当前位置:文档之家› 迟滞比较器电路图文分析

迟滞比较器电路图文分析

迟滞比较器电路图文分析
迟滞比较器电路图文分析

迟滞比较器电路图文分析

在一个12V 蓄电池充电的光伏控制器中,当电压上升到13.1V 时要截至充电,当电压降低到13.6V 时,又可以再充电。在这样的电压比较电路中需要用迟滞比较器。

单限比较电路具有电路简单、灵敏度高等优点,但存在抗干扰能力差的问题。迟滞比较电路具有滞回特性,具有一定抗干扰能力。同时在光伏系统中,为了实现蓄电池的充电和放电控制,需要在一个回路中实现两种电压的识别和判断,因此迟滞比较器将在上述功能电路中得到应用。

1.反相迟滞比较器

如图3.19(a)所示,输入信号从比较器的反相端输入,故称为“反相迟滞比较器”。当ui 足够小,比较电路输出高电平,即Z OH o U u u +==,此时运放的同相端电压UTH 表示,利用叠加定理可得

OH REF TH U R R R U R R R U 212211

+++=

随着u i 不断增大,当u i >U TH 时,比较电路的输出由高电平跃变为低电平,即Z oL o U u u -==,此时运放的同相端电压用U TL 表示,其值变为:

OL REF TL U R R R U R R R U 212211

+++=

比较器有两个门限电压U TH 和U TL ,分别称为下门限电压和上门限电压,两者的差值为“门限电压”或“门限宽度”。

)(212

OL OH TL TH U U R R R U U U -+=-=?

调节R1、R2便可改变回差电压U ?的大小。

例:在途3.19中,已知稳压管的稳定电压为±U Z =±9V ,R1=40K ?,R2=20K ?,基准电压U REF =3V ,求该电路的U TH 和U TL 。

解:有已知可得,U O =U Z =±9V 。

V U R R R U R R R U OH REF TH 5920

40203204040212211

=?++?+=+++= V U R R R U R R R U OL REF TH 192040203204040212211

-=?+-?+=

+++=

所以,输入电压u i 在增大过程中,当输入u i <+5V 时,输出电压为+9V ;当输入u i >+5V 时,输出电压为-9V ;

输入电压u i 在减小过程中,当输入u i >-1V 时,输出电压为-9V ;当输入u i <-1V 时,输出电压为+9V 。

2.同相迟滞比较器

同相迟滞比较器如图3.20所示,其中输入电压UIN 接到集成运放的同相端,将其反相输入端接地,或接参考电压U REF 。

同理可求得:

当U O =-U Z , 即(U O =U OL )时:

Z REF TH U R R U R R R U 1

2

12

1++=

当U O =U Z , 即(U O =U OH ) 时:

Z REF TL U R R

U R R R U 1

2

12

1-+=

2:输出信号通道1:输入信号 (a)系统电路 (b)函数信号发生器信号

(c)比较器输出信号 图3.20 同相输入迟滞比较器

常用运放电路及其各类比较器电路

常用运放电路及其各类比较器电路

————————————————————————————————作者:————————————————————————————————日期:

彭发喜,制作 同相放大电路: 运算放大器的同相输入端加输入信号,反向输入端加来自输出的负反馈信号,则为同相放大器。 图是同相放大器电路图。 因为e1=e2,所以输入电流极小,输入阻抗极高。 如果运算放大器的输入偏置电流,则 e1=e2 放大倍数: 原理图:

反相比例运算放大电路图: 1号图: 2号图: 反相输入放大电路如图1所示,信号电压通过电阻R1加至运放的反相输入端,输出电压vo通过反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路。R ¢为平衡电阻应满足R ¢= R1//Rf。 利用虚短和虚断的概念进行分析,vI=0,vN=0,iI=0,则 即

∴ 该电路实现反相比例运算。 反相放大电路有如下特点 1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。 2.vN= vP,而vP=0,反相端N没有真正接地,故称虚地点。 3.电路在深度负反馈条件下,电路的输入电阻为R1,输出电阻近似为零。 运算放大器减法电路原理: 图为运放减法电路 由e1输入的信号,放大倍数为R3/R1,并与输出端e0相位相反,所以 由e2输入的信号,放大倍数为 与输出端e0相位相,所以

当R1=R2=R3=R4时e0=e2-e1 加法运算放大器电路: 加法运算放大器电路包含有反相加法电路和同相加法电路. 同相加法电路:由LF155组成。 三个输入信号同时加到运放同相端,其输入输出电压关系式:

电压比较器原理介绍

一、电压比较器原理 电压比较器是集成运放非线性应用电路,常用于各种电子设备中,那么什么是电压比较器呢? 它将一个模拟量电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。比较器可以组成非正弦波形变换电路及应用于模拟与数字信号转换等领域。 图1所示为一最简单的电压比较器,UR为参考电压,加在运放的同相的输入端,输入电压ui加在反相的输入端。 图1电压比较器原理图(a)及传输特性(b) (a)电路图 (b)传输特性当ui<U R时,运放输出高电平,稳压管Dz反向稳压工作。输出端电位被其箝位在稳压管的稳定电压U Z,即 u O=U Z 当ui>U R时,运放输出低电平,DZ正向导通,输出电压等于稳压管的正向压降U D,即 uo=-U D 因此,以U R为界,当输入电压ui变化时,输出端反映出两种状态,高电位和低电位。 表示输出电压与输入电压之间关系的特性曲线,称为传输特性。图1(b)为(a)图比较器的传输特性。 常用的电压比较器有过零电压比较器、具有滞回特性的过零比较器、滞回电压比较器,窗口(双限)电压比较器。 二、集成电压比较器简介 作用:可将模拟信号转换成二值信号,即只有高电平和低电平两种状态的离散信号。应用:作为模拟电路和数字电路的接口电路。 特点:比集成运放的开环增益低,失调电压大,共模抑制比小;但其响应速度快,传输延迟时间短,而且不需外加限幅电路就可直接驱动TTL、CMOS和ECL等集成数字电路;有些芯片带负载能力很强,还可直接驱动继电器和指示灯(例如LM311)。 三、电压比较器的应用 电压比较器(以下简称比较器)是一种常用的集成电路。它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。本文主要介绍其基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。 电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。另外有电源V+及地(这是个单电源比较器),同相端输入电压V A,反相端输入V B。V A和V B的变化如图1(b)所示。

迟滞比较器设计

迟滞比较器设计 1. 设计需求分析: 电路工作描述:例如:当Vin<300mmHg 压力对应电压值(如:2.7V)时,Vout 为低电平,当Vin>2.7V 时,Vout 为高电平,使Q7导通,Valve 信号为低电平,气阀打开。直到Vin<0.3V 时,Vout 才恢复为低电平。 血压模块过压保护电路模型如下: 说明:图中Vin 为压力传感器压力电压值 对应于迟滞比较器的电压传输特性图,VTL=0.3V ,VTH=2.7V ,VOL=0V ,VOH=VCC 。 2.电路模型计算: 从电压传输特性图可以看出,Vout=VOL 时,Vin=VTH 。由运放的虚短和虚断特性可以 得出,其中 2 R VCC Vref +=()1 *IRin IRf IRin 算式VOL Rin Vref Rf Rin VTH Rf VOL Vref Rin Vref VTH VOL Vref IRf Rin Vref VTH ?+= ?= ??= ?= =当Vout=VOH 时,Vin=VTL ,同理可得。 ()2*IRin IRf IRin 算式Rf VOH Rin Vref Rf Rin VTL Rf VOH Vref Rin Vref VTL Rf VOH Vref IRf Rin Vref VTL ?+= ?= ??= ?= =

将VTH 与VTL 相减得:()3 ........*算式Rf Rin VOL VOH VTL VTH ?= ?将需求分析中的VTL=0.3V ,VTH=2.7V ,VOL=0V ,VOH=VCC(实际为3.3V),代入上面的算式3中,可得4..........375.1算式Rin Rf =。将算式4代入算式1中,可得到Vref=1.563V 3. 参数选择: v R1,R2电阻的选择:根据2 12 * R R R VCC Vref +=R1=1.111*R2。考虑到实际电 阻阻值和功耗方面要求,有以下电阻可选: R 2(K Ω) R 1(K Ω)22.2222.22.444233.3335.15.66612022.222224.4423033.335156.661300333.3510 566.61 为了达到精确的目的,可以用两个串联电阻代替R1。v Rin 和Rf 的选择:根据Rin Rf *375.1=,考虑到实际电阻阻值,功耗,系统电路影响等方面要求,有以下电阻可选: R i n (K Ω)R f (K Ω)1.52.062522.752.23.0252.43.32230.2524 33 4.仿真验证: 仿真工具:MultiSIM 10.0,电路原理图及仿真结果如下图所示:

一位数据比较器电路的设计 (2)

新疆大学 课程设计报告 所属院系:电气工程学院 专业:电气工程 课程名称:电子技术B课程设计 设计题目:一位数据比较器电路的设计 班级:电气班 学生姓名: 学生学号: 指导老师: 完成日期:2014.01.13 —2014.01.20

一位数据比较器的电路设计 1.设计目的 (1)了解EDA技术的发展及应用 (2)掌握VHDL语言的基础知识,熟悉在数字电路系统设计中VHDL程序设计(3)学习MAX+PLUSⅡ软件的应用方法 (4)应用EDA技术的设计方法完成4位右移移位寄存器的设计(采用原理图和文本法两种方法实现),并在MAX+PLUSⅡ上仿真 2.关于MAX+PlusⅡ的使用与仿真 2.1 MAX+plus2软件简介 MAX+plusII是Altera公司提供的一个集成化开发系统,该系统界面友好,学习 容易,使用简单,功能齐全,是一款流行的EDA开发平台。 MAX+PLUSII把这些设计转自动换成最终所需的格式。其设计速度非常快。对于一般几千门的电路设计,使用MAX+PLUSII,从设计输入到器件编程完毕,用户拿到设计好的逻辑电路,大约只需几小时。设计处理一般在数分钟内完成。特别是在原理图输入等方面,Maxplus2被公认为是最易使用,人机界面最友善的PLD开发软件,特别适合初学者使用。 EDA (Electronic Design Automation) EDA技术就是依靠功能强大的电子计算机,在EDA 工具软件平台上,对以硬件描述语言HDL为系统逻辑描述手段完成的设计文件,自动地完成逻辑编译、化简、分割、综合、优化、仿真,直至下载到可编程逻辑器件CPLD/FPGA或专用集成电路ASIC芯片中,实现既定的电子电路设计功能。 2.2MAX+plus2 使用方法简要说明 MAX+plus2硬件平台的微机最好配置512MB内存、4,3GMB硬盘,可以在Windows XP等操作系统支持下工作。在进行了MAX+plus2的系统安装和系统启动后,对于所要设计和仿真的系统需要进行如下基本步骤: (1)VHDL语言工程文件的建立和编辑; 文件的建立:新建文件(file/new/text editor file)、输入文本(text editor)、保存文件(file/save);文件的修改:打开需修改文件 (file/open/*.vhd)、修改(text editor)、保存 (file/save); (2)电路图的建立和编辑

电压比较器电路图

电压比较器电路图 单限比较器电路 OH。图1B为其传输特性。 图3为某仪器中过热检测保护电路。它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。UR=R2/(R1+R2)*UCC。同相端的电压就等于热敏元件RT的电压降。当机内温度为设定值以下时,“+”端电压大于“-”端电压,UO为

高电位。当温度上升为设定值以上时,“-”端电压大于“+”端,比较器反转,UO输出为零电位,使保护电路动作,调节R1的值可以改变门限电压,既设定温度值的大小。 图3 迟滞比较器 图1 不难看出,当输出状态一旦转换后,只要在跳变电压值附近的干扰不超过ΔU之值,输出电压的值就将是稳定的。但随之而来的是分辨率降低。因为对迟滞比较器来说,它不能分辨差别小于ΔU的两个输入电压值。迟滞比较器加有正反馈可以加快比较器的响应速度,这是它的一个优点。除此之外,由于迟滞比较器加的正反馈很强,远比电路中的寄生耦合强得多,故迟滞比较器还可免除由于电路寄生耦合而产生的自激振荡。 图2 图3为某电磁炉电路中电网过电压检测电路部分。电网电压正常时,1/4LM339的U4<,U5=,输出开路,过电压保护电路不工作,作为正反馈的射极跟随器BG1是导通

的。当电网电压大于242V时,U4>,比较器翻转,输出为0V,BG1截止,U5的电压就完全决定于R1与R2的分压值,为,促使U4更大于U5,这就使翻转后的状态极为稳定,避免了过压点附近由于电网电压很小的波动而引起的不稳定的现象。由于制造了一定的回差(迟滞),在过电压保护后,电网电压要降到242-5=237V时,U4UR2或UIN

迟滞性比较器的设计方法

一种自适应迟滞性比较器的设计 关键词:迟滞电路,比较器 摘要:设计了一种由滤波器和迟滞比较器构成的传输频率信号电路。设计使用滤波器将输入信号改变适当的相位作为迟滞比较器标准端的信号,而原信号输入比较器的另一端。那么由于迟滞比较器的电压同时随输入信号改变。 迟滞电路(hysteresis circuit)又称施密特触发电路(schmitt trigger circuit)。因他能滤除干扰噪声而获得很广泛的运用。在一些应用场合中,特别在某些模/数转换电路中[1],迟滞比较器作为抗干扰的比较器应用较多。为了获得更好的转换效果,需要较好地选择迟滞比较器正端输入的基准电压。而信号的未知为确定基准电压带来麻烦。本文设计的一种加入滤波器的迟滞比较器解决了这个问题。 1 迟滞比较器的设计 迟滞性是比较器的一种特性,他使比较器的输入阈值随输入(出)电平而改变。比较器实现的方法很多。他们都有不同形式的正反馈。最常见的即是由放大器接成正反馈组成。这类迟滞比较器由于方便的设计和放大器的标准生产成为主流。设计选用了最常见的由放大器正反馈的设计,如图1所示。 由米尔曼公式可得输入电压升高和降低时的基准电压如下式:

而电路能滤掉的噪声即迟滞性为: 由上式可知,迟滞性由电源电压和R4,R5阻值决定。本设计中V r的大小是变成的,因此正负基准电压也随V r变化,为了达到自适应的目的希望基准电压对输入有好的跟随性同时减小输出端的影响。因此将R4取值得比R5要小一个数量级。 2 滤波器的设计 设计滤波器往往要考虑下列因素: (1)工作频率范围。 (2)参数变化的灵敏度及稳定度。 (3)实际元件的重量和大小。 (4)运算放大器的电压源。 2.1 滤波器的选择[2] 本设计是工作在低频的比较器。此时当信号频率是低频时可以考虑的方式有低通、带通或全通,同时还可选择一阶或多阶。在考虑此设计后,一阶滤波器在此设计中是较好的,且低通

LM339电压比较器原理应用

四电压比较器LM339的8个典型应用例子 LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图2a给出了一个基本单限比较器。输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。当输入电压Uin>Ur时,输出为高电平UOH。图2b为其传输特性。

运放及比较器迟滞

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个―庖丁解牛‖,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是―虚短‖和―虚断‖,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于―短路‖。开环电压放大倍数越大,两输入端的电位越接近相等。 ―虚短‖是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。―虚断‖是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把―板斧‖------―虚短‖和―虚断‖,开始―庖丁解牛‖了。 总记录数113总页数3当 前页1 123 引用| 回复 | 2006-10-19 21:06:00 1楼 芯片级维修

高速AD、DA和高速比较器模块电路设计

FPGA FPGA AD_CLK PIN_125 B[3] PIN_48 DA_OUT[9] PIN_120 B[4] PIN_52 DA_OUT [8] PIN_119 B[5] PIN_55 DA_OUT [7] PIN_118 B[6] PIN_58 DA_OUT [6] PIN_115 B[7] PIN_60 DA_OUT [5] PIN_114 B[8] PIN_64 DA_OUT [4] PIN_113 B[9] PIN_67 DA_OUT [3] PIN_112 B[10] PIN_70 DA_OUT [2] PIN_104 B[11] PIN_72 DA_OUT [1] PIN_103 B[12] PIN_74 DA_OUT [0] PIN_101 B[13] PIN_76 DA_PD PIN_100 B[14] PIN_80 DAC DA_CLK PIN_121 B[15] PIN_86 A[0] PIN_40 B[16] PIN_92 A[1] PIN_42 B[17] PIN_94 FPGA I/O A[2] PIN_44 FPGA I/O B[18] PIN_97 FPGA I/O A[0] LED 2.4 FPGA SPI C8051F020 FPGA EP2C5T144C8 SPI 2.4.1 C8051F020 EP2C5T144C8 I/O F PGA_D0(PIN_9) F PGA_D1(PIN_8)F PGA_D2(PIN_7)F PGA_D3(PIN_4)F PGA_D4(PIN_3)P30P31P32P33P34 2.4.1 FPGA SPI 2.5 10bit ADC 40Msps 10bit DAC 165Msps 2.5.1 TL3016 TI 2.5.1.1 5V ±5V LA TCH ENABLE 7.6 ns

LM339--迟滞比较器

LM339 ——迟滞比较器 一、功能描述 本电路是将LM339制作成一个反相迟滞比较器,通过在反相端输入信号,与 同相端的基准电压比较,当U +> U - 时,输出端相当于开路,输出高电平;当U + < U - 时,输出管饱和,相当于输出端接低电平。 二、数据说明 1、测试条件:TDS1012示波器、SG1020A数字合成信号发生器、TH-SS3022 型数显直流稳压电源 2、测试工具:万用表、TDS1012示波器、SG1020A数字合成信号发生器、 TH-SS3022型数显直流稳压电源 3、测试方法:测试前用万用表检测电路的通路与断路,测试时用示波器观 察输入和输出波形并记录。 4、测试数据: 表1 输入频率与输出的关系 测试条件:单电源输入Vcc=12V,输入正弦波,峰峰值为2V,加1V偏置,Vref=1V)

图1 输入频率与输出的关系 表2 输入电压与输出的关系 测试条件:单电源输入Vcc=12V,输入正弦波,频率为5K,Vref=1V) 5、结果分析: 迟滞比较器中加入正反馈可以克服输出端的抖动,所以在输入电压幅值增加时,输出端的幅值没有发生任何改变。输出电压的幅值不会随频率的改变而改变,但是保持高低电平的时间高度随着频率的增大而减小,并且波形随频率的增大开始产生失真,在我们的测量中,最大可以达到210KHZ。同时从上面的数据可以看出,上升时间总是大于下降时间。 三、芯片介绍 1、芯片特点:内部装有四个独立的电压比较器,工作电源电压范围宽,单

电源、双电源均可工作(单电源: 2~36V ,双电源:±1~±18V );消耗电流小,I CC =1.3mA;输入失调电压小,V IO =±2mV ; 共模输入电压范围宽, Vic=0~Vcc-1.5V;输出与TTL ,DTL ,MOS ,CMOS 等兼容; 输出可以用开路集电极连接“或”门. 2、芯片用途: 满足比较器的基本用途,可以用作单限比较器,迟滞比较器,窗口比较器等,用来比较电压,用得最多的是在电磁炉中,做过压过热保护。 3、引脚及封装: 采用双列直插14 脚塑料封装(DIP14)和微形的双列14 脚塑料封装(SOP14) 图2 引脚图及内部结构图 表3 主要参数

位数值比较器设计

令狐采学创作 电子技术课程设计报告 令狐采学 题目:4位数值比较器设计 学生姓名: 学生学号: 年级: 专业: 班级: 指导教师: 机械与电气工程学院制 2016年11月 4位数值比较器设计 机械与电气工程学院:自动化专业 1.课程设计的任务与要求 1.1 课程设计的任务 采用Multisim 12.0软件实现4位数值比较器的设计与仿真。 1.2 课程设计的要求 (1)设计一个4位数值比较器的电路,对两个4位二进制进行比较。 (2)采用74Ls85集成数值比较器。

(3)要有仿真效果及现象或数据分析。 2.四位数值比较器设计方案制定 2.1 四位数值比较器工作的原理 对两个4位二进制数A3A2A1A0与B3B2B1B0进行比较。从A的最高位A3和B的最高位B3进行比较,如果他们不相等,则该位的比较结果可以作为两数的比较结果。若最高位A3=B3,则再比较次高位A2=B2,余此类推。如果两数相等,那么,必须将进行到最低位才能得到结果。可以知道:FA>B=FA3>B3+FA3=B3FA2>B2+FA3=B3FA2=B2FA1>B1 +FA3=B3FA2=B2FA1=B2FA0>B0+FA3=B3FA2=B2FA1=B1 FA0=B0IA>B (2-1) FAB、IAB、IAB=IA

电压比较器

模拟电子技术自主设计实验 姓名:林启震班级:04101 学号1120410121 实验日期:5.27 台号:教师签字: 电压比较器 一、实验目的 1、掌握电压比较器的分析及其计算 2、学习测试比较器的方法 二、实验仪器 1、双踪示波器 2、信号发生器 3、数字万用表 4、直流电源。 三、实验原理及测量方法 电压比较器(通常称为比较器)的功能是比较两个电压的大小。例如,将一个信号电压Ui和另一个参考电压Ur进行比较,在Ui>Ur和Ui0时,Uo为低电平 Ui<0时,Uo为高电平 集成运放输出的高低电平值一般为最大输出正负电压值U om (a)电路图(b)电压传输特性曲线 图1 过零比较器 2、滞回电压比较器 滞回电压比较器是由集成运放外加反馈网络构成的正反馈电路,如图2所示。Ui为信号电压,Ur为参考电压值,输出端的稳压管使输出的高低电平值为±Uz。可以看出,此电路形成的反馈为正反馈电路。

(a )电路图 (b )电压传输特性曲线 图2 反向滞回电压比较器 电压比较器的特性可以用电路的传输特性来描述,它是指输出电压与输入电压的关系曲线,如图1(b )为过零比较器的电压传输特性曲线。 可以看出,当输入电压从低逐渐升高或从高逐渐降低经过0电压时,Uo 会从一个电平跳变为另一个电平,称0为过零比较器的阈值。阈值定义为当比较器的输出电平从一个电平跳变到另一个电平时对应的输入电压值。 滞回电压比较器的电压传输特性曲线如图2(b )所示。 曲线表明,当输入电压由低向高变化,经过阈值1TH U 时,输出电平由高电平(Uz )跳变为低电平(-Uz )。 2123z TH R U U R R = + 当输入电压由高向低变化,经过阈值2TH U 时,输出电平由低电平(-Uz)跳变为高电平(Uz)。 2123z TH R U U R R -= + 3、电压比较器的测试 测试过零比较器时,可以用一个低频的正弦信号输入至比较器中,直接用双踪示波器监看输出和输入波形,当输入信号幅度适中时,可以发现输入电压大于零、小于零时,输出的高、低电平变化波形,即将正弦波变换为方波。 滞回电压比较器测试时也可由用同样的方法,但在示波器上读取上、下阈值时,误差较大。采用直流输入信号的方案较好,调节输入信号变化,测出输出电平跳变时对应的输入电压值即为阈值。 四、实验内容 1、 过零比较器 (1)连接图1(a )实验电路,检查无误后,接通12V ±直流电源 (2)测量当Ui 悬空时,Uo 的值 (3)调节信号源,使输出频率为100Hz ,有效值为1V 的正弦波信号,并输入至Ui 端,用示波器观察比较器的输入Ui 与输出Uo 波形并记录 (4)改变信号发生器的输出电压Ui 幅值,用示波器观察Uo 变化,测出电压传

电子课程设计-迟滞比较器

《电子设计基础》 课程报告 设计题目:迟滞比较器 学生班级:电子1001班 学生学号: 学生姓名: 指导教师: 时间:2011-2012-1学期11-18 周 成绩: 西南科技大学 信息工程学院

一.设计题目及要求 1.题目:迟滞比较器 2.要求:上门限电压V T+=3V下门限电压V T-=2V 二.题目分析与方案选择 单门限电压比较器电路简单,灵敏度高,但其抗干扰能力差。因此,有另一种抗干扰能力强的迟滞比较器。迟滞比较器是一个具有迟滞回环传输特性的比较器,它是在反相输入单门限电压比较器的基础上引入了正反馈网络。因为比较器处于正反馈状态,因此一般情况下,输出电压v o与输入电压v i不成线性关系,只有在输出电压v o发生跳变瞬间,集成运放两个输入端之间的电压才可能近似为零,即v ID近似为零时,是输出电压v o转换的临界条件,当v i>v p时,输出电压v o为低电平V OH,反之v o为高电平,此时的v p即为门限电压V T。 三.主要元器件介绍 运算放大器(型号:LM358AH),电源电压范围宽:单电源3-30V;低功耗电流适合于电池供电。稳压管(由两个背靠背的二极管组成,其型号为:IN5229B,其稳压值是4.3V) 四.电路设计及计算 (图1)Multisim图

该迟滞比较器中,选择其高平电压V OH=5V,低平电压V OL=-5V,根据上下门限电压值的运算: 1.V T+=(R1V REF)/(R1+R2)+(R2V OH)/(R1+R2) V T-=(R2V REF)/(R1+R2)+(R2V OH)/(R1+R2) 代入V T+=3V,V T-=2V,V OH=5V,V OL=-5V ,算得:V REF=2.8V,R1=10KΩ,R2=70KΩ V REF=VCCR7/2(R3+R7) L )/(R1+R2) 五.仿真及结果分析 (图2) 从图中的通道A可以知道,V T+=3.076V,V T-=1.930V,其误差: 33 076 .3- 100%=2.5%, 22 930 .1- 100%=-3.5%误差来源可能是电路图中的R4的阻值,还有就是参考电压V REF的值的选取。

电压比较器电路图

电压比较器电路。 电压比较器是比较两个电压和开关输出或高或低的状态,取决于电压较高的电路。一个基于运放电压比较器上显示。图1显示了一个电压比较器的反相模式图显示了在非反相模式下的电压比较。 电压比较器 非反相比较 在非反相比较器的参考电压施加到反相输入电压进行比较适用于非反相输入。每当进行比较的电压(Vin)以上的参考电压进入运放的输出摆幅积极饱和度(V+),和副反之亦然。实际上发生了什么是VIN和Vref(VIN-VREF)之间的差异,将是一个积极的价值和由运放放大到无穷大。由于没有反馈电阻Rf,运放是在开环模式,所以电压增益(AV)将接近无穷。+所以最大的可能值,即输出电压摆幅,V。请记住公式AV=1+(Rf/R1)。当VIN低于VREF,反向发生。 反相比较

在相比较的情况下,参考电压施加到非反相输入和电压进行比较适用于反相输入。每当输入电压(Vin)高于VREF,运放的输出摆幅负饱和。倒在这里,两个电压(VIN-VREF)之间的差异和由运放放大到无穷大。记住公式AV=-Rf/R1。在反相模式下的电压增益的计算公式是AV=-Rf/R1.Since没有反馈电阻,增益将接近无穷,输出电压将尽可能即负,V-。 实际电压比较器电路 一种实用的非基于UA741运放的反相比较器如下所示。这里使用R1和R2组成的分压器网络设置参考电压。该方程是VREF=(五+/(R1+R2)的)×R2的。代入这个方程电路图值,VREF=6V。当VIN高于6V,输出摆幅?+12V直流,反之亦然。从A+/-12V 直流双电源供电电路。 电压比较器的使用741

一些其他的运放,你可能会感兴趣的相关电路 1求和放大器:总结放大器可以用来找到一个信号给定数量的代数和。 2。集成使用运放:对于一个集成的电路,输出信号将输入信号的积分。例如,一个集成的正弦波使余弦波,方波一体化为三角波等。 3。反相放大器:在一个反相放大器,输出信号将输入信号的倒版,是由某些因素放大。 4,仪表放大器:这是一个类型的差分放大器输入额外的缓冲阶段。输入阻抗高,易于匹配结果。仪表放大器具有更好的稳定性,高共模抑制比(CMRR),低失调电压和高增益。

电压比较器教程文件

电压比较器

实验十集成运放基本应用之三——电压比较电路 姓名:班级:学号:实验时间: 一、实验目的 1、掌握比较器的电路构成及特点 2、学会测试比较器的方法 二、实验原理 1、图1所示为一最简单的电压比较器,UR为参考电压,输入电压Ui加在反相输入端。图1(b)为(a)图比较器的传输特性。 (a) 图1 电压比较器 (b) 当UiUR时,运放输出低电平,Dz正向导通,输出电压等于稳压管的正向压降UD,即:Uo=-UD。 因此,以UR为界,当输入电压Ui变化时,输出端反映两种状态。高电位和低电位。 2、常用的幅度比较器有过零比较器、具有滞回特性的过零比较器(又称Schmitt触发器)、双限比较器(又称窗口比较器)等。 (1)、图2过零比较器 D1D2为幅稳压管。信号从运放的反相端输入,参考电压为零。当u1>0 时,u0=-(Uz+U D),当u1<0时,u0=+(Uz+U D)

(a) 图2 过零比较器 (b) (2)、图3为滞回比较器。 过零比较器在实际工作时,如果Ui恰好在过零值附近,则由于零点漂移的存在,Uo将不断由一个极限值转换到另一个极限值,这在控制系统中,对执行机构将是很不利的。为此就需要输出特性具有滞回现象。如图3所示: (a) (b) 图3 滞回比较器 从输出端引入一个电阻分压支路到同相输入端,若Uo 改变状态,U∑ 点也随着改变点位,使过零点离开原来位置。当Uo 为正(记作U D )U∑=[ R2/( R2+ R f )]* U D ,则当UD> U∑后,Uo 再度回升到UD,于是出现图(b)中所示的滞回特性。- U∑ 与U∑ 的差别称为回差。改变R2 的数值可以改变回差的大小。 三、实验设备与器件 1、±12V直流电源 2、直流电压表 3、函数信号发生器 4、交流毫伏表 5、双踪示波器 6、运算放大器μA741×2 7、稳压管2CW231×1 8、二极管4148×2 9、电阻器等

一种用于DCDC变换器中的BiCMOS迟滞比较器电路设计

一种用于DC/DC变换器中的BiCMOS 迟滞比较器电路设计 吴海波 谭传武 (湖南铁道职业技术学院 湖南 株洲 412001) 摘 要: 比较器是DC/DC电荷泵转化器中的重要组成部分,其性能优劣决定着DC转换的速度和精度。基于BiCMOS 0.6um工艺设计一种高速低功耗的迟滞比较器电路,利用Hspice仿真结果表明:在电压电压变换时比较器电路增益达到72dB,迟滞电压为0.1V,DC/DC变换器输出稳定5V,出现30mV的纹波电压。 关键词: 比较器;迟滞;BiCMOS 中图分类号:TM46 文献标识码:A 文章编号:1671-7597(2012)1120068-01 输出高电平,M7检测OUT端的高电平信号马上导通,此时VOUT端 0 引言 振荡器模块停止工作,输出主要靠输出电容放电维持并慢慢下DC/DC变换器是电子设备必不可少的组成部分,DC转换器 降,由于M7的导通分流作用,使得M3进入线性区,并且TE点的的性能优劣直接关系到系统的可靠性。比较器是判断DC/DC变 电位随之下降,实现比较器的迟滞功能。当VOUT继续下降,误换器电荷泵启动或关断的依据,为了得到宽电源范围下的稳定 差放大器检测到VFVF,M1、M2、M3、M4、M5组成的运放输出 ,使得 M9导通性能变差,比较器输出OUT为低电平。当BG

迟滞比较器

迟滞比较器又可理解为加正反馈的单限比较器。 单限比较器,如果输入信号Uin在门限值附近有微小的干扰,则输出电压就会产生相应的抖动(起伏)。在电路中引入正反馈可以克服这一缺点。 图1a给出了一个迟滞比较器,人们所熟悉的“史密特”电路即是有迟滞的比较器。图1b为迟滞比较器的传输特性。 不难看出,当输出状态一旦转换后,只要在跳变电压值附近的干扰不超过ΔU 之值,输出电压的值就将是稳定的。但随之而来的是分辨率降低。因为对迟滞比较器来说,它不能分辨差别小于ΔU的两个输入电压值。迟滞比较器加有正反馈可以加快比较器的响应速度,这是它的一个优点。除此之外,由于迟滞比较器加的正反馈很强,远比电路中的寄生耦合强得多,故迟滞比较器还可免除由于电路寄生耦合而产生的自激振荡。 迟滞比较器 迟滞比较器的输出VO与输入VI不成线性关系,输出电压的转换临界条件是 门限电压VP(同相输入端的电压)≈VN(反相输入端的电压)=VI(参考基准电压)VP=VN=[(R1×VREF)/(R1+R2)]+[(R2×VO)/(R1+R2)] (公式-1) 根据输出电压VO的不同值(VOH或VOL)可以分别求出上门限电压VT+和下门限电压VT-分别为: VT+={[1+(R1/R2)]×VREF}-[(R1/R2)×VOL](公式-2) VT-={[1+(R1/R2)]×VREF}-[(R1/R2)×VOH](公式-3) 那麽门限宽度为: ΔVT=(R1/R2)×(VOH-VOL)(公式-4)

已知工作电压=12V 基准电压VREF=1V 输入电压VI=1~5V R1=1000Ω=1KΩ R2=1000000Ω=1MΩ 反馈系数=R1/(R1+R2)=0.000999 比较器输出电压VOH=12V, VOL=0V 而比较器的门限宽度/输出电压=反馈系数 即反馈系数×输出电压=门限宽度 0.000999×12=0.011988≈0.012V 根据(公式-2)VT+={[1+(R1/R2)]×VREF}-[(R1/R2)×VOL] ={[1+(1000/1000000)]×1}-[(1000/1000000)×0] =1.001-0 =1.001(V) 根据(公式3)VT-={[1+(R1/R2)]×VREF}-[(R1/R2)×VOH] ={[1+(1000/1000000)]×1}-[(1000/1000000)×12] =1.001-0.012 =0.989(V) 根据(公式-4)ΔVT=(R1/R2)×(VOH-VOL) =(1000/1000000)×12 =0.012(V) 验证 VT+-VT- =1.001-0.989=0.012(V) 可以通过改变R2达到改变反馈系数来调节ΔVT的范围。 例如将R2改为10KΩ时,则

LM339比较器应用电路

lm339应用电路图:LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:失调电压小,典型值为2mV;电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;对比较信号源的内阻限制较宽;共模范围很大,为0~(Ucc-1.5V)Vo;差动输入电压范围较大,大到可以等于电源电压;输出端电位可灵活方便地选用。 LM339集成块采用C-14型封装,图1为外型及管脚排列图。由于LM339使用灵活,应用广泛,所以世界上各大IC生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339等,它们的参数基本一致,可互换使用。 LM339类似于增益不可调的运算放大器。每个比较器有两个输入端和一个输出端。两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。选不同阻值的上拉电阻会影响输出端高电位的值。因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。另外,各比较器的输出端允许连接在一起使用。 单限比较器电路 图3为某仪器中过热检测保护电路。它用单电源供电,1/4LM339的反相输入端加一个固定的参考电压,它的值取决于R1于R2。UR=R2/(R1+R2)*UCC。同相端的电压就等于热敏元件Rt的电压降。当机内温度为设定值以下时,“+”端电压大于“-”端电压,Uo为高电位。当温度上升为设定值以上时,“-”端电压大于“+”端,比较器

迟滞比较器

迟滞比较器单门限电压比较器虽然有电路简 单、灵敏度高等特点,但其抗干 扰能力差。例如,在单门限电压v中含XX_01中,当比较器的图I有噪声或干扰电压时,其输入和所示,输出电压波形如图XX_01VvV附近出现干扰,由于在==REFthI VvV,导致将时而为,时而为OLOOH比较器输出不稳定。如果用这个v去控制电机,将出现输出电压O频繁的起停现象,这种情况是不允许的。提高抗干扰能力的一种方案是采用迟滞比较器。.电路组成1迟滞比较器是一个具有迟滞回环所示为特性的比较器。图XX_02aXX_01 图反相输入迟滞比较器原理电路,它是在反相输入单门限电压比较 器的基础上引入了正反馈网络,如其传输特性如图XX_02b所示。Vv位置互换,就可组成将与REFI同相输入迟滞比较器。 (a) 2.门限电压的估算 由于比较器中的运放处于开环状态或正反馈状态,因此一般情况vv不下,输出电压与输入电压IO成线性关系,只有在输出电压发生跳变瞬间,集成运放两个输入(b) 端之间的电压才可近似认为等于图XX_02 零,即 (1)或

设运放是理想的并利用叠加原理,则有 (2) word 编辑版. vVVVV和下门限电压的不同值(根据输出电压),可求出上门限电压或TOLOT+–OH分别为 (3) (4) 门限宽度或回差电压为 (5) ,则由式(3)~(5)XX_02a所示,且可求得设电路参数如图 ,和。 3.传输特性 开始讨论。设从,和 vvv增加当由零向正方向增加到接近前,不变。当一直保持IOI

vVvVV下跳到下跳到,到略大于。再增加,,则同时使由POLOHOI v保持不变。O vv不变,将始终保持只有当,则若减小,只要oI V。其传输特性如图XX_02b跳到所示。时,才由OH v的变化而改变的。由以上分析可以看出,迟滞比较器的门限电压是随输出电压o它的灵敏度低一些,但抗干扰能力却大大提高了 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持) word 编辑版. word 编辑版.

相关主题
文本预览
相关文档 最新文档