计算

力法典型方程中得系数与自由项都就是静定基本结构仅由单位力、实际荷载、温度变化、支座位移产生得位移,它们均可按上述各自得定义,用相应得位移计算公式计算。

力法典型方程中得系数δii称为主系数,它们恒为正值;δij(i ≠j)称为副系数,它们可为正值、负值、也可为零,根据位移互等定理有δij=δji;各自由项得值可为正值、负值、也可为零。

(四)计算超静定结构得内力

由力法典型方程求出各多余未知力X i 后,将X i 与原荷载作用在基本结构上,再根据求作静定结构内力图得方法,作出基本结构得内力图就就是超静定结构得内力图。或者也可通过下述叠加方法,计算结构得最后内力。

(4—2) 式中M i、V i、N i分别为X i=1引起得基本结构得弯矩、剪力、轴力;M p、V p、N p分别为荷载引起得基本结构得弯矩、剪力、轴力。

对梁与刚架,通常得做法就是先根据式(4—2)中得第一式求出各杆端弯矩,再用直杆弯矩图得叠加法作出各杆得弯矩图,然后根据弯矩图由静力平衡条件求出各杆端得剪力与轴力,并据此作出剪力图与轴力图。

三、超静定结构得位移计算

超静定结构得位移计算仍应用变形体系虚功原理与单位荷载法。在具体计算时,为了使计算简便,其虚设状态(即单位力状态)可采用原超静定结构得任一静定基本结构。位移计算得一般公式如下。

(一)荷载作用引起得位移计算公式

(4—3)

(二)温度变化引起得位移计算公式

(4—4)

(三)支座位移引起得位移计算公式

(4—5)上面三式中得M i、N i、V i与R i为虚设状态(原超静定结构得静定基本结构)得弯矩、轴力、剪力与支座反力;M、N、V、M t、N t、V t、M c、N c、V c分别为原超静定结构在荷载、温度变化、支座位移作用下产生得弯矩、轴力、剪力。

与静定结构一样,在符合一定得条件时,超静定结构得位移计算也可采用简化(实用)计算公式,以及采用图形相乘法代替积分计算。

四、超静定结构内力图得校核

超静定结构得内力图必须同时满足静力平衡条件与原结构得变形条件。

1.平衡条件校核

根据求得得反力与内力,取整个结构或结构得任一部分为隔离体,校核其就是否满足静力平衡条件。

2.变形条件校核

根据已求得得内力计算超静定结构得位移,校核其就是否与原结构得已知位移条件一致。对于具有无铰闭合外形得结构,在荷载作用下,校核任一切断截面两侧得相对转角时,位移条件得校核公式可简化为

(4—6)

[例4-1] 图4-4a所示超静定刚架,受均布荷载q、温度变化t1=1、5t0C,t2=2、5t0C,支座A顺时针向转动φA等因素共同作用,试求作其M图,并按变形条件校核M图。杆件横截面为矩形,高为h=l /10,EI为常数,线膨胀系数为α。

图4-4

[解]

(1)取图4—4b所示得力法基本体系。

(2)力法典型方程为δ11X1 +Δ1p+Δ1t+Δ1c=0

(3)计算系数与自由项

基本结构得M l、N l、M p图分别如图4—4c、d、e所示。杆件轴线处得温度变化为t0=2t℃,杆件两侧得温度差为Δt=t℃。于就是由位移计算公式可求得

(4)求基本未知力X l

由力法典型方程得

(5)作M图

M如图4-4f所示。

(6)根据原结构得已知位移条件校核M图

校核A截面得转角。

五、等截面直杆得转角位移方程(刚度方程)

位移法就是以杆件得转角位移方程作为计算基础得。转角位移方程表示杆件两端得杆端力与杆端位移之间得关系式。

(一)平面桁架杆件(图4—5)

图4-5

(4—7) 式中u、N分别表示杆端得轴向位移与轴向力,沿杆轴方向自A向B时为正。式(4—7)称为拉、压杆得刚度方程。

(二)两端固定得平面等截面直杆(图4—6a)

(4—8) 式中 i = EI/l称为线刚度。杆端截面转角θA、θB、弦转角β = ΔAB/l,杆端弯矩M AB、M BA,固端弯矩M AB F、M BA F均以顺时针向转动为正。杆端剪力Q AB、Q BA,固端剪

力Q AB F、Q BA F均以绕隔离体顺时针向转动为正。图4—6所示杆端位移、杆端弯矩、杆端剪力得方向均为正号。

图4-6

(三)一端固定另一端铰支得平面等截面直杆(图4-6b)

(4—9)

(四)一端固定另一端定向(滑动)支座得平面等截面直杆(图4-6c)

(4—10) 式(4—9)、(4—10)中各符号得意义及正、负号规定均与式(4—8)相同。式(4—8)、(4—9)、(4—10)称为前述各相应杆件得转角位移方程,式中含有θA、θB、ΔAB得各项

分别代表该项杆端位移引起得杆端弯矩与杆端剪力,其前面得系数称为杆件得刚度系数,它们只与杆件得长度l、支座形式与抗弯刚度EI有关,又称为形常数。而固端弯矩、固端剪力则为仅由荷载产生得杆端弯矩、杆端剪力,它们均与荷载有关,几种常见荷载产生得固端弯矩与固端剪力见表4—1。

等截面直杆得固端弯矩与固端剪力表4—1

六、位移法得基本未知量

位移法以结构得刚结点得角位移与独立得结点线位移为基本未知量。角位移数等于刚性结点得数目。确定刚架独立得结点线位移数时,如果杆件得弯曲变形就是微小得,且忽略受弯直杆得轴向变形,则刚架独立得结点线位移数就就是刚架铰结图得自由度数(即运动得独立几何参数)。所谓刚架得铰结图就就是将刚架得刚结点(包括固定支座)都改成铰结点后所形成得体系。如图4—7a所示刚架得结点角位移未知数等于7,在刚架铰结图得结点1、2、3处增设三根支杆后成为几何不变(图4—7b),即该铰结图得自由度为3,故刚架得全部结点位移未知数等于10。

图4-7

如果考虑杆件得轴向变形,则平面结构每个结点得独立线位移未知数为2。如图 4—7a所示刚架得结点独立线位移未知数为2×7=14。

图4—7c所示刚架,其横梁不能弯曲,当不考虑各杆轴向变形时,两个刚结点不能转动,只有一个独立得结点线位移未知量。图4—7d所示结构,如果考虑柱顶轴力杆得轴向变形,而不计受弯杆柱子得轴向变形,则有两个独立得结点线位移未知量。

七、位移法得基本原理

(一)位移法基本体系

在结构得结点角位移与独立得结点线位移处增设控制转角与线位移得附加约束,使结构得各杆成为互不相关得单杆体系,称为原结构得位移法基本结构。位移法基本结构在各结点位移、外荷载(有时还有温度变化、支座位移等)作用下得体系称为位移法基本体系。图4—8a所示刚架得基本体系如图4—8b所示。

图4-8

(二)位移法典型方程及其意义

为了使基本体系与原结构得受力情况相同,可以根据基本结构在给定荷载、温度变化、支座位移与各基本未知节点位移共同作用下,各附加约束中得总约束力等于零得条件建立位移法典型方程。对于有n个未知量得结构,位移法典型方程为

(4—11) 式中Δi为结点位移未知量(i=1、2、…、n);K ij为基本结构仅由于Δj=1(j=1、2、…、n)在附加约束i中产生得约束力,为基本结构得刚度系数;R ip、R it、R ic分别为基本结构仅由荷载、温度变化、支座位移作用,在附加约束i中产生得约束力,为位移法典型方程得自由项。

位移法典型方程(4—11)表示静力平衡方程。其中第一个方程表示基本结构在n个未知结点位移、荷载、温度变化、支座位移等共同作用下,第一个附加约束中得约束力等于零;第二个方程表示基本结构在n个未知结点位移、荷载、温度变化、支座位移等共同作用下,第二个附加约束中得约束力等于零。其余各式得意义可按此类推。

各未知结点位移得大小与方向必须受位移法典型方程得约束,各结点位移与平衡条件就是一一对应得,故满足位移法典型方程得各未知结点位移得解就是唯一真实得解。

(三)系数与自由项得计算

位移法典型方程中得系数与自由项都就是附加约束中得反力,它们都可按上述各自得定义,利用各杆得刚度系数、固端弯矩、固端剪力由平衡条件求出。对于基本结构由支座位移引起得固端力,也可由杆件得刚度系数求得。

位移法典型方程中得系数K ii称为主系数,它们恒为正值;K ij(i≠j)称为副系数,它们可为正值、负值、也可为零,根据反力互等定律,有K ij=K ji;各自由项得值可为正

值、负值,也可为零。

(四)计算结构得最后内力

由位移法典型方程求出各未知节点位移Δi后,便可由叠加原理计算结构得最后内力:

(4—12) 式中 M i、V i、N i分别为Δi=1引起得基本结构得弯矩、剪力、轴力;M p、M t、M c、V p、V t、V c、N p、N t、N c、分别为基本结构由荷载、温度变化、支座位移引起得弯矩、剪力、轴力。

对梁与刚架,通常就是先根据式(4—12)中得第一式求出各杆端弯矩,再用直杆弯矩图得叠加法作出各杆弯矩图,然后根据弯矩图由静力平衡条件求出各杆端剪力与轴力,并据此作出剪力图与轴力图。

在位移法得具体计算方法方面,除了上述基本体系与典型方程法外,还可直接通过建立结点与截面得平衡方程,得到位移法基本方程。

位移法不仅可以计算超静定结构得内力,也可以计算静定结构得内力。

[例4-2] 用位移法计算并绘制图4—9a所示刚架得M图。

图4-9

[解] 此刚架B点左边为静定悬臂梁,B端得弯矩就是静定得,故原结构ABCD部分得内力与图4—9b所示结构就是相同得。

图4—9b所示刚架有两个结点位移未知量Δ1、Δ2。基本结构得M1、M2、Mp图分别如图4—9c、d、e所示,图中i=EI/4。

分别取图4—9c、d、e结点C得隔离体,并由该隔离体得平衡条件∑M=0,得

分别取图4—9d、e柱顶以上部分为隔离体,并由隔离体得平衡条件∑X=0,得

于就是位移法典型方程为

解得

求得得Δ1、Δ2均为正,表示假定得Δ1、Δ2得方向与位移得实际方向就是一致得。

由M=M1Δ1+M2Δ2+M p求出各杆端弯矩后,就可绘出图4—9f所示得弯矩图。

[例4—3] 用力矩分配法求作图4—12a所示刚架得弯矩图,并根据弯矩分配法得概念求结点A得转角θA。各杆EI相同。

[解]

(1)在结点A处设置附加转动约束,按表4—1计算各杆固端弯矩。

将各固端弯矩值填写在相应杆端处,并在其下绘一横虚线(图4—12b)。

(2)计算S、μ、C

设i=EI/8,则

将各分配系数记在图4—12b中得相应截面处。

(3)弯矩分配与传递

将结点A上得固端弯矩代数与反号(即—M j),按式(4—14)进行弯矩分配得各截面得分配弯矩,并在每一分配弯矩下绘一横实线,然后将分配弯矩按传递系数传至杆件得另一端。计算过程示于图4—12b。

(4)求最后杆端弯矩并作M图

将各杆端截面得固端弯矩、分配弯矩、传递弯矩叠加,即得各杆最后杆端弯矩,如图4—12b中绘双实线得数值。M图如图4—12c所示。

(5)求结点A得转角θA

根据变形协调条件,结点A得转角与相交于结点A得AB、AC、AD杆得A端截面转角就是相同得,由弯矩分配法或杆件转动刚度得概念,可知

由力矩分配法得概念可知,若单结点连续梁(或刚架)结点处得固端弯矩代数与等于零,则该结点不会产生转动,也就不存在分配弯矩。

图4-12

八、等截面直杆得转动刚度及弯矩传递系数

转动刚度S AB表示AB杆得A端抵抗转动得能力,其值等于A端转动单位转角时A端所需施加得力矩,力矩值得大小与B端得约束情况及杆件得弯曲刚度有关。图4—10a、b、c所示三种等截面直杆得转动刚度示于图中。

图4-10

力矩传递系数C AB表示AB杆A端转动θ时,B端得弯矩M BA与A端得弯矩M AB之比,即

(4—13)

其数值与B端得约束情况有关。图4—l0a、b、c所示三种等截面直杆得传递系数都表示在图中得相应位置。

九、结点无线位移得单结点连续梁或刚架得力矩分配法

图4-11

力矩分配法得原理就是位移法。当结点无线位移得单结点连续梁或刚架在结点A处受顺时针方向得力矩M j作用时(图4—11),用位移法可求得结点A得转角θA为

相交于结点A得杆端截面得分配弯矩为

即任一杆端截面得分配弯矩得一般表达式为

(4—14) 任一杆端截面得弯矩分配系数得一般表达式为

(4—15) 这时AB杆B端得传递弯矩为

对结点无线位移得单结点连续梁(或刚架)在结点力矩这一特殊情况下,上述各截面得分配弯矩与传递弯矩,就就是各截面得最终弯矩。

在力矩分配法中,杆端弯矩得正、负号规定与位移法相同。

【例 11 - 4 - 4 】用力矩分配法求作图 11 – 4-13a 所示刚架得弯矩图,并根据弯矩分配法得概念求结点 A 得转角θA。各杆 EI 相同。

【解】( 1 )在结点 A 处设置附加转动约束,按表 1 卜 41 计算各杆固端弯矩。

将各固端弯矩值填写在相应杆端处,并在其下绘一横虚线(图 11-4 - 13b )

将各分配系数记在图 11 - 4 - 13b 中得相应截面处。

十、对称性得利用

结构得形状、支承条件与刚度(材料性质与截面)等都对称于某根轴线时称为对称结构。

对称结构在正对称荷载作用下其内力与变形就是正对称得;在反对称荷载作用下,其内力与变形就是反对称得。据此,在结构分析中,可利用结构得对称性,以简化计算。

(一)选取对称得基本体系

对称结构选取对称得基本体系后,可使计算得到如下得简化。

1.对称结构受任意荷载作用下,选取对称得基本体系后,力法典型方程分解为独立得两组,其中一组只含正对称未知力,另一组只含反对称未知力。

2.对称结构在正对称荷载作用下,选取对称基本体系后,反对称得未知力等于零,只需求解正对称得未知力。

如图4—13a所示结构,选取图4—13b所示对称基本体系,反对称未知力X3 = 0,X4 = 0。

3.对称结构在反对称荷载作用下,选取对称基本体系后,正对称未知力等于零,只需求解反对称未知力。

如图4—14a所示结构,选取图4—14b所示对称基本体系,正对称未知力X1 = 0,X2 = 0。

对称结构在任意荷载作用下,有时也可将荷载分解成正对称与反对称两种,再分别

注册岩土工程师 超静定结构受力分析及特性

第三讲超静定结构受力分析及特性 【内容提要】 超静定次数确定,力法、位移法基本体系,力法方程及其意义,等截面直杆刚度方程,位移法基本未知量确定,位移法基本方程及其意义,等截面直杆的转动刚度,力矩分配系数与传递系数,单结点的力矩分配,对称性利用,半结构法,超静定结构位移计算,超静定结构特性。 【重点、难点】 力法及力法方程,位移法及基本方程;力矩分配系数与传递系数,单结点的力矩分配,超静定结构位移计算。 一、超静定次数 把超静定结构变为静定结构所需要解除的约束数称为超静定次数(或多余约束数)。 1.撤去一个活动铰支座(即一根支杆),或切断一根链杆各相当于解除一个约束。 2.撤去一个固定铰支座(即两根支杆),或拆开一个单铰结点,各相当于解除两个约束。3.撤去一个固定支座,或切断一根受弯杆件各相当于解除三个约束。 4.将固定支座改为固定铰支座,或将受弯杆件切断改成铰接各相当于解除一个(承受弯矩的)约束。 5.边框周边安置一个单铰则其内部减少一个弯矩约束。 6.一个外形封闭和周边无铰的闭合框或刚架其内部具有三个多余约束,是三次超静定的。k个周边无铰的闭合框的超静定次数等于3k。 二、力法 (一)基本结构

力法是解算超静定结构最古老的方法之一。力法计算超静定结构是把超静定结构化为静定结构来计算,所以力法基本未知量的个数就是结构多余约束数。 以超静定结构在外因作用下多余约束(又称多余联系)上相应的多余力作为基本未知量,计算时将结构上的多余约束去掉,代之以多余力的作用,将这样所得的静定结构作为求解基本未知量的基本结构(或称为基本体系)。 (二)解题思路 根据基本结构在原有外力及多余力的共同作用下,在去掉多余约束处沿多余力方向的位移应与原结构相应的位移相同的条件,建立力法方程,解方程即可求得各多余力。 将多余力视为基本结构的荷载,则可作基本结构内力图,也就是原结构的内力图。原结构的位移计算亦可在基本结构上进行,这样更为方便。 【例题1】求图6-3-1(a)所示结构内力图。

3静定结构的内力分析习题解答

第3章 静定结构的力分析习题解答 习题3.1 是非判断题 (1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( ) (2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。( ) 习题3.1(4)图 (5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。 ( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。 ( ) 【解】(1)正确; (2)错误; (3)正确; (4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分; (5)错误。从公式0 H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关; (6)错误。荷载发生改变时,合理拱轴线将发生变化; (7)错误。合理拱轴线与荷载大小无关; (8)错误。一般从仅包含两个未知轴力的结点开始。 习题3.2 填空 (1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。 P 习题3.2(1)图 (2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN ·m ,____侧受拉;左柱B 截面弯矩M B =______kN ·m ,____侧受拉。 习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。 习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。

超静定结构(精)

第4章超静定结构 §4.1 超静定结构特性 ●由于多余约束的存在产生的影响 1. 内力状态单由平衡条件不能惟一确定,必须同时考虑变形条件。 2. 具有较强的防护能力,抵抗突然破坏。 3. 内力分布范围广,分布较静定结构均匀,内力峰值也小。 4. 结构刚度和稳定性都有所提高。 ●各杆刚度改变对内力的影响 1. 荷载作用下内力分布与各杆刚度比值有关,与其绝对值无关。 2. 计算内力时,允许采用相对刚度。 3. 设计结构断面时,需要经过一个试算过程。 4. 可通过改变杆件刚度达到调整内力状态目的。 ●温度和沉陷等变形因素的影响 1. 在超静定结构中,支座移动、温度改变、材料收缩、制造误差等因素都可以引起内力,即在无荷载下产生自内力。 2. 由上述因素引起的自内力,一般与各杆刚度的绝对值成正比。不应盲目增大结构截面尺寸,以期提高结构抵抗能力。 3. 预应力结构是主动利用自内力调节超静定结构内力的典型范例。 §4.2 力法原理 ●计算超静定结构的最基本方法 超静定结构是具有多余联系(约束)的静定结构,其反力和内力(归根结底是内力)不能或不能全部根据静力平衡条件确定。力法计算超静定结构的过程一般是在去掉多余联系的静定基本结构上进行,并选取多余力(也称赘余力)为基本未知量(其个数等于原结构的超静定次数)。根据基本体系应与原结构变形相同的位移条件建立方程,求解多余力后,原结构就转化为在荷载和多余力共同作用下的静定基本结构的计算问题。这里,基本体系起了从超静定到静定、从静定再到超静定的过渡作用,即把未知的超静定问题转换成已知的静定问题来解决。 ●基本结构的选择(解题技巧) 1. 通常选取静定结构;也可根据需要采用比原结构超静定次数低的、内力已知的超静定结构;甚至可取几何可变(但能维持平衡)的特殊基本结构。 2. 根据结构特点灵活选取,使力法方程中尽可能多的副系数δij = 0。 3. 应选易于绘制弯矩图或使弯矩图限于局部、并且便于图乘计算的基本结构。 4. 对称取基本结构;或利用对称性取半结构;或求弹性中心;以减少未知力数目,并使力法方程解耦。 ●力法典型方程 典型方程可写成矩阵形式: δX+ Δ = C (4.2.1) 式中,δ为柔度系数矩阵(对称方阵);X为多余未知力列阵;Δ为自由项列阵(外因作用下的广义位移列阵);C为原结构多余联系处的已知位移(不一定为零)列阵。 ●力法的解题步骤 1. 确定基本未知量,合理选取基本结构。 2. 根据多余联系处的位移(变形)协调条件,建立力法方程。

3静定结构的内力分析习题解答解读

静定结构内力分析习题集锦(一) 徐 丰 武汉工程大学

第3章 静定结构的内力分析习题解答 习题3.1 是非判断题 (1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( ) (2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。( ) 习题3.1(4)图 (5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。 ( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。 ( ) 【解】(1)正确; (2)错误; (3)正确; (4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分; (5)错误。从公式0 H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关; (6)错误。荷载发生改变时,合理拱轴线将发生变化; (7)错误。合理拱轴线与荷载大小无关; (8)错误。一般从仅包含两个未知轴力的结点开始。 习题3.2 填空 (1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。 P 习题3.2(1)图 (2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

2006典型例题解析--第2章-静定结构内力计算

第2章 静定结构内力计算 §2 – 1 基本概念 2-1-1 支座反力(联系力)计算方法 ●两刚片组成结构(单截面法) 满足两刚片规则的体系,两个刚片之间只有三个联系,可取出一个刚片作隔离体( 如图2-1c 或 如图2-1d ),联系力个数与独立平衡条件个数相等,利用平衡条件: 0x F =∑ 0y F =∑ 0M =∑ 即可计算出两个刚片之间的三个联系力。 ●三刚片组成结构(双截面法) 先求一个铰(或虚铰)的两个联系力。切断两个铰(或虚铰)得到一个隔离体,有两种情况的隔离体。 首先,切断A 、B 铰得到第一个隔离体(如图2-2c),求B 铰的联系力,对A 铰取矩列平衡方程。 0A M =∑ 然后,切断C 、B 铰得到第二个隔离 体(如图2-2d),求B 铰的联系力,对C 铰取矩列平衡方程。 0C M =∑ 将上述两个平衡方程联立,即可求出B 铰的联系力。 (d)隔离体 2 图2-1 二刚片隔离体示意图 Bx (c)隔离体 (b)三链杆情况 (a)一链杆一铰情况 图2-2 三刚片隔离体示意图 Ax (c)部分隔离体 (a)三刚片取1-1截面 (d)整体隔离体 (b)三刚片取2-2截面

4结构力学典型例题解析 ●基附型结构(先附后基) 所谓基本部分就是直接与地基构成几何不变体系的部分;而不能与地基直接构成几何不变体系的部分称为附属部分,这类型结构称为基附型结构。 由于基本部分除了具备和地基构成几何不变所需要的联系外,还与附属部分有联系,若先取基本部分作隔离体,未知力的个数将很多。而附属部分的联系就比较少,因此,先选取附属部分作为隔离体进行求解,最后求解基本部分。 对于基附结构求解顺序是:先附后基。 2-1-2 快速弯矩图方法 ●利用微分关系 (1)无外荷载的直杆段,剪力为常数,弯矩图为直线; (2)无外荷载的直杆段,若剪力为零,则弯矩图为常数; (3)铰(或自由端)附近无外力偶作用时,铰(或自由端)附近弯矩为零; 有外力偶作用时,铰(或自由端)附近弯矩等于外力偶; (4)直杆段上有荷载时,弯矩图的凸向与荷载方向一致; (5)直杆段上仅有集中力偶作用时,剪力不变,弯矩图有突变但斜率相同。 ●悬臂梁法作弯矩图 一端自由的直杆件,当将刚结点当作固定端时,如果得到悬臂梁,那么该杆件可以当作悬臂梁作弯矩图。将这种作弯矩图的方法称为悬臂梁法。 ●简支梁法(区段叠加法)作弯矩图 从结构中任意取出的一个直杆段,若直杆段两端的弯矩已知,将两端弯矩当作外荷载(力偶),可以将该直杆段及其上作用的荷载一起放到简支梁上,得到一个简支梁,该直杆段可以按照简支梁方法作弯矩图。将这种作弯矩图的方法称为简支梁法。 ●利用刚结点力矩平衡 取刚结点作隔离体,利用力矩平衡条件可得到如下结论: (1)当刚结点连接两个杆件,无外力偶作用时,两个杆端弯矩一定等值同侧。 (2)连接刚结点的杆件只有一个杆端弯矩未知时,利用力矩平衡条件可以求出。 ●几种结点的内力特点 (1)铰结点传递剪力但不传递弯矩; (2)与杆轴线一致的定向结点传递弯矩但不传递剪力; (3)与杆轴线垂直的定向结点传递弯矩但不传递轴力; (4)与杆轴线一致的链杆结点传递轴力,但不传递弯矩和剪力; (5)与杆轴线垂直的链杆结点传递剪力,但不传递弯矩和轴力。 2-1-3 桁架特殊内力的计算 ●桁架零杆判断 如图2-3所示的两种杆件轴力为零的情况(可利用平衡条件证明)。

超静定结构解决思路

超静定结构 超静定结构 静定结构是没有多余约束的结构,结构体系中任何一个约束去掉后,结构都失去稳定性,成为机构,因而也就不能够继续承担荷载。因此,静定结构是相对危险的,任意约束失效后都会导致整体结构的失效。为了保证结构的安全性,需要对于静定结构增加约束,成为有多余约束的结构——超静定结构。 超静定结构有多余约束,当其中某个约束失效后,所承担的作用由其他约束承担,整体结构仍处于稳定状态,可以继续承担荷载,但是,超静定结构在失去部分或全部多余约束后,内力会出现重新分布的现象,是否破坏要重新计算。 超静定结构的思路 对于超静定结构,静定结构的解题思路是难以解决的:静定结构中无论是外力还是内力,均依靠力系平衡方程或方程组实现,但超静定结构的多余约束导致有效方程数少于未知数的数量。 因此,超静定问题宜从以下方面思考: 首先,如果结构整体是平衡的,结构内部任意组成部分、点、段落也一定是平衡的; 其次,对于任意多余约束是可以去掉的,并以相应的约束力来替代的,替代之后的结构各个部分依然平衡切除替代点外没有任何变化; 第三,结构中任意相临的、距离为0 的两点间的相对位移与转角均为0; 第四,弹性结构体系中,各个构件受力后产生的变形是协调的。 基于上面的基本思路,对于超静定结构常用的方法是力法与位移法。 力法 力法是计算超静定结构的基本方法,是利用结构的变形协调来实现的。 力法的基本思路是: 弹性结构体系中,各个构件受力后产生的变形是协调的; 除去多余约束后,以约束力替代原约束,并与结构等效;

除去约束后的结构在其上的外力系[P]的作用下,会产生各种变形,其中在除去约束后的原约束点的位移是:[Δ ] 结构原有的约束力也会导致结构在约束点的相关变形:[x][δ],[x]:除去的多余的约束,[δ]:当多余约束为 1 时的各个约束点变形。 但是在原结构中,被除去的多余约束点由于约束的作用,其相应的位移为0,因此有: [x][δ] +[Δp] =0 如果设多余约束为n个,则力法线性方程组为: x1δ11 + x2δ12 + x3δ13+…… + x nδ1n +Δ1p = 0 x2δ21 + x2δ22 + x3δ23+…… + x nδ2n +Δ2p = 0 x3δ31 + x2δ32 + x3δ33+…… + x nδ3n +Δ3p = 0 …… …… …… …… …… …… …… …… …… x nδn1 + x2δn2 + x3δn3+…… + x nδnn +Δnp = 0 其中:x i:第i个多余约束所形成约束反力,是 未知数; δij:如果第j个多余约束位置上,作用有与该多余约束性质相同的单位力,所形成的位于第i 个约束反力位置上的变形量; x iδij:第j个多余约束所形成约束力,导致的位于第i个约束反力位置上的变形量; Δip:除去多余约束后,结构外荷载系产生的,位于第i 个约束反力位置上的变形量; 根据虚功原理,可以求得δij,且根据互等定理,δij = δji ;同样,根据虚功原理也可以求得Δip,因此方程组是可解的; 求解出x1,x2,x3…… x n后,可将其视为与外荷载系共同作用于除去多余约束的静定结构 的荷载,随即可以求解并绘制相应的静定结构的内力图,进而求出最大内力截面与最大应力的位 置与量值,进行相关校核。

二章 静定结构的受力分析

第二章静定结构的受力分析 一判断题 1. 图示梁上的荷载P将使CD杆产生内力。(×) 题1图 2. 按拱的合理拱轴线制成的三铰拱在任意荷载作用下能使拱各截面弯矩为零。(×) 3. 若有一竖向荷载作用下的等截面三铰拱,所选的截面尺寸正好满足其抗弯强度的要求。 则改用相应简支梁结构形式(材料、截面尺寸、外因、跨度均相同)也一定满足其设计要求(×) 4. 静定结构在支座移动、变温及荷载作用下,均产生位移和内力。(×) 5. 两个弯矩图的叠加不是指图形的简单拼合,而是指两图对应的弯矩纵矩叠加。(√) 6. 计算位移时,对称静定结构是:杆件几何尺寸、约束、刚度均对称的结构。(√) 7. 静定结构的全部内力及反力,只根据平衡条件求得,且解答是唯一的。(√) 8. 在静定结构中,当荷载作用在基本部分时,附属部分将引起内力(×) 9. 多跨静定梁仅当基本部分承受荷载时,其它部分的内力和反力均为零(√) 10. 几何不变体系一定是静定结构。(×) 11. 静定结构在荷载作用下产生的内力与杆件弹性系数、截面尺寸无关(√) 12. 直杆结构,当杆上弯矩图为零时,其剪力图也为零。(√) 13. 温度改变,支座移动和制造误差等因素在静定结构中引起内力。(×) 14.图示结构的反力R=) cos。(√) (2 / ql 题14图题15图 15. 图示结构中的反力 H=2kN.( √) 16. 图示结构的M图一定是对称的。(√)

题16图题17图题18图 17. 图示结构的反力R=0。(√) 18. 图示刚桁架由于制造误差AB杆短了3cm,装配后AB杆将被拉长。(×) 19. 图示体系是拱结构。(×) 题19图题24图 20. 静定结构的“解答的唯一性"是指无论反力、内力、变形都只用静力平衡条件即可确(×) 21. 当外荷载作用在基本部分时,附属部分不受力;当外荷载作用在某一附属部分时,整个 结构必定都受力。(×) 22. 抛物线型静定桁架在任意荷载作用下,其腹杆内力均为零。(×) 23. 两杆相交的刚结点,其杆端弯矩一定等值同侧(即两杆端弯矩代数和为零)。(×) 24. 图示结构中的反力H=m/l。(×) 25. 图示桁架杆件AB、AF、AG内力都不为零(×) 题25图题26图 26. 图示桁架AB、AC杆的内力不为零。(×) 27. 图示结构中的反力日R=15/8kN。(×) 题27图题29图 28. 静定结构受外界因素影响均产生内力。大小与杆件截面尺寸无关。(×) 29. 如图所示多跨静梁不管p、q为何值,其上任一截面的剪力均不为零(×) N10。(√) 30. 图示桁架结构杆1的轴力

同济大学朱慈勉 结构力学 第9章超静定结构的实用计算方法与概念分析习题答案

9-1 同济大学朱慈勉 结构力学 第9章超静定结构的实用计算方法与概 念分析习题答案 9-1 试说出何为杆端转动刚度、弯矩分配系数和传递系数,为什么弯矩分配法一般只能用于无结点线位移的梁和刚架计算。 9-2 试用弯矩分配法计算图示梁和刚架,作出M 图,并求刚结点B 的转角φB 。 解:设EI=6,则5.1,1==B C A B i i 53.05 .13145.1347 .05 .13141 4=?+??==?+??=B C B A μμ 结点 A B C 杆端 AB BA BC 分配系数 固端 0.47 0.53 绞支 固端弯矩 -60 60 -30 0 分配传递 -7.05 -14.1 -15.9 0 最后弯矩 -67.05 45.9 -45.9 ()()() 逆时针方向215.216005.6721609.4522131m KN EI EI m M m M i AB AB BA BA B ?-=?? ? ???+---= ? ? ? ???---=θ (b) 解:设EI=9,则 9m 9m 6m 3m 3m 2m 6m 2m

9-2 3 ,31,1====B E B D B C A B i i i i 12.01 41333331 316.01 41333331 436 .0141333333 3=?+?+?+??==?+?+?+??==?+?+?+??==B C B A B E B D μμμμ 结点 A B C 杆端 AB BA BC B D B E 分配系数 固端 0.16 0.12 0.36 0.36 绞支 固端弯矩 0 0 0 45 -90 0 分配传递 3.6 7.2 5.4 16.2 16.2 0 最后弯矩 3.6 7.2 5.4 61.2 -73.8 ()()()顺时针方向22.1606.32102.732131m KN EI EI m M m M i AB AB BA BA B ?=?? ? ???---= ? ? ? ???---=θ 9-3 试用弯矩分配法计算图示刚架,并作出M 图。 (a) 解:B为角位移节点 设EI=8,则1==B C A B i i ,5.0= =B C B A μμ 固端弯矩()m KN l b l Pab M B A ?=????=+= 488212 443222 2 m KN l M B C ?-=?+-=582621 892 结点力偶直接分配时不变号 结点 A B C 杆端 AB BA BC 分配系数 铰接 0.5 0.5 固端弯矩 48 -58 12 4m 4m 8m 2m

超静定结构分析

超静定结构的分析与求解 姓名李海龙专业土木工程年级2008级 摘要:本篇文章简要分析了超静定结构的判定方法和解决好景顶结构的基本方法—力法、位移法、力矩分配法。通过自由度判定超静定结构的次数,是桥梁中解决高次超静定的基本方法。文章主要分析各种方法解决超静定问题的步骤和需要注意的一些方面。关键词:超静定结构的分析力法位移法力矩分配法 Abstract:this article briefly analyzes the super statically determinate structure determination methods and solve the basic methods of Hualien roof structure -- force method, displacement method, torque distribution method. Through the freedom of judge super statically determinate structure solved in times of high times bridge is the basic methods of super quiescent set. The paper mainly analyses various methods to solve problems super quiescent steps and set some of the aspects of the needs attention. Keywords:super statically determinate structure analysis Force method Displacement method Torque distribution method 1 超静定结构分析 1.1超静定结构的判定 1.1.1自由度判定具有多余约束的结构称为超静定结构。结构具有多余约束的个数,即为超静定次数。多余约束可以是外部或内部的也可二者兼有。因而就有外部超静定,内部超静和内外部超静定结构之分。要快速准确判定结构超静次数必须注意以下几点:1.无论是梁式结构、框架(刚架)结构还是桁架结构都可以首先利用计算自由度公式大概判定结构可能的几何组成形式:W=3m-(2n+r)公式中:W:结构体系计算自由度数。m:结构体系刚片数(除地基这一特殊刚片外)。n:结构体系刚片与刚片之间连接铰数(复铰应换算成单铰),r:结构体系与地基相连的链杆数。①

第六章静定结构的受力分析

第六章静定结构的受力分析 §6-1 多跨静定梁 单跨梁多使用于跨度不大的情况,如门窗的过梁、楼板、屋面大梁、短跨的桥梁以及吊车梁等。如果将若干根短梁彼此用铰相连,并用若干支座与基础连接而组成几何不变的静定结构称为多跨静定梁。多跨静定梁是使用短梁跨过大跨度的一种较合理的结构型式。图6-1a 所示为一木檩条的结构图。在檩条(短梁)的接头处采用斜搭接并以螺栓连接,这种接头可看成铰结点。其计算简图如图6-1b所示。通过图6-1c可清楚地看到梁各部分之间的依存关系和力的传递层次。因此,把它称为梁的层次图。 图6.1 由图6-1c可见,连续梁的AB部分,有三根不完全平行亦不相交于同一点的支座链杆与基础相连,构成几何不变体系,称为基本部分;对于连续梁的EF和IJ部分,因它们在竖向荷载作用下,也可以独立地维持平衡,故在竖向荷载作用下,也可将它们当作基本部分;而短梁CD、GH两部分是支承在基本部分上,需依靠基本部分才能维持几何不变性,故称为附属部分。 常见的多跨静定梁,除图6-1b所示的形式外,还有图6-2a、c所示两种形式,它们的层次图分别如图6-2b、d所示。图6-2a所示的多跨静定梁,除左边第一跨为基本部分外,其余各跨均分别为其左边部分的附属部分。 图3-62c所示的多跨静定梁是由前两种方式混合组成的。 由多跨静定梁基本部分与附属部分力的传递关系可知,基本部分的荷载作用不影响附属部分;而附属部分的荷载作用则一定通过支座传至基本部分。因此,多跨静定梁的计算顺序是:先计算附属部分,然后把求出的附属部分的约束反力,反向加到基本部分上当成基本部分的荷载,再进行基本部分的计算。可见,只要先分析出多跨静定梁的层次图,把多跨梁拆成为多个单跨梁分别分析计算,而后将各单跨梁的内力图连在一起,便可得到多跨梁的内力图。

3静定结构的内力分析习题解答

第3章 静定结构的力分析习题解答 习题3.1 是非判断题 (1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( ) (2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。( ) 习题3.1(4)图 (5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。 ( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。 ( ) 【解】(1)正确; (2)错误; (3)正确; (4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分; (5)错误。从公式0 H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关; (6)错误。荷载发生改变时,合理拱轴线将发生变化; (7)错误。合理拱轴线与荷载大小无关; (8)错误。一般从仅包含两个未知轴力的结点开始。 习题3.2 填空 (1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。 P 习题3.2(1)图 (2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。 习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。 习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。 习题3.2(4)图

结构力学 静定结构的受力分析(DOC)

第1节 静定平面桁架 一、桁架的内力计算方法 1、结点法 取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。该法最适用于计算简单桁架。 根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化: (1)两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a )。 (2)三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力)(图2-2-1b)。 (3)四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c )。推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d )。 F N3 F N3=0 F N1=F N2=0 F N3=F N4(a) (b)(c)F N4 (d)F N3=F P F P N1F F N2 F N1 F N2 F N1 F N2 F N1 F N2 F N3 F N3 F N1=F N2,F N1=F N2, F N1=F N2, 图2-2-1 (4)对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。例如 图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。 1A 2 F P F P A F P F P B F P F P B A (b)(a) X =0 图2-2-2 图2-2-3 (5)对称结构在反对称荷载作用下,对称轴处正对称的未知力为零。如图2-2-3a 中AB 杆为零杆,因为若将结构从对称轴处截断,则AB 杆的力是一组正对称的未知力,根据上述结论可得。 (6)对称结构在反对称荷载作用下,对称轴处的竖杆为零杆。如图2-2-4a 中AB 杆和B 支座的反力均为零。其中的道理可以这样理解:将图a 结构取左右两个半结构分析,对中间的杆AB 和支座B 的力,若左半部分为正,则根据反对称,右半部分必定为相同大小的负值,将半结构叠加还原回原结构后正负号叠加,结果即为零。 0B F P F P F P F P B - A' B' A - A (a) (b) 图2-2-4 2、截面法 截面法取出的隔离体包含两个以上的结点,隔离体上的外力与内力构成平面一般力系,建立三个平衡方程求解。该法一般用于计算联合桁架,也可用于简单桁架中少数杆件的计算。 在用截面法计算时,充分利用截面单杆,也能使计算得到简化。 截面单杆的概念:在被某个截面所截的内力为未知的各杆中,除某一杆外其余各杆都交于一点(或彼此平行),则此杆称为截面单杆。截面单杆的内力可从本截面相应隔离体的平衡条件直接求出。 截面单杆可分为两种情况: (1)截面只截断三根杆,且此三根杆不交于一点,则其中每一杆都是截面单杆。计算时,对其中两杆的交点取矩,建立力矩平衡方程,就可求出第三杆的轴力,如图2-2-5(a )中,CD 、AD 、AB 杆都

静定与超静定

第十章静定结构和超静定结构 课题:第一节结构的计算简图 [教学目标] 一、知识目标: 1、理解结构计算简图的作用和意义。 2、掌握结构计算简图基本的简化方法。 二、能力目标: 通过对结构计算简图的讲解,提高学生分析问题的能力。 三、素质目标: 培养学生善于区分事物的主要矛盾和次要矛盾 [教学重点] 1、支座的简化和节点的简化。 2、计算简图的概念和要求。 [难点分析] 计算简图简化的原理。 [学生分析] 学生由于缺乏实际工程知识,不太理解计算简图的作用以及这种分析方法。[辅助教学手段] 理论联系实际、分析、讨论的方法 [课时安排] 1课时 [教学内容] 一、导入新课 何谓结构?结构的举例。通过启发学生联系工程实例,理解结构的概念。 二、新课讲解 1.结构的计算简图 2.结构的计算简图应满足的要求 (1)基本上反映结构的实际工作性能 (2)计算简便 3.实际结构的计算简图的简化 (1)支座的简化 三种形式;简支梁、阳台、柱的实例。 (2)节点的简化 铰节点和刚节点的特点及其应用 (3)构件的简化 实际上是力学中杆件的简化

(4)荷载的简化 集中荷载和均布荷载 三、讨论 1 牛腿柱的计算简图 2 雨蓬的计算简图 四、小结 在结构设计中,选定了结构的计算简图后,在按简图计算的同时,还必须采取相应的措施,以保证实际结构的受力和变形特点与计算简图相符。 五、作业 思考题:1 课题:第二节平面结构的几何组成分析 [教学目标] 一、知识目标: 1、理解几何组成分析的作用和意义。 2、了解结构从几何组成的观点的分类。 3、了解结构几何组成分析的规则和方法。 4、了解静定结构和超静定结构的概念。 5、会对简单结构进行几何组成分析。 二、能力目标: 通过对结构几何组成分析的讲解,提高学生分析问题的能力。 三、质目标: 培养学生善于区分事物的主要矛盾和次要矛盾 [教学重点] 1、几何组成分析的意义和结果。 2、几何组成分析的方法。 [难点分析] 结构几何组成分析的概念和方法都比较抽象,尤其是方法,学生学习起来比较困难。讲解时,淡化理论,结合例题讲解。 [学生分析] 学生由于对自由度、钢片、约束的概念比较生疏,所以理解这节内容比较困难,因而,讲解时,突出重点,难点内容只做介绍。 [辅助教学手段] 理论联系实际、分析、讨论的方法 [课时安排] 2课时

二建考试必备-建筑结构与设备(8)静定结构的内力分析

第五节静定结构的内力分析 静定结构按其受力特性,可以分为静定梁、静定刚架、三铰拱、静定析架和静定组合结构。 一、静定梁 1 .截面内力分量及正负号规定 平面杆件的任一截面上一般有三个内力分量:轴力N ,剪力Q 和弯矩M 。内力的正负号一般规定为: ( 1 )轴力以受拉为正; ( 2 )剪力以绕隔离体顺时针方向为正; ( 3 )弯矩一般不规定正负号(对水平梁通常以使梁的下侧受拉为正)。 内力图一般以杆轴为基线绘制。弯矩图规定画在杆件的受拉侧,无需标明正负号;剪力图和轴力图则可画在杆件的任一侧(对水平杆件通常将正的剪力和轴力绘于杆件上侧), 但需标明正负号。 2 .截面法 截面法是结构内力分析的基本方法。截面法计算结构内力的基本步骤为: ( l )将结构沿拟求内力的截面切开。 ( 2 )取截面任一侧的部分为隔离体,作出隔离体的受力图;受力图中的力包括两部分:外荷载和截断约束处的约束力(截面内力或支座反力),未知截面内力一般假设为正号方向。 ( 3 )利用静力平衡条件计算所求内力。对于平面结构,一般情况下隔离体上的各力组成一平面任意力系,故有三个独立的平衡方程(投影方程或力矩方程): 特殊情况下,例如截取的是一个铰节点,则各丸组成一平面汇交力系,故有两个独立的投影平衡方程: 【例3 -9 】计算简支斜梁(图 3 -32 )在均布荷载作用下1 / 3 跨处的内力

( l )求支座反力 将梁(图3 -32a )沿三根支座链杆处截开,取梁整体为隔离体,作出隔离体的受力图如图3 -32 ( b )所示。由整体平衡条件,可得: ( 2 )求截面内力 在 1 / 3 跨截面 C 处截开,取AC 部分为隔离体,作出受力图如图 3 -32 (c)所示。由隔离体AC 的平衡条件(x、y方向分别沿截面的轴向和切向),可得: 注:计算截面C 内力时,也可先求出截面上的水平和竖向分力Xc 、Yc ( Xc =0 ) ,再将其沿切向和轴向分解得到截面的剪力和轴力。 3.梁式直杆的内力图特征

3静定结构的内力分析习题解答

第3章 静定结构的内力分析习题解答 习题3.1 是非判断题 (1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。( ) (2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。( ) 习题3.1(4)图 (5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。 ( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。 ( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。 ( ) 【解】(1)正确; (2)错误; (3)正确; (4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分; (5)错误。从公式0 H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关; (6)错误。荷载发生改变时,合理拱轴线将发生变化; (7)错误。合理拱轴线与荷载大小无关; (8)错误。一般从仅包含两个未知轴力的结点开始。 习题3.2 填空 (1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。 P 习题3.2(1)图 (2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

于玲玲结构力学第二章__静定结构的受力分析(精)

第二节静定平面桁架 一、桁架的内力计算中采用的假定 (1桁架的结点都是光滑的铰结点; (2各杆的轴线都是直线并通过铰的中心; (3荷载和支座反力都作用在结点上。 二、桁架的分类 (1简单桁架:由基础或一基本三角形开始,依次增加二元体形成。 (2联合桁架:由几个简单桁架按几何不变体系的组成规则形成。 (3复杂桁架:不属于前两类的桁架。 三、桁架的内力计算方法 1、结点法 取结点为隔离体,建立平衡方程求解的方法,每个结点最多只能含有两个未知力。该法最适用于计算简单桁架。 根据结点法,可以得出一些结点平衡的特殊情况,能使计算简化: (1两杆交于一点,若结点无荷载,则两杆的内力都为零(图2-2-1a 。 (2三杆交于一点,其中两杆共线,若结点无荷载,则第三杆是零杆,而共线的两杆内力大小相等,且性质相同(同为拉力或压力(图2-2-1b。 (3四杆交于一点,其中两两共线,若结点无荷载,则在同一直线上的两杆内力大小相等,且性质相同(图2-2-1c 。推论,若将其中一杆换成力F P ,则与F P 在同一直线上的杆的内力大小为F P ,性质与F P 相同(图2-2-1d 。 F N3

F N3=0 F N1=F N2=0 F N3=F N4(a (b(cF N4 (dF N3=F P F P N1F F N2 F N1 F N2 F N1 F N2 F N1 F N2 F N3 F N3 F N1=F N2,F N1=F N2, F N1=F N2, 图2-2-1

(4对称结构在正对称荷载作用下,对称轴处的“K ”型结点若无外荷载作用,则斜杆为零杆。例如 图2-2-2所示对称轴处与A 点相连的斜杆1、2都是零杆。 1A 2 F P F P A F P F P B F P F P B A (b(a X =0 图2-2-2 图2-2-3

静定结构的一般性质

1.静定结构的一般性质 一. 温度的改变、支座移动和制造误差等因素在静定结构中不引起内力 由于静定结构随着温度的改变、支座移动和制造误差等因素的改变,只引起结构形状的改变,因此不引起内力。 二. 静定结构的局部平衡特性 在荷载作用下,如果仅靠静定结构中的某以局部就可以与荷载维持平衡,则其余部分的内力必为零。 事实上,多跨静定粱的基本部分上的荷载不影响附属部分;桁架中的零杆的判断,都是静定结构的局部平衡特性的具体体现。 当然,局部平衡可以是几何不变体,也可以是几何可变体。 三. 静定结构的荷载等效性 当静定结构的一个内部几何不变部分上的荷载作等效变换时,其余部分的内力不变。 四. 静定结构的构造变换特性 当静定结构的一个内部几何不变部分作构造变换时,其余部分的内力不变。 2.什么是简支梁的包络图和绝对最大弯矩? 连接各截面内力最大值的曲线称为内力包络图 弯矩的包络图中最高的竖距称为绝对最大弯矩 3.结构失稳几点认识 结构的失稳存在两种基本形式,一般来说,完善体系是分支失稳,非完善体系是极值点失稳 分支点失稳形式的特征是存在不同平衡路径的交叉,在交叉点处出现平衡形式的二重性。极值点失稳形式的特征是虽然只存在一个平衡路径,但平衡路径上出现极值点。 结构失稳问题只有根据大扰度理论才能得出精神的结论,但从实用的观点看,小扰度理论也有其优点。也别是在分支点失稳问题中通常也能得出临界荷载的正确值,但也应该注意它的某些结论的局限性。 4.什么是极限弯矩?什么是极限塑性铰和极限状态? 荷载到达最大值时节点能承担的弯矩称为极限弯矩 当截面弯矩达到极限弯矩时这种截面为塑性铰 整个结构或结构的一部分超过某一特定状态就不能满足设计规定的某一功能要求,此特定状态称为该功能的极限状态 5.基本定理可破坏荷载F P+恒不小于可接受荷载F P- 唯一性定理极限荷载值是唯一确定的 上限定理可破坏荷载是极限荷载的上限;或者说,极限荷载是可破坏荷载中的极小者 下限定理可接受荷载是极限荷载的下限;或者说,极限荷载是可接受荷载中的极大者5.超静定结构的特性 多余约束的存在及其影响各杆刚度改变对内力分布的影响 温度和沉陷等变形因素的影响

结构力学静定结构与超静定结构 建筑类

1、静定与超静定结构的概念:无多余约束的几何不变体系是静定结 构 静定结构:由静力平衡方程可求出所有内力和约束力的体系 有多余约束的几何不变体系是超静定结构 超静定结构:由静力平衡方程不能求出所有内力和约束力的体系. 瞬变体系不能作为结构:瞬变体系的主要特性为: 1.可发生微量位移,但不能继续运动 2.在变形位置上会产生很大内力 3.在原位置上,一般外力不能平衡 4.在特定荷载下,可以平衡,会产生静不定力 5.可产生初内力. 常变体系是一种机构而不是结构 2、静定结构的内力分析方法 几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力 求解一般原则:从几何组成入手,选择合适的隔 离体,使得一个隔离体上未知力的个数不超过三个,如果力系为平面汇交力系,则不应超过两个。一般按照几何组成的相反顺序分析。 一、单跨梁的内力分析 弯矩、剪力、荷载集度之间的微分关系 1.无荷载分布段(q=0),Q图为水平线,M图为斜直线。 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线,且凸向与荷载指向相

同。 3.集中力作用处,Q图有突变,且突变量等于力值; M图有尖点,且指向与荷载相同。 4.集中力偶作用处,M图有突变,且突变量等于力偶值; Q图无变化。 内力计算的关键在于:正确区 分基本部分和附属部分. 熟练 掌握单跨梁的计算. 单体刚架(联合结构)的支座反 力(约束力)计算 方法:切断约束,取一个刚片为 隔离体,假定约束力的方向,由隔离体的平衡建立三个平衡方程。 四.刚架弯矩图的绘制做法:拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图. 分段定点连线 六.由做出的剪力图作轴力图 做法: 逐个杆作轴力图,利用结点的平衡条件,由已知的杆端剪力和求杆端轴力,再由杆端轴力画轴力图.注意:轴力图画在杆件那一侧均可,必须注明符号和控制点竖标.

静定结构的内力分析

第3章静定结构的内力分析 3.1 静力平衡 对于静定结构,用静力平衡条件可以求出其全部反力和内力;接下去求解超静定结构也必须用到平衡。可以说掌握静力平衡问题是我们继续学习的关键。 3.1.1 利用静力平衡求解支座反力 有两种体系的平衡问题是我们必须掌握的,它们是带有附属部分体系和三铰刚架体系。 1. 带有附属部分体系 这种体系在几何组成上可以分为基本部分和附属部分。形象比喻这种体系就像大人背孩子,大人相当于基本部分,孩子相当于附属部分,孩子依托大人平衡,即附属部分依靠基本部分才能保持平衡。 判别此类体系应按定义来划分。 基本部分:在竖向荷载作用下能独立保持平衡的部分。 附属部分:在竖向荷载作用下不能独立保持平衡,需要依靠基本部分才能保持平衡的部分。 这类体系的解题思路是先附属后基本。即先取附属部分为研究对象,求出约束反力,然后将已求出的反力看作已知力,再取基本部分或整体为研究对象,求出剩余约束反力。从受力分析上看,作用在附属部分上的荷载要传给基本部分,而作用在基本部分上的荷载不传给附属部分。 2. 三铰刚架体系 这类体系在几何组成上分不出基本部分和附属部分。其典型或称标准形式为三个铰联结而成的刚架。形象比喻这种体系就像两个舞蹈演员各自金鸡独立,同时各自伸出一只手搭在一起以求稳定和平衡。刚架的每部分各自都不能独立平衡而互相依靠在一起才能保持平衡。 这类体系的解题思路是先整体,后分部。先整体即先取整体为研究对象,利用整体平衡的取矩方程先求出两支座的竖向反力,然后分部,所谓分部是指任取刚架的左半部或右半部为研究对象,利用该部分的平衡建立向左右两部分的联接铰中心取矩方程,从而解出支座处的水平反力。接下去求其他反力即可。 【例3.1】试求如图3.1所示刚架A、D、E处的支座约束反力。 解:CE部分为附属部分,ABD部分是基本部分,且ABD是三铰刚架类体系。有附属部分体系解题时应先附属后基本,对基本部分解题时因其为三铰刚架类体系,应先整体研究再分部研究。

相关主题
文本预览
相关文档 最新文档