当前位置:文档之家› 双足机器人毕业设计报告

双足机器人毕业设计报告

双足机器人毕业设计报告
双足机器人毕业设计报告

双足机器人毕业设计报告

篇一:平行四边形双足步行机器人的设计与研究

北京交通大学海滨学院毕业设计(论文)任务书

注:表中所填内容采用5号字,中文采用宋体、英文采用Times New Roman字体,表中段落采用1.5倍行距,首行缩进2个字符。每一页的外框四周均采用双线条,当底部出现单线条时,应该修正为双线条。

篇二:机器人关节的设计与实现毕业论文

河南科技学院

XX届本科毕业论文(设计)

论文(设计)题目:机器人关节的设计与实现

学生姓名:周涵

所在院系:信息工程学院

所学专业:计算机科学与技术

导师姓名:曲培新

完成时间: XX-05-25

摘要

机器人关节是机器人的基础部件,其性能的好坏直接影响机器人的性能。随着数字伺服技术等电子技术的发展,机器人关节也在不断发展。本文主要研究基于舵机的机器人关节的设计与实现。本文主要了完成以下工作:

采用定时器控制方法产生舵机控制的脉冲信号,为了能实现活动关节根据输入角度准确定位和微调,设计加入了矩阵键盘调控系统。在硬件搭建方面,设计了基于STC89C52的2路脉冲信号的舵机硬件控制电路系统。之后对系统所使用的编辑软件和调试工具进行了简要说明,并详细介绍了软硬件的主要模块的设计和实现过程,以及重要部分的调试和仿真的具体过程。最后,根据软硬件设计结果,制作了一个极坐标结构的机器人关节,能够完成分别在水平和竖直方向的比较精确的控制。

关键词舵机,机器人关节设计

Abstract

Robots joint, is a basic part of robot, whose performance will directly affect a robot. With the development of electronic technology such as digital servo, the technology of robot joint is developing continually. This paper is studying how to designed and (实现) a two-(自由度) robot joint based on digital servo.

Key words cellular phone virus, …………loopholes, Bluetooth

目录

1. 绪论................................................. ................................................... .. (5)

1.1. 课题背景................................................. ................................................... (5)

1.2. 舵机简介................................................. ................................................... (5)

1.3. 本文研究的工作................................................. ............................................. 7

2. 系统的总体设计思路................................................. ............................................ 7

3. 硬件设计与实现................................................. ....................................................

8

3.1. 主要元器件介绍................................................. (8)

舵机................................................. ................................................... . (8)

STC89C52........................................... ................................................... (8)

3.2. 硬件的设计过程................................................. (8)

工作电源控制电路................................................. . (9)

1602显示控制电路................................................. (9)

矩阵键盘的设计电路................................................. . (10)

舵机与系统接口电路................................................. . (10)

机器人关节的外形设计................................................. (11)

3.3. 硬件的实现过程................................................. . (11)

电路板的设计过程................................................. .. (11)

硬件的组装过程................................................. .................................... 11 4. 软件的设计与实现................................................. . (11)

4.1. 单片机的C语言及其开发工具 ................................................ . (12)

4.2. 各模块程序设计................................................. . (12)

脉冲信号产生模块................................................. .. (13)

矩阵键盘控制模块................................................. .. (13)

4.3. 数据处理................................................. ................................................... .... 14 5. 仿真与调试................................................. ................................................... . (15)

5.1. 硬件电路的仿真设计.................................................

(15)

5.2. 单片机的程序调试................................................. ....................................... 15 6. 总结................................................. ................................................... . (16)

致谢................................................. ................................................... . (16)

附录1.................................................. ................................................... . (16)

附录2.................................................. ................................................... . (18)

附录3..................................................

................................................... . (18)

1. 绪论

1.1. 课题背景

从一战以来,机器人学和飞机、火箭、计算机等一样,也日益发展成为我们日常生活不可或缺的科学技术,机器人的应用广泛,从传统的自动化制造领域,到人类的日常生活,再到茫茫星系的探索,都已经离不开机器人。

机器人关节是机器人的基础部件,其性能的好坏直接影响机器人的性能。机器人关节的种类有很多,根据机器人的功能不同,关节的配臵和运动系统的形式叶都各不相同。工业机器人关节根据输出运动形式的不同分为移动关节和转动关节:根据传动机构的不同可以分为齿轮传动、连杆传动和摆线针轮减速传动;根据驱动器形式的不同可以分为电驱动关节、气压驱动关节、液压驱动关节和特种驱动关节等等。仿人机器人也是当今机器人爱好者研究的热点之一,仿人机器人因为外型类人则其关节可以分为上肢关节和下肢关节。微型机器人则是利用集成电路微细加工,将驱动器,关节传动装臵以及传感器控制器和电源等集成在很小的多晶硅上。总体来看机器人关节呈现出大力矩,高精度,反应灵敏,小型化,标准化和模块化的趋势和发展。

工业机器人常见的关节形式有移动关节和转动关节。应用最多的工业机器人是多关节机器人,它主要是由多个回转关节和连杆组成,模拟人的肩关节、肘关节和腕关节等的作用。其关节与仿人机器人的肩、肘、髋关节不同的是自由度的个数。通常工业机器人的肩肘髋的关节的自由度为1。

仿人机器人主要分为仿人手臂型和仿人双足型。仿人手臂型主要是研究7自由度手臂和多自由度操作臂、多指灵巧手及手臂和灵巧手的组合。仿人双足型主要研究步行机构及步行特性,下肢关节结构是步行质量好坏的关键。

1.2. 舵机简介

在机器人关节的设计中,电机是至关重要的一部分,电机就像是机器人关节的肌肉,只有正确的配臵和使用电机才能使机器人关节正常运转起来。

常见的电机主要有直、交流电机,而直流电机一直在机器人设计中占有主导地位。直流电机可以分为连续转动电机和步进电机2种,主要区别是连续转动的电机在通电后主轴连续转动,只有当断电或者电机提供的驱动力无法驱动负载时,主轴才停止转动或这阻塞;步进电机则是通电后主轴转动某一个角度后,然后停止。伺服电机是一种比较特殊的连续转动电机类型。

直流电机和步进电机都是开环反馈系统,也就是在电机

转动的过程中并不知

篇三:六足机器人论文

??

CDIO实验报告

实验项目名称:

所属课程名称:

实验日期

班级

姓名(学号)

成绩

摘要随着计算机、网络、机械电子、信息、自动化以及人工智能等技术的飞速发展,移动机器人的研究进入了一个崭新的阶段。在腿型行走机器人的研究中,双足机器人是研究的比较多的项目,同时,多足机器人的研究也占了很大的比例。多足机器人能够比较好的适应周围的地形环境,但是相对于双足机器人来说,由于要兼顾多条行走机构之间的相互配合,在编程过程中就需要考虑多方面的因素,在本项目中,我们使用创新套件的部件组装了一个六足爬行机器人(新型移动智能机器人),这就涉及到了六条行走走机构的协调问题。多足机器人能够直走前方有一个传感器被遮挡则往反方向运动当两个传感器被遮挡是则向后运动,实现简单

的避障行走,具有运动稳定性好,适应能力强,控制方便的优点,它可以轻易地跨过比较大的障碍并且机器人所具有的大量的自由度可以是机器人的运动更加灵活,对凹凸不平的地形的适应能力更强,复杂的肢体结构和简易灵巧的运动控制策略,因此多足机器人在未来有广阔的前景。

关键词:移动机器人;六足爬行机器人;协调;避障;稳定性;新型移动智能机器人

Hexapod crawling robot

Abstract

With the rapid development of computer, network, mechanics, electronics, informatics, automation and artificial intelligent technology etc, robotics has entered a new stage. Leg type walking robot, a biped robot is more research projects, at the same time, the multi-legged robot also accounted for a large proportion. Multi-legged robot is able to better adapt to the environment of the surrounding terrain, biped robot to take into account the interaction between the walking mechanism in the programming process, you need to consider many factors in this project , we use innovative suite of components assembled a six-legged

crawling robot, which involves six walking away agency coordination problem.Multi-legged robot able to go straight in front of a sensor is blocked the movement in the opposite direction when the two sensors are obstructed backward movement, simple obstacle avoidance walking, movement, good stability, adaptability, and control of the advantages of easyit can easily cross the obstacles and the robot has a large number of degrees of freedom can be the movement of the robot is more flexible, stronger adaptability rugged terrain, the complex structure of the limbs and simple and smart motion control strategy, so multi-legged robot has broad prospects in the future.

Key words: Mobile robot;Hexapod crawling robot; Coordination; obstacle avoidance; stability;MT-UROBOT 目录

目录 ................................................ ................................................... .. 4 一、引言 ................................................

(6)

1.1 课题背景 ................................................ ................................................... . (6)

1.2 本项目研究的意义 ................................................ ................................................... .. (6)

1.3 国内外发展状况 ................................................ ................................................... (7)

1.4 本文的研究方法 ................................................ ................................................... ........................ 8 二、设计原理及方法比较 ................................................ (9)

2.1多足机器人相关简介 ................................................

................................................... .. (9)

.............................................. ................................................... (9)

2.1.2 多足机器人的相关应用 ................................................ ................................................... . (10)

2.2 MT-U控制器模块 ................................................ ................................................... (10)

11

.............................................. ................................................... .. (11)

2.3 舵机及舵机控制卡模块 ................................................ ................................................... . (12)

2.3.1 舵机原理介绍 ................................................ ................................................... (12)

2.3.2 舵机控制卡 ................................................ ................................................... . (13)

2.4 微控制器模块 ................................................ ................................................... .. (14)

14

2.4.2 扩展控制主芯片 ................................................ ................................................... . (15)

2.5 传感器模块 ................................................ ................................................... (16)

.............................................. ................................................... .............................. 16 三、方案设计 ................................................ .. (16)

3.1 步态分析 ................................................ ................................................... . (16)

3.2步态设计 ................................................ ................................................... .. (17)

3.2.1 初始化 ................................................ ................................................... .. (17)

3.2.2 直行行走(前方无障碍) .............................................. ................................................... .. (17)

3.2.3 转向(前方有障碍) .............................................. ................................................... .. (17)

右转(左上方检测到障碍,或者左边有过近的障碍) .............................................. .. (18)

左转:(右上方检测到障碍,或右边有过近的障碍) .............................................. . (18)

后退(正前方发现障碍,且无法转弯) .............................................. .. (18)

3.3 程序设计 ................................................ ................................................... . (18)

3.3.1 主程序设计 ................................................ ................................................... (18)

3.3.2 运动程序设计 ................................................ ................................................... ....................... 19 四、作品调试 ................................................ ................................ 22 五、调试结果 ................................................ .. (23)

5.1 设计成果: .............................................. ......................................(本文来自:小草范文网:双足机器人毕业设计报告) (23)

5.2后续研究工作展望: .............................................. ................................................... .. (23)

六、结论 ................................................ (23)

参考文

献 ................................................ . (24)

致谢 ................................................ . (25)

附录 ................................................ . (26)

跳舞机器人设计毕业设计论文

课程设计任务书 ( 2015 级) 目录 摘要------------------------------------------------------4 引言------------------------------------------------------5 任务书-----------------------------------------------------6 第一章 我国机器人技术的发展概况------------------------------------7 第二章机器人的总体设计解剖 1.1资料的收集与阐述-----------------------------------------7 1.2机器人工作原理简介 1.总体设计剖------------------------------------------------8 2.伺服电机的剖析--------------------------------------------9 第三章机器人总体设计综述 ---------------------------------12 1、1设计课题的阐述-----------------------------------------12 1、2单片机的选择-------------------------------------------12 1、3主控板部分简介-----------------------------------------12 第四章机器人的总体设计方案与部分简介 1、1设计方案-----------------------------------------------13 1、2各部分功能及原理简介-----------------------------------13 第五章机器人的原理图设计、仿真及电路板制作 1、1机器人的原理图设计-------------------------------------15 1、2电源部分-----------------------------------------------16 1、3稳压电源部分-------------------------------------------16 1、5接口电路部分-------------------------------------------17 1、6单片机最小系统和ISP在线编程---------------------------18 1、9电路板制作---------------------------------------------18 第六章机器人电路板的调试与结论

六足步行机器人毕业设计开题报告

燕山大学 本科毕业设计(论文)开题报告 课题名称:六足步行机器人 学院(系):里仁学院 年级专业:机械电子 学生姓名: 指导教师: 完成日期:

一、综述本课题国内外研究动态,说明选题的依据和意义 步行机器人,简称步行机 ,是一种智能型机器人 , 它是涉及到生物科学 , 仿生学 , 机构学 , 传感技术及信息处理技术等的一门综合性高科技 . 在崎岖路面上 ,步行车辆优于轮式或履带式车辆 .腿式系统有很大的优越以及较好的机动性 , 崎岖路面上乘坐的舒适性 ,对地形的适应能力强 .所以 ,这类机器人在军事运输 , 海底探测 , 矿山开采 , 星球探测 , 残疾人的轮椅 , 教育及娱乐等众多行业 ,有非常广阔的应用前景 , 多足步行机器人技术一直是国内外机器人领域的研究热点之一。 目前《机械电子》等期刊发布国内研究成果如下: 闰尚彬,韩宝玲,罗庆生在文献[1]针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与MSC.ADAMS软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析.通过仿真,验证了所设计的三角步态的适用性和所选择的三次样条曲线作为机器人足端点轨迹曲线方案的可行性. 韩宝玲王秋丽罗庆生在文献[2]基于六足仿生步行机器人机构学特性的研究,采用数值分析法求解了机器人步行足的足端工作空间,利用虚拟样机技术计算了机器人的灵活度,从两方面综合衡量六足仿生步行机器人的工作能力,并以六足步行机器人各腿节比例关系的确定为例,介绍了六足步行机器人结构优化的具体方案. 苏军陈学东田文罡在文献[3]研究六足步行机器人全方位行走步态,分析其静态稳定性;规划了典型直线行走步态和定点转弯步态,确定了直线行走步态最大跨步和定点转弯步态最大转角;进行了步态控制算法模拟仿真及实地步行实验。 王绍治郭伟于海涛李满天在文献[4]根据CPG双层网络的特点,采用分层分布式系统架构研究制了一种机器人运动控制系统.其基于FPGA的星型总线,在保证通信速率的同时提高了系统抗干扰能力.在单足控制器中嵌入双NIOS完成CPG网络解算和电机运动控制. 郭少晶韩宝玲罗庆生在文献[5]针对采用电池供电的六足仿生步行机器人其工作时间受限的情况,提出了将动态电源管理、实时任务调度和运动策略规划等方法,综合运用于其控制系统,且更为全面地考虑了机器人系统的能耗等级.这种方法对于降低机器人的系统能耗起到了实质性的作用,其整体思路与技术途径可为降低其它类似的多足步行机器人的系统能耗, 陈甫臧希喆赵杰闫继宏在文献[6]从机械结构、运动模式和步态控制3个方面, 对六足步行机器人的仿生机制进行了分析. 提出一种灵活度评价函数, 基于该函数对六足机器人的结构参数进行了优化; 推导了步态模式与步行速度关系的数学表达; 构建了分布式局部规则网络, 可自适应地调整错乱的腿间相序,生成静态稳定的自由步态.仿真实验验证了上述仿生机制的有效性。

最新西华大学机器人创新设计实验报告(工业机械手模拟仿真)

实验报告 (理工类) 课程名称: 机器人创新实验 课程代码: 6003199 学院(直属系): 机械学院机械设计制造系 年级/专业/班: 2010级机制3班 学生姓名: 学号: 实验总成绩: 任课教师: 李炜 开课学院: 机械工程与自动化学院 实验中心名称: 机械工程基础实验中心

一、设计题目 工业机器人设计及仿真分析 二、成员分工:(5分) 三、设计方案:(整个系统工作原理和设计)(20分) 1、功能分析 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 本次我们小组所设计的工业机器人主要用来完成以下任务: (1)、完成工业生产上主要焊接任务; (2)、能够在上产中完成油漆、染料等喷涂工作; (3)、完成加工工件的夹持、送料与转位任务; (5)、对复杂的曲线曲面类零件加工;(机械手式数控加工机床,如英国DELCAM公司所提供的风力发电机叶片加工方案,起辅助软体为powermill,本身为DELCAM公司出品)

管道检测机器人_毕设论文

1 引言 管道运输是当今五大运输方式之一,已成为油气能源运输工具。目前,世界上石油天然气管道总长约200万km,我国长距离输送管道总长度约2万km。国家重点工程“西气东输”工程,主干线管道(管径1118mm)全长4167km,其主管道投资384亿元,主管线和城市管网投资将突破1000亿元。 世界上约有50%的长距离运输管道要使用几十年、甚至上百年时间,这些管道大都埋在地下、海底。由于内外介质的腐蚀、重压、地形沉降、塌陷等原因,管道不可避免地会出现损伤。在世界管道运输史上,由于管道泄漏而发生的恶性事故触目惊心。据不完全统计,截至1990年,国内输油管道共发生大小事故628次。1986到2b00年期间美国天然气管道发生事故1184起,造成55人死亡、210人受伤,损失约2. 5亿美元。因此,研究管道无损检测自动化技术,提高检测的可靠性和自动化程度,加强在建和在役运输管道的检测和监测,对提高管线运输的安全性具有重要意义。 1.1管道涂层检测装置的发展、现状和前景 1.1.1管道涂层检测装置的发展 管内作业机器人是一种可沿管道自动行走,携有一种或多种传感器件和作业机构,在遥控操纵或计算机控制下能在极其恶劣的环境中进行一系列管道作业的机电仪一体化系统.对较长距离管道的直接检测、清理技术的研究始于本世纪50年代美、英、法、德、日等国,受当时的技术水平的限制,主要成果是无动力的管内检测清理设备——PIG,此类设备依靠首尾两端管内流体的压力差产生驱动力,随着管内流体的流动向前移动,并可携带多种传感器.由于PIG本身没有行走能力,其移动速度、检测区域均不易控制,所以不能算作管内机器人.图1所示为一种典型的管内检测PIG[5]. 这种PIG的两端各安装一个聚氨脂密封碗,后部密封碗内侧环向排列的伞状探头与管壁相接触,测量半径方面的变形,并与行走距离仪的旋转联动,以便使装在PIG内部的记录仪记录数据.它具有沿管线全程测量内径,识别弯头部位,测量凹陷等变形部位及管圆度的功能,并可以把测量结果和检测位置一起记录下来. 70年代以来,石油、化工、天然气及核工业的发展为管道机器人的应用提供了广阔而诱人的前景,而机器人学、计算机、传感器等理论和技术的发展,也为管内和管外自主移动机器人的研究和应用提供了技术保证.日、美、英、法、德等国在此方面做了大量研究工作,其中日本从事管道机器人研究的人员最多,成果

搬运码垛机器人毕业设计

搬运码垛机器人毕业设计 Prepared on 22 November 2020

目录1

1绪论 研究背景及意义 随着现代社会科技水平日新月异的变化,机器人技术已经渗透到人类生活中的方方面面,演着不可替代的角色。机器人是多个学科技术综合而成的产物,其应用程度已经逐渐宽广起来研究机器人已经成为了当今时代的趋势。机器人的应用状况已经可以作为权衡一个国家现化程度高低的重要因素。从机器人工作的环境来对机器人进行分类,大体上能划分成两种,就是工业机器人与特种机器人。工业机器人是一种具有良好性能的自动化机械装置,是典型的含有很高科技含量的机电一体化产品。它在提高产品质量、增加经济效益、提高生产率方面起着重要作用。同时工业机器人的发展情况也是日新月异的,所以研发工业机器人是一件刻不容缓的事情。 码垛是随着物流产业的不断壮大而发展起来的一项高新技术,其思想是把物品按照一定规律码放在托盘上,从而能够使物品的存放、搬运、转移等活动变成单元化操作,从而大大提高物流运输的效率。在物料质量不大、尺寸不大、码垛速度要求不高的情况下,码垛工作都是通过人工来实现的。后来为了减轻工人在码垛时的工作强度,产生了托盘操作机、工业机械手等一些比较简单的机械设施。但是随着人们对码垛速度要求的不断提高,传统的人工码垛方式越来越难以达到人们的要求,这种情况下码垛机器人应运而生。 作为工业机器人典型的一种,码垛机器人技术近几年有着非常快速的发展,这样的发展速度和当今世界制造业的小批量、多种类的发展模式是十分吻合的。码垛机器人有着工作能力强、运行速度快、体积比较小、抓取种类多、应用范围广等特点,从而在市场上备受青睐,正因为这些优点,才使得码垛机器人被普遍应用于制造业、码垛、装配、焊接等诸多操作中。 近年来,袋装物品的需求和产量都十分巨大,进而对袋装物品进行运输的需求也在急剧增长。在我国有大量的袋装物品需要进行码垛、卸垛和运输。目前,对袋装物品的火车运输来讲,火车站台卸车、站台码垛、运输装车、运输卸车、库房码垛等工

六足机器人设计参考解析

摘要 六足机器人有强大的运动能力,采用类似生物的爬行机构进行运动,自动化程度高,可以提供给运动学、仿生学原理研究提供有力的工具。本设计中六足机器人系统基于仿生学原理,采用六足昆虫的机械结构,通过控制18个舵机,采用三角步态和定点转弯等步态,实现六足机器人的姿态控制。系统使用 RF24L01射频模块进行遥控。为提高响应速度和动作连贯性,六足机器人的驱动芯片采用ARM Cortex M4芯片,基于μC/OS-II操作系统,遥控器部分采用ARM9处理器S3C2440,基于Linux系统。通过建立六足机器人的运动模型,运用正运动学和逆运动学对机器人进行分析,验证机器人步态的可靠性。 关键字:六足机器人,Linux,ARM,NRF24L01,运动学 Abstract Bionic hexapod walking robot has a strong ability of movement, the use of similar creatures crawling mechanism movement, high degree of automation, can be provided to the kinematics, the principle of bionics research provides powerful tool. Six feet in the design of this robot system based on bionics principle, the mechanical structure of the six-legged insect, through 18 steering gear control, use the gait, such as triangle gait and turning point to control the position of six-legged robot. Remote control system use RF24L01 rf modules. In order to improve the response speed and motion consistency, six-legged robot driver chip USES the ARM architecture (M4 chip, based on mu C/OS - II operation system, remote control part adopts ARM9 processor S3C2440, based on Linux system. By establishing a six-legged robot motion model, using forward kinematics and inverse kinematics analysis of robot, verify the reliability of the robot gait. KEYWORD:Bionic hexapod walking robot;Linux,ARM,NRF24L01;Kinematics

六轴工业机器人实验报告

六轴工业机器人模块 实验报告 姓名:张兆伟 班级:13 班 学号:2015042130 日期:2016年8月25日

六轴工业机器人模块实验报告 一、实验背景 六自由度工业机器人具有高度的灵活性和通用性,用途十分广泛。本实验是在开放的六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人的运动控制。通过示教程序完成机器人的系统标定。学习采用C++编程设计语言编写机器人的基本控制程序,学习实现六自由度机器人的运动控制的基本方法。了解六自由度机器人在机械制造自动化系统中的应用。 在当今高度竞争的全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受的压力日益增大,既要应付低成本国家的对手,还要面临发达国家的劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 机器人是开源节流的得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺和产品质量的恒定一致,显著提高产量。自动化将人类从枯燥繁重的重复性劳动中解放出来,让人类的聪明才智和应变能力得以释放,从而生产更大的经济回报。 二、实验过程 1、程序点0——开始位置 把机器人移动到完全离开周边物体的位置,输入程序点 0。按下手持操作示教器上的【命令一览】键,这时在右侧弹出指令列表菜单如图: 按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动 1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。修改指令参数为需要的参数,设置速度,使用默认位置点 ID 为 1。(P1 必须提前示教好)。按下手持操作示教器上的【插入】键,这时插入绿色灯亮起。然后再按

机器人手臂机构毕业设计(论文)

浙江工贸职业技术学院 毕业设计(论文)课题名称:机器人手臂机构

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

山东建筑大学计算机网络课程设计《基于Python的网络爬虫设计》

山东建筑大学 课程设计成果报告 题目:基于Python的网络爬虫设计课程:计算机网络A 院(部):管理工程学院 专业:信息管理与信息系统 班级: 学生姓名: 学号: 指导教师: 完成日期:

目录 1 设计目的 (1) 2 设计任务内容 (1) 3 网络爬虫程序总体设计 (1) 4 网络爬虫程序详细设计 (1) 4.1 设计环境和目标分析 (1) 4.1.1 设计环境 (1) 4.1.2 目标分析 (2) 4.2 爬虫运行流程分析 (2) 4.3 控制模块详细设计 (3) 4.3 爬虫模块详细设计 (3) 4.3.1 URL管理器设计 (3) 4.3.2 网页下载器设计 (3) 4.3.3 网页解析器设计 (3) 4.4数据输出器详细设计 (4) 5 调试与测试 (4) 5.1 调试过程中遇到的问题 (4) 5.2测试数据及结果显示 (5) 6 课程设计心得与体会 (5) 7 参考文献 (6) 8 附录1 网络爬虫程序设计代码 (6) 9 附录2 网络爬虫爬取的数据文档 (9)

1 设计目的 本课程设计是信息管理与信息系统专业重要的实践性环节之一,是在学生学习完《计算机网络》课程后进行的一次全面的综合练习。本课程设计的目的和任务: 1.巩固和加深学生对计算机网络基本知识的理解和掌握; 2.培养学生进行对网络规划、管理及配置的能力或加深对网络协议体系结构的理解或提高网络编程能力; 3.提高学生进行技术总结和撰写说明书的能力。 2 设计任务内容 网络爬虫是从web中发现,下载以及存储内容,是搜索引擎的核心部分。传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。 参照开放源码分析网络爬虫实现方法,给出设计方案,画出设计流程图。 选择自己熟悉的开发环境,实现网络爬虫抓取页面、从而形成结构化数据的基本功能,界面适当美化。给出软件测试结果。 3 网络爬虫程序总体设计 在本爬虫程序中共有三个模块: 1、爬虫调度端:启动爬虫,停止爬虫,监视爬虫的运行情况 2、爬虫模块:包含三个小模块,URL管理器、网页下载器、网页解析器。 (1)URL管理器:对需要爬取的URL和已经爬取过的URL进行管理,可以从URL 管理器中取出一个待爬取的URL,传递给网页下载器。 (2)网页下载器:网页下载器将URL指定的网页下载下来,存储成一个字符串,传递给网页解析器。 (3)网页解析器:网页解析器解析传递的字符串,解析器不仅可以解析出需要爬取的数据,而且还可以解析出每一个网页指向其他网页的URL,这些URL被解析出来会补充进URL管理器 3、数据输出模块:存储爬取的数据 4 网络爬虫程序详细设计 4.1 设计环境和目标分析 4.1.1 设计环境

智能机器人设计毕业论文

目录 第1章、绪论 (2) 1、1智能机器人技术发展的重要意义 (2) 1、2国内外机器人的发展史 (2) 1、2、1 国外机器人的发展历史 (2) 1、2、2 国内机器人的发展历史 (3) 1、3服务机器人的特点关键技术 (3) 1、4本论文的主要研究内容 (4) 1、5本章小结 (4) 第2章、物体检测与报警机器人的总体设计 (5) 2、1概述 (5) 2、2主要组成 (5) 2、2、1 头部旋转机构 (5) 2、2、2 主体部 (6) 2、2、3 电机 (6) 2、3主要技术参数 (7) 2、4、电机的选型 (7) 2、4、1 驱动机构的组成、 (7) 2、4、2 步进电机的选型比较 (8) 2、4、3 步进电机的选型计算 (9) 2、5蜗轮蜗杆传动的选型设计 (11) 2、6电机的效核.................................... 错误!未定义书签。 2、7轴的较核及联件的选型.......................... 错误!未定义书签。 2、7、1、蜗杆轴的较核、......................... 错误!未定义书签。 2、7、2、蜗杆轴上轴承的选型..................... 错误!未定义书签。 2、7、 3、蜗轮轴的较核、......................... 错误!未定义书签。 2、7、4、蜗轮轴上轴承的选型..................... 错误!未定义书签。 2、7、5、键的较核............................... 错误!未定义书签。 2、7、6、联轴器的选型........................... 错误!未定义书签。 2、8本章小结...................................... 错误!未定义书签。第3章、驱动机构及其控制方式........................ 错误!未定义书签。 3、1、概述........................................ 错误!未定义书签。 3、2步进电机及其控制系统.......................... 错误!未定义书签。 3、2、1 步进电机的工作特性、..................... 错误!未定义书签。 3、2、2 步进电机的开环控制系统................... 错误!未定义书签。 3、3本章小结...................................... 错误!未定义书签。结束语............................................... 错误!未定义书签。

六足爬行机器人总体设计方案

本文的设计为六足爬虫机器人,机器人以交流-直流开关电源作为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析 六足爬虫式机器人的行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并

毕业设计(论文)机器人行走机构 文献综述

重庆理工大学 毕业设计(论文)文献综述题目机器人行走机构设计 二级学院重庆汽车学院 专业机械设计制造及其自动化班级 姓名学号 指导教师系主任 时间

评阅老师签字:

机器人行走机构 吴俊 摘要:行走机器人是机器人学中的一个重要分支。行走机构可以是轮式的、履带式的 和腿式的等,能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构。本 文从国内外的研究状况着手,介绍了行走机器人的发展历史,研究现状和发展趋势。本文还介绍了国内最新的研究成果。 关键字:机器人行走机构发展现状应用 Keyword:robot travelling mechanism developing current situation application 一,前言 行走机器人是机器人学中的一个重要分支。关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等;其次,必须考虑 驱动器的控制,以使机器人达到期望的行为;第三,必须考虑导航或路径规划。因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体 的综合系统。机器人的机械结构形式的选型和设计,应该根据实际需要进行。在机器 人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性 的工作。对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的 各种移动机构。当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数 仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车 到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和 广阔的应用前景而成为智能机器人发展的方向之一。 二、课题国内外现状 多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构, 是模仿多足 动物运动形式的特种机器人, 是一种足式移动机构。所谓多足一般指四足及四足其以上, 常见的多足步行机器人包括四足步行机器人、六足步行机器人、八足步行机器人等。 步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个 阶段: 第一阶段, 以机械和液压控制实现运动的机器人。 第二阶段, 以电子计算机技术控制的机器人。 第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。 三、研究主要成果 国内多足步行机器人的研究成果[1]: 1991年,上海交通大学马培荪等研制出JTUWM[1]系列四足步行机器人。JTUWM-III是模仿马等四足哺乳动物的腿外形制成,每条腿有3个自由度,由直流伺服

六轴工业机器人实验报告

六轴工业机器人模块 实验报告

六轴工业机器人模块实验报告 一、实验背景 六自由度工业机器人具有高度得灵活性与通用性,用途十分广泛。本实验就是在开放得六自由度机器人系统上,采用嵌入式多轴运动控制器作为控制系统平台,实现机器人得运动控制。通过示教程序完成机器人得系统标定。学习采用C++编程设计语言编写机器人得基本控制程序,学习实现六自由度机器人得运动控制得基本方法。了解六自由度机器人在机械制造自动化系统中得应用。 在当今高度竞争得全球市场,工业实体必须快速增长才能满足其市场需求。这意味着,制造企业所承受得压力日益增大,既要应付低成本国家得对手,还要面临发达国家得劲敌,二后者为增强竞争力,往往不惜重金改良制造技术,扩大生产能力。 机器人就是开源节流得得利助手,能有效降低单位制造成本。只要给定输入成值,机器人就可确保生产工艺与产品质量得恒定一致,显著提高产量。自动化将人类从枯燥繁重得重复性劳动中解放出来,让人类得聪明才智与应变能力得以释放,从而生产更大得经济回报。 二、实验过程 1、程序点0——开始位置 把机器人移动到完全离开周边物体得位置,输入程序点 0。按下手持操作示教器上得【命令一览】键,这时在右侧弹出指令列表菜单如图: 按手持操作示教器【下移】键,使{移动 1}变蓝后,按【右移】键,打开{移动1}子列表,MOVJ 变蓝后,按下【选择】键,指令出现在命令编辑区。修改指令参数为需要得参数,设置速度,使用默认位置点 ID 为 1。(P1 必须提前示教好)。按下手持操作示教器上得【插入】键,这时插入绿色灯亮起。然后再按下【确认】键,指令插入程序文件记录列表中。此时列表内容显示为: MOVJ P=1 V=25 BL=0 (工作原点)

工业机器人设计论文

摘要 在生产过程工业机械手是模拟人手动作的机械设备,它可以替代人工搬运重物或单调,在高粉尘,高温,有毒,易燃,放射性和其他相对较差的工作环境。机器人可用于在生产过程中的自动化抓住并移动工件自动化设备,它是在生产过程的机械化和自动化,开发出一种新的类型的设备。近年来,随着电子技术,特别是计算机的广泛使用机器人的开发和生产的高科技领域已成为迅速发展起来的一项新兴技术,它更促进机器人的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手能够代替人类完成危险、减轻人类劳动强度、重复枯燥的工作,提高劳动生产力。 本设计是关于三自由度的圆柱形机械手。利用Auto CAD软件对制件进行设计绘图。其包括夹持器、小臂、大臂和底座。明确合理的设计思路,确定了机械手工作原理并对然夹持器、气缸、步进电机、轴承进行了校核计算并附带了简图并对零件的质量、重心、惯性主轴和惯性力矩进行辅助设计计算,可以大大减轻在设计过程中繁琐计算及校核步骤。 关键字:机械手,气缸,校核。

Abstract Industrial manipulator is the mechanical equipment which is used in the production process and simulate to the behave of hands with electrical integration. It can carry heavy objects and work in the harsh environment which is high temperature, poisonous ,full of dust, flammable and combustible monotonous and full of radioactive substance instead of people. Manipulator is a automatic device which is used in the automatic production process and it can carry and move things. It is a new device which is developed in the mechanization and automatic production process. In recent years , with the widely used of electronic technique especially the electronic computer. The research and production of robot has became a new technology which is developing rapidly in the high-tech industry . It promotes the development of manipulator. It makes the combination of the manipulator with mechanization and automation become easier . Manipulator can complete the dangerous and boring work instead of people. It can reduce labour intensity of people and raise the labour productivity . This design is a cylindrical manipulator which is related to delta degrees of freedom. It designs and draws the picture with Auto cad software ,it includes holder, a small arm, the big arm and the base. The clear and reasonable thinking determines the working principle of the manipulator . This also checks and calculates the holder, cylinder, stepper motor and bearing. Apart from this , it contains some pictures and design and measure the quality , barycentre principal axis of inertia and force of parts. It can greatly reduce the complicated calculation and check in the design process. Keywords: robot, cylinder, checking

工业机器人毕业设计

工业机器人 摘要 在当今大规模制造业中,企业为提高生产率,保障产品质量,普遍重视生产过程的自动化程度,工业机器人作为自动化生产线上重要的成员,逐渐被企业所认同并采用。工业机器人的技术水平和应用程度在一定程度上反映了一个国家工业自动化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动程度极大的工作,工作方式一般采取示教在线的方式。 本文将设计一台圆柱坐标型的工业机器人,用于给冲压设备运送物料。首先,本文将设计机器人的大臂、小臂、底座和机械手的结构,然后选择合适的传动方式、驱动方式,搭建机器人的结构平台:在此基础上,本文将设计该机器人的控制系统,包括数据采集卡和伺服放大器的选择、反馈方式和反馈元件的选择、以及控制元件的设计,重点加强控制软件的可靠性和机器人运行过程的安全性,最终实现的目标包括:关节的伺服控制和制动问题、实时监测机器人的各个关节的运动情况、机器人的示教编程和在线修改程序、设置参考点和回参考点。

目录 摘要 1绪论 (1) 1.1 工业机器人研究的目的和意义 (1) 1.2 工业机器人在国内外的发展现状与趋势…………………….. 1.3 工业机器人的分类 1.4 本课题研究的主要内容 2 总体方案的确定 2.1 结构设计概述 2.2 基本设计参数 2.3 工作空间的分析 2.4 驱动方式 2.5 传动方式确定 3 搬运机器人的结构设计 3.1 驱动和传动系统的总体结构设计 3.2 手爪驱动气缸设计计算 3.3 进给丝杠的设计计算 3.4 驱动电机的选型计算

3.5 手臂强度校核 4 搬运机器人的控制系统 4.1 机器人控制系统分类 4.2 控制系统方案分析 4.3 机器人的控制系统方案确定 4.4 PLC及运动控制单元选型 5 结论与展望 致谢

红外遥控六足爬虫机器人设计(单片机)

六足爬虫机器人设计 设计人:李海鹰 日期:2004年9月30日

目录 前言 (3) (一)、机器人的大脑 (3) (二)、机器人的眼睛耳朵 (3) (三)、机器人的腿——驱动器与驱动轮 (4) (四)、机器人的手臂——机械传动专制 (5) (五)、机器人的心脏——电池 (5) 一、AT89S51单片机简介 (6) (一)、AT89S51主要功能列举如下: (6) (二)、AT89S51各引脚功能介绍: (6) 二、控制系统电路图 (9) 三、微型伺服马达原理与控制 (10) (一)、微型伺服马达内部结构 (10) (二)、微行伺服马达的工作原理 (10) (三)、伺服马达的控制 (11) (四)、选用的伺服马达 (11) 四、红外遥控 (12) (一)、红外遥控系统 (12) (二)、遥控发射器及其编码 (12) (三)、红外接收模块 (13) (四)、红外解码程序设计 (13) 五、控制程序 (14) 六、六足爬虫机器人结构设计图 (21)

前言 今年年初,学校为参加中央电视台举办的第三届全国大学生机器人电视大赛,组建了机器人制作小组。我积极参加,有幸成为了其中的一员。因为我们以前没有参加过类似的比赛,也没有制作机器人的经验。可以说我们什么都是从零开始,边学习边制作。通过这半年多的制作过程,我从中学到了很多书本上学不到的东西,也得到了很好的学习与锻炼的机会。 最初,我们组建了机器人制作实验室。到五金机电市场购买了必要的工具和一些制作材料。然后开始制作实验机器人的身体——框架。 实验机器人的框架我们是使用轻型万能角钢制作的,这种角钢的两侧都有间隔均匀的孔槽,可以很方便的用螺栓进行连接。用不同长度的角钢组合后,就可以得到不同大小的立方体和长方体及多边形。机器人身体的框架就搭建好了。在它的上面将装上:机器人的大脑——可编程控制器、机器人的眼睛耳朵——传感器、机器人的腿——驱动轮、机器人的手臂——机械传动专制、机器人的心脏——电池……之所以使用轻型万能角钢,主要是因为是在制作试验机型,而轻型万能角钢安装拆卸方便和便于修改长度,调整设计。 实验机器人定型后,就照其尺寸用不锈钢方管焊接制作机器人的身体。再在上面进行打孔等工作,后就可以将机器人的其它部分安装上去。这样一个机器人就制作好了。 下面我介绍一下机器人的基本组成部分: (一)、机器人的大脑 它可以有很多叫法,可以叫做:可编程控制器、微控制器,微处理器,处理器或者计算器等,不过这都不要紧,通常微处理器是指一块芯片,而其它的是一整套控制器,包括微处理器和一些别的元件。任何一个机器人大脑就必须要有这块芯片,不然就称不上机器人了。在选择微控制器的时候,主要要考虑:处理器的速度,要实现的功能,ROM和RAM的大小,I/O端口类型和数量,编程语言以及功耗等。 其主要类型有:单片机、PLC、工控机、PC机等。 单有这些硬件是不够的,机器人的大脑还无法运行。只有在程序的控制下,它才能按我们的要求去工作。可以说程序就是机器人的灵魂了。而程序是由编程语言所编写的。 编程语言是一个控制器能够接受的语言类型,一般有C语言,汇编语言或者basic语言等,这些通常能被高级一点的控制器直接执行,因为在高级控制器里面内置了编译器能够直接把一些高级语言翻译成机器码。微处理器将执行这些机器码,并对机器人进行控制。 (二)、机器人的眼睛耳朵 传感器,是机器人的感觉器官,是机器人和现实世界之间的纽带,使机器人

八足机器人任务书

宁波大学科学技术学院本科毕业设计(论文)系列表格 宁波大学科学技术学院本科毕业设计(论文) 任务书 课题名称 大型仿生爬行机器人设计 指导教师梁冬泰 学院理工学院专业11机械设计 制造及其自 动化班级11机械三 班 学生姓名刘圣斌学号114174330开题日期2014.12.4一、主要任务与目标: 普通轮式机器人虽然速度快,效率高,噪声低,但是越障能力和地形适应差,转弯效率低,不适合在复杂环境下工作。在自然界中,蜘蛛因其独特的爬行机制可以在垂直的墙壁甚至倒立在天花板上行走,在复杂的环境中完成各种高难度的工作。本课题设计一种大型仿生爬行机器人通过模拟蜘蛛这种多足动物的步态实现各种机动动作,具有轮式机器不能比拟的机动性,本设计通过设计计算,实现大型仿生爬行机器人的结构设计。大型仿生爬行机器人的结构设计主要是运用仿生学原理设计制作的。基于这种机器人功能和结构的特点,设计出相应的机械结构。目前该机器人已经可以在平地上进行快速爬行和进行各种复杂的运动,完成各种人力所不能及的各种运动和危险环境下工作。,为进一步研究更加灵活多用的大型爬形机器人提供了一个基础测试平台。 二、主要内容与基本要求: 1主要内容 1.1.撰写开题报告,说明大型仿生爬行机器人的研究背景和研究意义。研究基本内容和主要问题。研究的总体安排和进度,研究的方法与技术路线。 1.2.查找国内外相关文献资料,作为参考文献(中文8篇,英文8篇)。综述大型仿生爬行机器人的研究现状和进展;并综述大型仿生爬行机器人结构设计的的原理和组成元件。将2篇英文文献翻译成中文。 1.3.查找大型仿生爬行机器人相关资料,明确大型仿生爬行机器人的大

相关主题
文本预览
相关文档 最新文档